#
#
# Nimrod's Runtime Library
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# string & sequence handling procedures needed by the code generator
# strings are dynamically resized, have a length field
# and are zero-terminated, so they can be casted to C
# strings easily
# we don't use refcounts because that's a behaviour
# the programmer may not want
proc resize(old: int): int {.inline.} =
if old <= 0: result = 4
elif old < 65536: result = old * 2
else: result = old * 3 div 2 # for large arrays * 3/2 is better
proc cmpStrings(a, b: NimString): int {.inline, compilerProc.} =
if a == b: return 0
if a == nil: return -1
if b == nil: return 1
return c_strcmp(a.data, b.data)
proc eqStrings(a, b: NimString): bool {.inline, compilerProc.} =
if a == b: return true
if a == nil or b == nil: return false
return a.len == b.len and
c_memcmp(a.data, b.data, a.len * sizeof(char)) == 0'i32
when defined(allocAtomic):
template allocStr(size: expr): expr =
cast[NimString](allocAtomic(size))
else:
template allocStr(size: expr): expr =
cast[NimString](newObj(addr(strDesc), size))
proc rawNewString(space: int): NimString {.compilerProc.} =
var s = space
if s < 8: s = 7
result = allocStr(sizeof(TGenericSeq) + s + 1)
result.space = s
proc mnewString(len: int): NimString {.compilerProc.} =
result = rawNewString(len)
result.len = len
proc copyStrLast(s: NimString, start, last: int): NimString {.compilerProc.} =
var start = max(start, 0)
var len = min(last, s.len-1) - start + 1
if len > 0:
result = rawNewString(len)
result.len = len
c_memcpy(result.data, addr(s.data[start]), len * sizeof(Char))
#result.data[len] = '\0'
else:
result = rawNewString(len)
proc copyStr(s: NimString, start: int): NimString {.compilerProc.} =
result = copyStrLast(s, start, s.len-1)
proc toNimStr(str: CString, len: int): NimString {.compilerProc.} =
result = rawNewString(len)
result.len = len
c_memcpy(result.data, str, (len+1) * sizeof(Char))
#result.data[len] = '\0' # readline relies on this!
proc cstrToNimstr(str: CString): NimString {.compilerProc.} =
result = toNimstr(str, c_strlen(str))
proc copyString(src: NimString): NimString {.compilerProc.} =
if src != nil:
result = rawNewString(src.space)
result.len = src.len
c_memcpy(result.data, src.data, (src.len + 1) * sizeof(Char))
proc copyStringRC1(src: NimString): NimString {.compilerProc.} =
if src != nil:
var s = src.space
if s < 8: s = 7
when defined(newObjRC1):
result = cast[NimString](newObjRC1(addr(strDesc), sizeof(TGenericSeq) +
s+1))
else:
result = allocStr(sizeof(TGenericSeq) + s + 1)
result.space = s
result.len = src.len
c_memcpy(result.data, src.data, src.len + 1)
proc hashString(s: string): int {.compilerproc.} =
# the compiler needs exactly the same hash function!
# this used to be used for efficient generation of string case statements
var h = 0
for i in 0..Len(s)-1:
h = h +% Ord(s[i])
h = h +% h shl 10
h = h xor (h shr 6)
h = h +% h shl 3
h = h xor (h shr 11)
h = h +% h shl 15
result = h
proc addChar(s: NimString, c: char): NimString =
# is compilerproc!
result = s
if result.len >= result.space:
result.space = resize(result.space)
result = cast[NimString](growObj(result,
sizeof(TGenericSeq) + (result.space+1) * sizeof(char)))
#var space = resize(result.space)
#result = rawNewString(space)
#copyMem(result, s, s.len * sizeof(char) + sizeof(TGenericSeq))
#result.space = space
result.data[result.len] = c
result.data[result.len+1] = '\0'
inc(result.len)
# These routines should be used like following:
# <Nimrod code>
# s &= "Hello " & name & ", how do you feel?"
#
# <generated C code>
# {
# s = resizeString(s, 6 + name->len + 17);
# appendString(s, strLit1);
# appendString(s, strLit2);
# appendString(s, strLit3);
# }
#
# <Nimrod code>
# s = "Hello " & name & ", how do you feel?"
#
# <generated C code>
# {
# string tmp0;
# tmp0 = rawNewString(6 + name->len + 17);
# appendString(s, strLit1);
# appendString(s, strLit2);
# appendString(s, strLit3);
# s = tmp0;
# }
#
# <Nimrod code>
# s = ""
#
# <generated C code>
# s = rawNewString(0);
proc resizeString(dest: NimString, addlen: int): NimString {.compilerproc.} =
if dest.len + addLen <= dest.space:
result = dest
else: # slow path:
var sp = max(resize(dest.space), dest.len + addLen)
result = cast[NimString](growObj(dest, sizeof(TGenericSeq) + sp + 1))
result.space = sp
#result = rawNewString(sp)
#copyMem(result, dest, dest.len * sizeof(char) + sizeof(TGenericSeq))
# DO NOT UPDATE LEN YET: dest.len = newLen
proc appendString(dest, src: NimString) {.compilerproc, inline.} =
c_memcpy(addr(dest.data[dest.len]), src.data, src.len + 1)
inc(dest.len, src.len)
proc appendChar(dest: NimString, c: char) {.compilerproc, inline.} =
dest.data[dest.len] = c
dest.data[dest.len+1] = '\0'
inc(dest.len)
proc setLengthStr(s: NimString, newLen: int): NimString {.compilerProc.} =
var n = max(newLen, 0)
if n <= s.space:
result = s
else:
result = resizeString(s, n)
result.len = n
result.data[n] = '\0'
# ----------------- sequences ----------------------------------------------
proc incrSeq(seq: PGenericSeq, elemSize: int): PGenericSeq {.compilerProc.} =
# increments the length by one:
# this is needed for supporting ``add``;
#
# add(seq, x) generates:
# seq = incrSeq(seq, sizeof(x));
# seq[seq->len-1] = x;
when false:
# broken version:
result = seq
if result.len >= result.space:
var s = resize(result.space)
result = cast[PGenericSeq](newSeq(extGetCellType(seq), s))
genericSeqAssign(result, seq, XXX)
#copyMem(result, seq, seq.len * elemSize + GenericSeqSize)
inc(result.len)
else:
result = seq
if result.len >= result.space:
result.space = resize(result.space)
result = cast[PGenericSeq](growObj(result, elemSize * result.space +
GenericSeqSize))
# set new elements to zero:
#var s = cast[TAddress](result)
#zeroMem(cast[pointer](s + GenericSeqSize + (result.len * elemSize)),
# (result.space - result.len) * elemSize)
# for i in len .. space-1:
# seq->data[i] = 0
inc(result.len)
proc setLengthSeq(seq: PGenericSeq, elemSize, newLen: int): PGenericSeq {.
compilerRtl.} =
when false:
# broken version:
result = seq
if result.space < newLen:
var s = max(resize(result.space), newLen)
result = cast[PGenericSeq](newSeq(extGetCellType(seq), s))
result.len = newLen
else:
result = seq
if result.space < newLen:
result.space = max(resize(result.space), newLen)
result = cast[PGenericSeq](growObj(result, elemSize * result.space +
GenericSeqSize))
elif newLen < result.len:
# we need to decref here, otherwise the GC leaks!
when not defined(boehmGC) and not defined(nogc):
for i in newLen..result.len-1:
forAllChildrenAux(cast[pointer](cast[TAddress](result) +%
GenericSeqSize +% (i*%elemSize)),
extGetCellType(result).base, waZctDecRef)
# and set the memory to nil:
zeroMem(cast[pointer](cast[TAddress](result) +% GenericSeqSize +%
(newLen*%elemSize)), (result.len-%newLen) *% elemSize)
result.len = newLen
# --------------- other string routines ----------------------------------
proc nimIntToStr(x: int): string {.compilerRtl.} =
result = newString(sizeof(x)*4)
var i = 0
var y = x
while True:
var d = y div 10
result[i] = chr(abs(int(y - d*10)) + ord('0'))
inc(i)
y = d
if y == 0: break
if x < 0:
result[i] = '-'
inc(i)
setLen(result, i)
# mirror the string:
for j in 0..i div 2 - 1:
swap(result[j], result[i-j-1])
proc nimFloatToStr(x: float): string {.compilerproc.} =
var buf: array [0..59, char]
c_sprintf(buf, "%#.16e", x)
return $buf
proc nimInt64ToStr(x: int64): string {.compilerRtl.} =
# we don't rely on C's runtime here as some C compiler's
# int64 support is weak
result = newString(sizeof(x)*4)
var i = 0
var y = x
while True:
var d = y div 10
result[i] = chr(abs(int(y - d*10)) + ord('0'))
inc(i)
y = d
if y == 0: break
if x < 0:
result[i] = '-'
inc(i)
setLen(result, i)
# mirror the string:
for j in 0..i div 2 - 1:
swap(result[j], result[i-j-1])
proc nimBoolToStr(x: bool): string {.compilerproc.} =
return if x: "true" else: "false"
proc nimCharToStr(x: char): string {.compilerproc.} =
result = newString(1)
result[0] = x
proc binaryStrSearch(x: openarray[string], y: string): int {.compilerproc.} =
var
a = 0
b = len(x)
while a < b:
var mid = (a + b) div 2
if x[mid] < y:
a = mid + 1
else:
b = mid
if a < len(x) and x[a] == y:
result = a
else:
result = -1