#
#
# The Nimrod Compiler
# (c) Copyright 2009 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# this module does the semantic checking for expressions
proc semTemplateExpr(c: PContext, n: PNode, s: PSym, semCheck: bool = true): PNode =
markUsed(n, s)
pushInfoContext(n.info)
result = evalTemplate(c, n, s)
if semCheck: result = semAfterMacroCall(c, result, s)
popInfoContext()
proc semDotExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode
proc semExprWithType(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
var d: PNode
result = semExpr(c, n, flags)
if result == nil: InternalError("semExprWithType")
if (result.typ == nil):
liMessage(n.info, errExprXHasNoType, renderTree(result, {renderNoComments}))
if result.typ.kind == tyVar:
d = newNodeIT(nkHiddenDeref, result.info, result.typ.sons[0])
addSon(d, result)
result = d
proc checkConversionBetweenObjects(info: TLineInfo, castDest, src: PType) =
var diff: int
diff = inheritanceDiff(castDest, src)
if diff == high(int):
liMessage(info, errGenerated, `%`(MsgKindToString(errIllegalConvFromXtoY), [
typeToString(src), typeToString(castDest)]))
proc checkConvertible(info: TLineInfo, castDest, src: PType) =
const
IntegralTypes = {tyBool, tyEnum, tyChar, tyInt..tyFloat128}
var d, s: PType
if sameType(castDest, src):
# don't annoy conversions that may be needed on another processor:
if not (castDest.kind in {tyInt..tyFloat128, tyNil}):
liMessage(info, hintConvFromXtoItselfNotNeeded, typeToString(castDest))
return
d = skipTypes(castDest, abstractVar)
s = skipTypes(src, abstractVar)
while (d != nil) and (d.Kind in {tyPtr, tyRef}) and (d.Kind == s.Kind):
d = base(d)
s = base(s)
if d == nil:
liMessage(info, errGenerated, `%`(msgKindToString(errIllegalConvFromXtoY), [
typeToString(src), typeToString(castDest)]))
if (d.Kind == tyObject) and (s.Kind == tyObject):
checkConversionBetweenObjects(info, d, s)
elif (skipTypes(castDest, abstractVarRange).Kind in IntegralTypes) and
(skipTypes(src, abstractVarRange).Kind in IntegralTypes):
# accept conversion between intregral types
else:
# we use d, s here to speed up that operation a bit:
case cmpTypes(d, s)
of isNone, isGeneric:
if not equalOrDistinctOf(castDest, src) and
not equalOrDistinctOf(src, castDest):
liMessage(info, errGenerated, `%`(
MsgKindToString(errIllegalConvFromXtoY),
[typeToString(src), typeToString(castDest)]))
else:
nil
proc isCastable(dst, src: PType): bool =
#const
# castableTypeKinds = {@set}[tyInt, tyPtr, tyRef, tyCstring, tyString,
# tySequence, tyPointer, tyNil, tyOpenArray,
# tyProc, tySet, tyEnum, tyBool, tyChar];
var ds, ss: biggestInt
# this is very unrestrictive; cast is allowed if castDest.size >= src.size
ds = computeSize(dst)
ss = computeSize(src)
if ds < 0:
result = false
elif ss < 0:
result = false
else:
result = (ds >= ss) or
(skipTypes(dst, abstractInst).kind in {tyInt..tyFloat128}) or
(skipTypes(src, abstractInst).kind in {tyInt..tyFloat128})
proc semConv(c: PContext, n: PNode, s: PSym): PNode =
var op: PNode
if sonsLen(n) != 2: liMessage(n.info, errConvNeedsOneArg)
result = newNodeI(nkConv, n.info)
result.typ = semTypeNode(c, n.sons[0], nil)
addSon(result, copyTree(n.sons[0]))
addSon(result, semExprWithType(c, n.sons[1]))
op = result.sons[1]
if op.kind != nkSymChoice:
checkConvertible(result.info, result.typ, op.typ)
else:
for i in countup(0, sonsLen(op) - 1):
if sameType(result.typ, op.sons[i].typ):
markUsed(n, op.sons[i].sym)
return op.sons[i]
liMessage(n.info, errUseQualifier, op.sons[0].sym.name.s)
proc semCast(c: PContext, n: PNode): PNode =
if optSafeCode in gGlobalOptions: liMessage(n.info, errCastNotInSafeMode)
incl(c.p.owner.flags, sfSideEffect)
checkSonsLen(n, 2)
result = newNodeI(nkCast, n.info)
result.typ = semTypeNode(c, n.sons[0], nil)
addSon(result, copyTree(n.sons[0]))
addSon(result, semExprWithType(c, n.sons[1]))
if not isCastable(result.typ, result.sons[1].Typ):
liMessage(result.info, errExprCannotBeCastedToX, typeToString(result.Typ))
proc semLowHigh(c: PContext, n: PNode, m: TMagic): PNode =
const
opToStr: array[mLow..mHigh, string] = ["low", "high"]
var typ: PType
if sonsLen(n) != 2:
liMessage(n.info, errXExpectsTypeOrValue, opToStr[m])
else:
n.sons[1] = semExprWithType(c, n.sons[1], {efAllowType})
typ = skipTypes(n.sons[1].typ, abstractVarRange)
case typ.Kind
of tySequence, tyString, tyOpenArray:
n.typ = getSysType(tyInt)
of tyArrayConstr, tyArray:
n.typ = n.sons[1].typ.sons[0] # indextype
of tyInt..tyInt64, tyChar, tyBool, tyEnum:
n.typ = n.sons[1].typ
else: liMessage(n.info, errInvalidArgForX, opToStr[m])
result = n
proc semSizeof(c: PContext, n: PNode): PNode =
if sonsLen(n) != 2: liMessage(n.info, errXExpectsTypeOrValue, "sizeof")
else: n.sons[1] = semExprWithType(c, n.sons[1], {efAllowType})
n.typ = getSysType(tyInt)
result = n
proc semIs(c: PContext, n: PNode): PNode =
var a, b: PType
if sonsLen(n) == 3:
n.sons[1] = semExprWithType(c, n.sons[1], {efAllowType})
n.sons[2] = semExprWithType(c, n.sons[2], {efAllowType})
a = n.sons[1].typ
b = n.sons[2].typ
if (b.kind != tyObject) or (a.kind != tyObject):
liMessage(n.info, errIsExpectsObjectTypes)
while (b != nil) and (b.id != a.id): b = b.sons[0]
if b == nil: liMessage(n.info, errXcanNeverBeOfThisSubtype, typeToString(a))
n.typ = getSysType(tyBool)
else:
liMessage(n.info, errIsExpectsTwoArguments)
result = n
proc semOpAux(c: PContext, n: PNode) =
var
a: PNode
info: TLineInfo
for i in countup(1, sonsLen(n) - 1):
a = n.sons[i]
if a.kind == nkExprEqExpr:
checkSonsLen(a, 2)
info = a.sons[0].info
a.sons[0] = newIdentNode(considerAcc(a.sons[0]), info)
a.sons[1] = semExprWithType(c, a.sons[1])
a.typ = a.sons[1].typ
else:
n.sons[i] = semExprWithType(c, a)
proc overloadedCallOpr(c: PContext, n: PNode): PNode =
var par: PIdent
# quick check if there is *any* () operator overloaded:
par = getIdent("()")
if SymtabGet(c.Tab, par) == nil:
result = nil
else:
result = newNodeI(nkCall, n.info)
addSon(result, newIdentNode(par, n.info))
for i in countup(0, sonsLen(n) - 1): addSon(result, n.sons[i])
result = semExpr(c, result)
proc changeType(n: PNode, newType: PType) =
var
f: PSym
a, m: PNode
case n.kind
of nkCurly, nkBracket:
for i in countup(0, sonsLen(n) - 1): changeType(n.sons[i], elemType(newType))
of nkPar:
if newType.kind != tyTuple:
InternalError(n.info, "changeType: no tuple type for constructor")
if newType.n == nil: InternalError(n.info, "changeType: no tuple fields")
if (sonsLen(n) > 0) and (n.sons[0].kind == nkExprColonExpr):
for i in countup(0, sonsLen(n) - 1):
m = n.sons[i].sons[0]
if m.kind != nkSym:
internalError(m.info, "changeType(): invalid tuple constr")
f = getSymFromList(newType.n, m.sym.name)
if f == nil: internalError(m.info, "changeType(): invalid identifier")
changeType(n.sons[i].sons[1], f.typ)
else:
for i in countup(0, sonsLen(n) - 1):
m = n.sons[i]
a = newNodeIT(nkExprColonExpr, m.info, newType.sons[i])
addSon(a, newSymNode(newType.n.sons[i].sym))
addSon(a, m)
changeType(m, newType.sons[i])
n.sons[i] = a
else:
nil
n.typ = newType
proc semArrayConstr(c: PContext, n: PNode): PNode =
var typ: PType
result = newNodeI(nkBracket, n.info)
result.typ = newTypeS(tyArrayConstr, c)
addSon(result.typ, nil) # index type
if sonsLen(n) == 0:
addSon(result.typ, newTypeS(tyEmpty, c)) # needs an empty basetype!
else:
addSon(result, semExprWithType(c, n.sons[0]))
typ = skipTypes(result.sons[0].typ, {tyGenericInst, tyVar, tyOrdinal})
for i in countup(1, sonsLen(n) - 1):
n.sons[i] = semExprWithType(c, n.sons[i])
addSon(result, fitNode(c, typ, n.sons[i]))
addSon(result.typ, typ)
result.typ.sons[0] = makeRangeType(c, 0, sonsLen(result) - 1, n.info)
const
ConstAbstractTypes = {tyNil, tyChar, tyInt..tyInt64, tyFloat..tyFloat128,
tyArrayConstr, tyTuple, tySet}
proc fixAbstractType(c: PContext, n: PNode) =
var
s: PType
it: PNode
for i in countup(1, sonsLen(n) - 1):
it = n.sons[i]
case it.kind
of nkHiddenStdConv, nkHiddenSubConv:
if it.sons[1].kind == nkBracket:
it.sons[1] = semArrayConstr(c, it.sons[1])
if skipTypes(it.typ, abstractVar).kind == tyOpenArray:
s = skipTypes(it.sons[1].typ, abstractVar)
if (s.kind == tyArrayConstr) and (s.sons[1].kind == tyEmpty):
s = copyType(s, getCurrOwner(), false)
skipTypes(s, abstractVar).sons[1] = elemType(
skipTypes(it.typ, abstractVar))
it.sons[1].typ = s
elif skipTypes(it.sons[1].typ, abstractVar).kind in
{tyNil, tyArrayConstr, tyTuple, tySet}:
s = skipTypes(it.typ, abstractVar)
changeType(it.sons[1], s)
n.sons[i] = it.sons[1]
of nkBracket:
# an implicitely constructed array (passed to an open array):
n.sons[i] = semArrayConstr(c, it)
else:
if (it.typ == nil):
InternalError(it.info, "fixAbstractType: " & renderTree(it))
proc skipObjConv(n: PNode): PNode =
case n.kind
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
if skipTypes(n.sons[1].typ, abstractPtrs).kind in {tyTuple, tyObject}:
result = n.sons[1]
else:
result = n
of nkObjUpConv, nkObjDownConv:
result = n.sons[0]
else: result = n
type
TAssignableResult = enum
arNone, # no l-value and no discriminant
arLValue, # is an l-value
arDiscriminant # is a discriminant
proc isAssignable(n: PNode): TAssignableResult =
result = arNone
case n.kind
of nkSym:
if (n.sym.kind in {skVar, skTemp}): result = arLValue
of nkDotExpr:
checkMinSonsLen(n, 1)
if skipTypes(n.sons[0].typ, abstractInst).kind in {tyVar, tyPtr, tyRef}:
result = arLValue
else:
result = isAssignable(n.sons[0])
if (result == arLValue) and (sfDiscriminant in n.sons[1].sym.flags):
result = arDiscriminant
of nkBracketExpr:
checkMinSonsLen(n, 1)
if skipTypes(n.sons[0].typ, abstractInst).kind in {tyVar, tyPtr, tyRef}:
result = arLValue
else:
result = isAssignable(n.sons[0])
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
# Object and tuple conversions are still addressable, so we skip them
#if skipPtrsGeneric(n.sons[1].typ).kind in [tyOpenArray,
# tyTuple, tyObject] then
if skipTypes(n.typ, abstractPtrs).kind in {tyOpenArray, tyTuple, tyObject}:
result = isAssignable(n.sons[1])
of nkHiddenDeref, nkDerefExpr:
result = arLValue
of nkObjUpConv, nkObjDownConv, nkCheckedFieldExpr:
result = isAssignable(n.sons[0])
else:
nil
proc newHiddenAddrTaken(c: PContext, n: PNode): PNode =
if n.kind == nkHiddenDeref:
checkSonsLen(n, 1)
result = n.sons[0]
else:
result = newNodeIT(nkHiddenAddr, n.info, makeVarType(c, n.typ))
addSon(result, n)
if isAssignable(n) != arLValue:
liMessage(n.info, errVarForOutParamNeeded)
proc analyseIfAddressTaken(c: PContext, n: PNode): PNode =
result = n
case n.kind
of nkSym:
if skipTypes(n.sym.typ, abstractInst).kind != tyVar:
incl(n.sym.flags, sfAddrTaken)
result = newHiddenAddrTaken(c, n)
of nkDotExpr:
checkSonsLen(n, 2)
if n.sons[1].kind != nkSym: internalError(n.info, "analyseIfAddressTaken")
if skipTypes(n.sons[1].sym.typ, abstractInst).kind != tyVar:
incl(n.sons[1].sym.flags, sfAddrTaken)
result = newHiddenAddrTaken(c, n)
of nkBracketExpr:
checkMinSonsLen(n, 1)
if skipTypes(n.sons[0].typ, abstractInst).kind != tyVar:
if n.sons[0].kind == nkSym: incl(n.sons[0].sym.flags, sfAddrTaken)
result = newHiddenAddrTaken(c, n)
else:
result = newHiddenAddrTaken(c, n) # BUGFIX!
proc analyseIfAddressTakenInCall(c: PContext, n: PNode) =
const
FakeVarParams = {mNew, mNewFinalize, mInc, ast.mDec, mIncl, mExcl,
mSetLengthStr, mSetLengthSeq, mAppendStrCh, mAppendStrStr, mSwap,
mAppendSeqElem, mNewSeq}
var t: PType
checkMinSonsLen(n, 1)
t = n.sons[0].typ
if (n.sons[0].kind == nkSym) and (n.sons[0].sym.magic in FakeVarParams):
return
for i in countup(1, sonsLen(n) - 1):
if (i < sonsLen(t)) and
(skipTypes(t.sons[i], abstractInst).kind == tyVar):
n.sons[i] = analyseIfAddressTaken(c, n.sons[i])
proc semDirectCallAnalyseEffects(c: PContext, n: PNode, flags: TExprFlags): PNode =
var callee: PSym
if not (efWantIterator in flags):
result = semDirectCall(c, n, {skProc, skMethod, skConverter})
else:
result = semDirectCall(c, n, {skIterator})
if result != nil:
if result.sons[0].kind != nkSym:
InternalError("semDirectCallAnalyseEffects")
callee = result.sons[0].sym
if (callee.kind == skIterator) and (callee.id == c.p.owner.id):
liMessage(n.info, errRecursiveDependencyX, callee.name.s)
if not (sfNoSideEffect in callee.flags):
if (sfForward in callee.flags) or
({sfImportc, sfSideEffect} * callee.flags != {}):
incl(c.p.owner.flags, sfSideEffect)
proc semIndirectOp(c: PContext, n: PNode, flags: TExprFlags): PNode =
var
m: TCandidate
msg: string
prc: PNode
t: PType
result = nil
prc = n.sons[0]
checkMinSonsLen(n, 1)
if n.sons[0].kind == nkDotExpr:
checkSonsLen(n.sons[0], 2)
n.sons[0] = semDotExpr(c, n.sons[0])
if n.sons[0].kind == nkDotCall:
# it is a static call!
result = n.sons[0]
result.kind = nkCall
for i in countup(1, sonsLen(n) - 1): addSon(result, n.sons[i])
return semExpr(c, result, flags)
else:
n.sons[0] = semExpr(c, n.sons[0])
semOpAux(c, n)
if (n.sons[0].typ != nil): t = skipTypes(n.sons[0].typ, abstractInst)
else: t = nil
if (t != nil) and (t.kind == tyProc):
initCandidate(m, t)
matches(c, n, m)
if m.state != csMatch:
msg = msgKindToString(errTypeMismatch)
for i in countup(1, sonsLen(n) - 1):
if i > 1: add(msg, ", ")
add(msg, typeToString(n.sons[i].typ))
add(msg, ')' & "\n" & msgKindToString(errButExpected) & "\n" &
typeToString(n.sons[0].typ))
liMessage(n.Info, errGenerated, msg)
result = nil
else:
result = m.call # we assume that a procedure that calls something indirectly
# has side-effects:
if not (tfNoSideEffect in t.flags): incl(c.p.owner.flags, sfSideEffect)
else:
result = overloadedCallOpr(c, n) # Now that nkSym does not imply an iteration over the proc/iterator space,
# the old ``prc`` (which is likely an nkIdent) has to be restored:
if result == nil:
n.sons[0] = prc
result = semDirectCallAnalyseEffects(c, n, flags)
if result == nil:
liMessage(n.info, errExprXCannotBeCalled,
renderTree(n, {renderNoComments}))
fixAbstractType(c, result)
analyseIfAddressTakenInCall(c, result)
proc semDirectOp(c: PContext, n: PNode, flags: TExprFlags): PNode =
# this seems to be a hotspot in the compiler!
semOpAux(c, n)
result = semDirectCallAnalyseEffects(c, n, flags)
if result == nil:
result = overloadedCallOpr(c, n)
if result == nil: liMessage(n.Info, errGenerated, getNotFoundError(c, n))
fixAbstractType(c, result)
analyseIfAddressTakenInCall(c, result)
proc semEcho(c: PContext, n: PNode): PNode =
var call, arg: PNode
# this really is a macro
checkMinSonsLen(n, 1)
for i in countup(1, sonsLen(n) - 1):
arg = semExprWithType(c, n.sons[i])
call = newNodeI(nkCall, arg.info)
addSon(call, newIdentNode(getIdent("$"), n.info))
addSon(call, arg)
n.sons[i] = semExpr(c, call)
result = n
proc LookUpForDefined(c: PContext, n: PNode, onlyCurrentScope: bool): PSym =
var
m: PSym
ident: PIdent
case n.kind
of nkIdent:
if onlyCurrentScope:
result = SymtabLocalGet(c.tab, n.ident)
else:
result = SymtabGet(c.Tab, n.ident) # no need for stub loading
of nkDotExpr:
result = nil
if onlyCurrentScope: return
checkSonsLen(n, 2)
m = LookupForDefined(c, n.sons[0], onlyCurrentScope)
if (m != nil) and (m.kind == skModule):
if (n.sons[1].kind == nkIdent):
ident = n.sons[1].ident
if m == c.module:
result = StrTableGet(c.tab.stack[ModuleTablePos], ident)
else:
result = StrTableGet(m.tab, ident)
else:
liMessage(n.sons[1].info, errIdentifierExpected, "")
of nkAccQuoted:
checkSonsLen(n, 1)
result = lookupForDefined(c, n.sons[0], onlyCurrentScope)
else:
liMessage(n.info, errIdentifierExpected, renderTree(n))
result = nil
proc semDefined(c: PContext, n: PNode, onlyCurrentScope: bool): PNode =
checkSonsLen(n, 2)
result = newIntNode(nkIntLit, 0) # we replace this node by a 'true' or 'false' node
if LookUpForDefined(c, n.sons[1], onlyCurrentScope) != nil:
result.intVal = 1
elif not onlyCurrentScope and (n.sons[1].kind == nkIdent) and
condsyms.isDefined(n.sons[1].ident):
result.intVal = 1
result.info = n.info
result.typ = getSysType(tyBool)
proc setMs(n: PNode, s: PSym): PNode =
result = n
n.sons[0] = newSymNode(s)
n.sons[0].info = n.info
proc semMagic(c: PContext, n: PNode, s: PSym, flags: TExprFlags): PNode =
# this is a hotspot in the compiler!
result = n
case s.magic # magics that need special treatment
of mDefined:
result = semDefined(c, setMs(n, s), false)
of mDefinedInScope:
result = semDefined(c, setMs(n, s), true)
of mLow:
result = semLowHigh(c, setMs(n, s), mLow)
of mHigh:
result = semLowHigh(c, setMs(n, s), mHigh)
of mSizeOf:
result = semSizeof(c, setMs(n, s))
of mIs:
result = semIs(c, setMs(n, s))
of mEcho:
result = semEcho(c, setMs(n, s))
else: result = semDirectOp(c, n, flags)
proc isTypeExpr(n: PNode): bool =
case n.kind
of nkType, nkTypeOfExpr: result = true
of nkSym: result = n.sym.kind == skType
else: result = false
proc lookupInRecordAndBuildCheck(c: PContext, n, r: PNode, field: PIdent,
check: var PNode): PSym =
# transform in a node that contains the runtime check for the
# field, if it is in a case-part...
var s, it, inExpr, notExpr: PNode
result = nil
case r.kind
of nkRecList:
for i in countup(0, sonsLen(r) - 1):
result = lookupInRecordAndBuildCheck(c, n, r.sons[i], field, check)
if result != nil: return
of nkRecCase:
checkMinSonsLen(r, 2)
if (r.sons[0].kind != nkSym): IllFormedAst(r)
result = lookupInRecordAndBuildCheck(c, n, r.sons[0], field, check)
if result != nil: return
s = newNodeI(nkCurly, r.info)
for i in countup(1, sonsLen(r) - 1):
it = r.sons[i]
case it.kind
of nkOfBranch:
result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
if result == nil:
for j in countup(0, sonsLen(it) - 2): addSon(s, copyTree(it.sons[j]))
else:
if check == nil:
check = newNodeI(nkCheckedFieldExpr, n.info)
addSon(check, nil) # make space for access node
s = newNodeI(nkCurly, n.info)
for j in countup(0, sonsLen(it) - 2): addSon(s, copyTree(it.sons[j]))
inExpr = newNodeI(nkCall, n.info)
addSon(inExpr, newIdentNode(getIdent("in"), n.info))
addSon(inExpr, copyTree(r.sons[0]))
addSon(inExpr, s) #writeln(output, renderTree(inExpr));
addSon(check, semExpr(c, inExpr))
return
of nkElse:
result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
if result != nil:
if check == nil:
check = newNodeI(nkCheckedFieldExpr, n.info)
addSon(check, nil) # make space for access node
inExpr = newNodeI(nkCall, n.info)
addSon(inExpr, newIdentNode(getIdent("in"), n.info))
addSon(inExpr, copyTree(r.sons[0]))
addSon(inExpr, s)
notExpr = newNodeI(nkCall, n.info)
addSon(notExpr, newIdentNode(getIdent("not"), n.info))
addSon(notExpr, inExpr)
addSon(check, semExpr(c, notExpr))
return
else: illFormedAst(it)
of nkSym:
if r.sym.name.id == field.id: result = r.sym
else: illFormedAst(n)
proc makeDeref(n: PNode): PNode =
var
t: PType
a: PNode
t = skipTypes(n.typ, {tyGenericInst})
result = n
if t.kind == tyVar:
result = newNodeIT(nkHiddenDeref, n.info, t.sons[0])
addSon(result, n)
t = skipTypes(t.sons[0], {tyGenericInst})
if t.kind in {tyPtr, tyRef}:
a = result
result = newNodeIT(nkDerefExpr, n.info, t.sons[0])
addSon(result, a)
proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
var
f: PSym
ty: PType
i: PIdent
check: PNode
# this is difficult, because the '.' is used in many different contexts
# in Nimrod. We first allow types in the semantic checking.
checkSonsLen(n, 2)
n.sons[0] = semExprWithType(c, n.sons[0], {efAllowType} + flags)
i = considerAcc(n.sons[1])
ty = n.sons[0].Typ
f = nil
result = nil
if ty.kind == tyEnum:
# look up if the identifier belongs to the enum:
while (ty != nil):
f = getSymFromList(ty.n, i)
if f != nil: break
ty = ty.sons[0] # enum inheritance
if f != nil:
result = newSymNode(f)
result.info = n.info
result.typ = ty
markUsed(n, f)
else:
liMessage(n.sons[1].info, errEnumHasNoValueX, i.s)
return
elif not (efAllowType in flags) and isTypeExpr(n.sons[0]):
liMessage(n.sons[0].info, errATypeHasNoValue)
return
ty = skipTypes(ty, {tyGenericInst, tyVar, tyPtr, tyRef})
if ty.kind == tyObject:
while true:
check = nil
f = lookupInRecordAndBuildCheck(c, n, ty.n, i, check) #f := lookupInRecord(ty.n, i);
if f != nil: break
if ty.sons[0] == nil: break
ty = skipTypes(ty.sons[0], {tyGenericInst})
if f != nil:
if ({sfStar, sfMinus} * f.flags != {}) or
(getModule(f).id == c.module.id):
# is the access to a public field or in the same module?
n.sons[0] = makeDeref(n.sons[0])
n.sons[1] = newSymNode(f) # we now have the correct field
n.typ = f.typ
markUsed(n, f)
if check == nil:
result = n
else:
check.sons[0] = n
check.typ = n.typ
result = check
return
elif ty.kind == tyTuple:
f = getSymFromList(ty.n, i)
if f != nil:
n.sons[0] = makeDeref(n.sons[0])
n.sons[1] = newSymNode(f)
n.typ = f.typ
result = n
markUsed(n, f)
return
f = SymTabGet(c.tab, i) #if (f <> nil) and (f.kind = skStub) then loadStub(f);
# ``loadStub`` is not correct here as we don't care for ``f`` really
if (f != nil):
# BUGFIX: do not check for (f.kind in [skProc, skMethod, skIterator]) here
result = newNodeI(nkDotCall, n.info) # This special node kind is to merge with the call handler in `semExpr`.
addSon(result, newIdentNode(i, n.info))
addSon(result, copyTree(n.sons[0]))
else:
liMessage(n.Info, errUndeclaredFieldX, i.s)
proc whichSliceOpr(n: PNode): string =
if (n.sons[0] == nil):
if (n.sons[1] == nil): result = "[..]"
else: result = "[..$]"
elif (n.sons[1] == nil):
result = "[$..]"
else:
result = "[$..$]"
proc semArrayAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
var
arr, indexType: PType
arg: PNode
idx: biggestInt
# check if array type:
checkMinSonsLen(n, 2)
n.sons[0] = semExprWithType(c, n.sons[0], flags - {efAllowType})
arr = skipTypes(n.sons[0].typ, {tyGenericInst, tyVar, tyPtr, tyRef})
case arr.kind
of tyArray, tyOpenArray, tyArrayConstr, tySequence, tyString, tyCString:
n.sons[0] = makeDeref(n.sons[0])
for i in countup(1, sonsLen(n) - 1):
n.sons[i] = semExprWithType(c, n.sons[i], flags - {efAllowType})
if arr.kind == tyArray: indexType = arr.sons[0]
else: indexType = getSysType(tyInt)
arg = IndexTypesMatch(c, indexType, n.sons[1].typ, n.sons[1])
if arg != nil: n.sons[1] = arg
else: liMessage(n.info, errIndexTypesDoNotMatch)
result = n
result.typ = elemType(arr)
of tyTuple:
n.sons[0] = makeDeref(n.sons[0]) # [] operator for tuples requires constant expression
n.sons[1] = semConstExpr(c, n.sons[1])
if skipTypes(n.sons[1].typ, {tyGenericInst, tyRange, tyOrdinal}).kind in
{tyInt..tyInt64}:
idx = getOrdValue(n.sons[1])
if (idx >= 0) and (idx < sonsLen(arr)): n.typ = arr.sons[int(idx)]
else: liMessage(n.info, errInvalidIndexValueForTuple)
else:
liMessage(n.info, errIndexTypesDoNotMatch)
result = n
else:
# overloaded [] operator:
result = newNodeI(nkCall, n.info)
if n.sons[1].kind == nkRange:
checkSonsLen(n.sons[1], 2)
addSon(result, newIdentNode(getIdent(whichSliceOpr(n.sons[1])), n.info))
addSon(result, n.sons[0])
addSonIfNotNil(result, n.sons[1].sons[0])
addSonIfNotNil(result, n.sons[1].sons[1])
else:
addSon(result, newIdentNode(getIdent("[]"), n.info))
addSon(result, n.sons[0])
addSon(result, n.sons[1])
result = semExpr(c, result)
proc semIfExpr(c: PContext, n: PNode): PNode =
var
typ: PType
it: PNode
result = n
checkSonsLen(n, 2)
typ = nil
for i in countup(0, sonsLen(n) - 1):
it = n.sons[i]
case it.kind
of nkElifExpr:
checkSonsLen(it, 2)
it.sons[0] = semExprWithType(c, it.sons[0])
checkBool(it.sons[0])
it.sons[1] = semExprWithType(c, it.sons[1])
if typ == nil: typ = it.sons[1].typ
else: it.sons[1] = fitNode(c, typ, it.sons[1])
of nkElseExpr:
checkSonsLen(it, 1)
it.sons[0] = semExprWithType(c, it.sons[0])
if (typ == nil): InternalError(it.info, "semIfExpr")
it.sons[0] = fitNode(c, typ, it.sons[0])
else: illFormedAst(n)
result.typ = typ
proc semSetConstr(c: PContext, n: PNode): PNode =
var
typ: PType
m: PNode
result = newNodeI(nkCurly, n.info)
result.typ = newTypeS(tySet, c)
if sonsLen(n) == 0:
addSon(result.typ, newTypeS(tyEmpty, c))
else:
# only semantic checking for all elements, later type checking:
typ = nil
for i in countup(0, sonsLen(n) - 1):
if n.sons[i].kind == nkRange:
checkSonsLen(n.sons[i], 2)
n.sons[i].sons[0] = semExprWithType(c, n.sons[i].sons[0])
n.sons[i].sons[1] = semExprWithType(c, n.sons[i].sons[1])
if typ == nil:
typ = skipTypes(n.sons[i].sons[0].typ,
{tyGenericInst, tyVar, tyOrdinal})
n.sons[i].typ = n.sons[i].sons[1].typ # range node needs type too
else:
n.sons[i] = semExprWithType(c, n.sons[i])
if typ == nil:
typ = skipTypes(n.sons[i].typ, {tyGenericInst, tyVar, tyOrdinal})
if not isOrdinalType(typ):
liMessage(n.info, errOrdinalTypeExpected)
return
if lengthOrd(typ) > MaxSetElements:
typ = makeRangeType(c, 0, MaxSetElements - 1, n.info)
addSon(result.typ, typ)
for i in countup(0, sonsLen(n) - 1):
if n.sons[i].kind == nkRange:
m = newNodeI(nkRange, n.sons[i].info)
addSon(m, fitNode(c, typ, n.sons[i].sons[0]))
addSon(m, fitNode(c, typ, n.sons[i].sons[1]))
else:
m = fitNode(c, typ, n.sons[i])
addSon(result, m)
type
TParKind = enum
paNone, paSingle, paTupleFields, paTuplePositions
proc checkPar(n: PNode): TParKind =
var length: int
length = sonsLen(n)
if length == 0:
result = paTuplePositions # ()
elif length == 1:
result = paSingle # (expr)
else:
if n.sons[0].kind == nkExprColonExpr: result = paTupleFields
else: result = paTuplePositions
for i in countup(0, length - 1):
if result == paTupleFields:
if (n.sons[i].kind != nkExprColonExpr) or
not (n.sons[i].sons[0].kind in {nkSym, nkIdent}):
liMessage(n.sons[i].info, errNamedExprExpected)
return paNone
else:
if n.sons[i].kind == nkExprColonExpr:
liMessage(n.sons[i].info, errNamedExprNotAllowed)
return paNone
proc semTupleFieldsConstr(c: PContext, n: PNode): PNode =
var
typ: PType
ids: TIntSet
id: PIdent
f: PSym
result = newNodeI(nkPar, n.info)
typ = newTypeS(tyTuple, c)
typ.n = newNodeI(nkRecList, n.info) # nkIdentDefs
IntSetInit(ids)
for i in countup(0, sonsLen(n) - 1):
if (n.sons[i].kind != nkExprColonExpr) or
not (n.sons[i].sons[0].kind in {nkSym, nkIdent}):
illFormedAst(n.sons[i])
if n.sons[i].sons[0].kind == nkIdent: id = n.sons[i].sons[0].ident
else: id = n.sons[i].sons[0].sym.name
if IntSetContainsOrIncl(ids, id.id):
liMessage(n.sons[i].info, errFieldInitTwice, id.s)
n.sons[i].sons[1] = semExprWithType(c, n.sons[i].sons[1])
f = newSymS(skField, n.sons[i].sons[0], c)
f.typ = n.sons[i].sons[1].typ
addSon(typ, f.typ)
addSon(typ.n, newSymNode(f))
n.sons[i].sons[0] = newSymNode(f)
addSon(result, n.sons[i])
result.typ = typ
proc semTuplePositionsConstr(c: PContext, n: PNode): PNode =
var typ: PType
result = n # we don't modify n, but compute the type:
typ = newTypeS(tyTuple, c) # leave typ.n nil!
for i in countup(0, sonsLen(n) - 1):
n.sons[i] = semExprWithType(c, n.sons[i])
addSon(typ, n.sons[i].typ)
result.typ = typ
proc semStmtListExpr(c: PContext, n: PNode): PNode =
var length: int
result = n
checkMinSonsLen(n, 1)
length = sonsLen(n)
for i in countup(0, length - 2):
n.sons[i] = semStmt(c, n.sons[i])
if length > 0:
n.sons[length - 1] = semExprWithType(c, n.sons[length - 1])
n.typ = n.sons[length - 1].typ
proc semBlockExpr(c: PContext, n: PNode): PNode =
result = n
Inc(c.p.nestedBlockCounter)
checkSonsLen(n, 2)
openScope(c.tab) # BUGFIX: label is in the scope of block!
if n.sons[0] != nil:
addDecl(c, newSymS(skLabel, n.sons[0], c))
n.sons[1] = semStmtListExpr(c, n.sons[1])
n.typ = n.sons[1].typ
closeScope(c.tab)
Dec(c.p.nestedBlockCounter)
proc isCallExpr(n: PNode): bool =
result = n.kind in
{nkCall, nkInfix, nkPrefix, nkPostfix, nkCommand, nkCallStrLit}
proc semMacroStmt(c: PContext, n: PNode, semCheck: bool = true): PNode =
var
s: PSym
a: PNode
checkMinSonsLen(n, 2)
if isCallExpr(n.sons[0]): a = n.sons[0].sons[0]
else: a = n.sons[0]
s = qualifiedLookup(c, a, false)
if (s != nil):
case s.kind
of skMacro:
result = semMacroExpr(c, n, s, semCheck)
of skTemplate:
# transform
# nkMacroStmt(nkCall(a...), stmt, b...)
# to
# nkCall(a..., stmt, b...)
result = newNodeI(nkCall, n.info)
addSon(result, a)
if isCallExpr(n.sons[0]):
for i in countup(1, sonsLen(n.sons[0]) - 1):
addSon(result, n.sons[0].sons[i])
for i in countup(1, sonsLen(n) - 1): addSon(result, n.sons[i])
result = semTemplateExpr(c, result, s, semCheck)
else: liMessage(n.info, errXisNoMacroOrTemplate, s.name.s)
else:
liMessage(n.info, errInvalidExpressionX, renderTree(a, {renderNoComments}))
proc semSym(c: PContext, n: PNode, s: PSym, flags: TExprFlags): PNode =
if (s.kind == skType) and not (efAllowType in flags):
liMessage(n.info, errATypeHasNoValue)
case s.kind
of skProc, skMethod, skIterator, skConverter:
if not (sfProcVar in s.flags) and (s.typ.callConv == ccDefault) and
(getModule(s).id != c.module.id):
liMessage(n.info, warnXisPassedToProcVar, s.name.s) # XXX change this to
# errXCannotBePassedToProcVar after version 0.8.2
# TODO VERSION 0.8.4
#if (s.magic <> mNone) then
# liMessage(n.info,
# errInvalidContextForBuiltinX, s.name.s);
result = symChoice(c, n, s)
of skConst:
#
# Consider::
# const x = []
# proc p(a: openarray[int])
# proc q(a: openarray[char])
# p(x)
# q(x)
#
# It is clear that ``[]`` means two totally different things. Thus, we
# copy `x`'s AST into each context, so that the type fixup phase can
# deal with two different ``[]``.
#
markUsed(n, s)
if s.typ.kind in ConstAbstractTypes:
result = copyTree(s.ast)
result.info = n.info
result.typ = s.typ
else:
result = newSymNode(s)
result.info = n.info
of skMacro:
result = semMacroExpr(c, n, s)
of skTemplate:
result = semTemplateExpr(c, n, s)
of skVar:
markUsed(n, s) # if a proc accesses a global variable, it is not side effect free
if sfGlobal in s.flags: incl(c.p.owner.flags, sfSideEffect)
result = newSymNode(s)
result.info = n.info
of skGenericParam:
if s.ast == nil: InternalError(n.info, "no default for")
result = semExpr(c, s.ast)
else:
markUsed(n, s)
result = newSymNode(s)
result.info = n.info
proc semDotExpr(c: PContext, n: PNode, flags: TExprFlags): PNode =
var s: PSym
s = qualifiedLookup(c, n, true) # check for ambiguity
if s != nil: # this is a test comment; please don't touch it
result = semSym(c, n, s, flags)
else:
result = semFieldAccess(c, n, flags)
proc semExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
var
s: PSym
t: PType
result = n
if n == nil: return
if nfSem in n.flags: return
case n.kind # atoms:
of nkIdent:
s = lookUp(c, n)
result = semSym(c, n, s, flags)
of nkSym:
#s := n.sym;
# include(s.flags, sfUsed);
# if (s.kind = skType) and not (efAllowType in flags) then
# liMessage(n.info, errATypeHasNoValue);
# because of the changed symbol binding, this does not mean that we
# don't have to check the symbol for semantics here again!
result = semSym(c, n, n.sym, flags)
of nkEmpty, nkNone:
nil
of nkNilLit:
result.typ = getSysType(tyNil)
of nkType:
if not (efAllowType in flags): liMessage(n.info, errATypeHasNoValue)
n.typ = semTypeNode(c, n, nil)
of nkIntLit:
if result.typ == nil: result.typ = getSysType(tyInt)
of nkInt8Lit:
if result.typ == nil: result.typ = getSysType(tyInt8)
of nkInt16Lit:
if result.typ == nil: result.typ = getSysType(tyInt16)
of nkInt32Lit:
if result.typ == nil: result.typ = getSysType(tyInt32)
of nkInt64Lit:
if result.typ == nil: result.typ = getSysType(tyInt64)
of nkFloatLit:
if result.typ == nil: result.typ = getSysType(tyFloat)
of nkFloat32Lit:
if result.typ == nil: result.typ = getSysType(tyFloat32)
of nkFloat64Lit:
if result.typ == nil: result.typ = getSysType(tyFloat64)
of nkStrLit..nkTripleStrLit:
if result.typ == nil: result.typ = getSysType(tyString)
of nkCharLit:
if result.typ == nil: result.typ = getSysType(tyChar)
of nkDotExpr:
result = semDotExpr(c, n, flags)
if result.kind == nkDotCall:
result.kind = nkCall
result = semExpr(c, result, flags)
of nkBind:
result = semExpr(c, n.sons[0], flags)
of nkCall, nkInfix, nkPrefix, nkPostfix, nkCommand, nkCallStrLit:
# check if it is an expression macro:
checkMinSonsLen(n, 1)
s = qualifiedLookup(c, n.sons[0], false)
if (s != nil):
case s.kind
of skMacro:
result = semMacroExpr(c, n, s)
of skTemplate:
result = semTemplateExpr(c, n, s)
of skType:
if n.kind != nkCall:
liMessage(n.info, errXisNotCallable, s.name.s) # XXX does this check make any sense?
result = semConv(c, n, s)
of skProc, skMethod, skConverter, skIterator:
if s.magic == mNone: result = semDirectOp(c, n, flags)
else: result = semMagic(c, n, s, flags)
else:
#liMessage(n.info, warnUser, renderTree(n));
result = semIndirectOp(c, n, flags)
elif n.sons[0].kind == nkSymChoice:
result = semDirectOp(c, n, flags)
else:
result = semIndirectOp(c, n, flags)
of nkMacroStmt:
result = semMacroStmt(c, n)
of nkBracketExpr:
checkMinSonsLen(n, 1)
s = qualifiedLookup(c, n.sons[0], false)
if (s != nil) and (s.kind in {skProc, skMethod, skConverter, skIterator}):
# type parameters: partial generic specialization
# XXX: too implement!
internalError(n.info, "explicit generic instantation not implemented")
result = partialSpecialization(c, n, s)
else:
result = semArrayAccess(c, n, flags)
of nkPragmaExpr:
# which pragmas are allowed for expressions? `likely`, `unlikely`
internalError(n.info, "semExpr() to implement") # XXX: to implement
of nkPar:
case checkPar(n)
of paNone: result = nil
of paTuplePositions: result = semTuplePositionsConstr(c, n)
of paTupleFields: result = semTupleFieldsConstr(c, n)
of paSingle: result = semExpr(c, n.sons[0])
of nkCurly:
result = semSetConstr(c, n)
of nkBracket:
result = semArrayConstr(c, n)
of nkLambda:
result = semLambda(c, n)
of nkDerefExpr:
checkSonsLen(n, 1)
n.sons[0] = semExprWithType(c, n.sons[0])
result = n
t = skipTypes(n.sons[0].typ, {tyGenericInst, tyVar})
case t.kind
of tyRef, tyPtr: n.typ = t.sons[0]
else: liMessage(n.sons[0].info, errCircumNeedsPointer)
result = n
of nkAddr:
result = n
checkSonsLen(n, 1)
n.sons[0] = semExprWithType(c, n.sons[0])
if isAssignable(n.sons[0]) != arLValue:
liMessage(n.info, errExprHasNoAddress)
n.typ = makePtrType(c, n.sons[0].typ)
of nkHiddenAddr, nkHiddenDeref:
checkSonsLen(n, 1)
n.sons[0] = semExpr(c, n.sons[0], flags)
of nkCast:
result = semCast(c, n)
of nkAccQuoted:
checkSonsLen(n, 1)
result = semExpr(c, n.sons[0])
of nkIfExpr:
result = semIfExpr(c, n)
of nkStmtListExpr:
result = semStmtListExpr(c, n)
of nkBlockExpr:
result = semBlockExpr(c, n)
of nkHiddenStdConv, nkHiddenSubConv, nkConv, nkHiddenCallConv:
checkSonsLen(n, 2)
of nkStringToCString, nkCStringToString, nkPassAsOpenArray, nkObjDownConv,
nkObjUpConv:
checkSonsLen(n, 1)
of nkChckRangeF, nkChckRange64, nkChckRange:
checkSonsLen(n, 3)
of nkCheckedFieldExpr:
checkMinSonsLen(n, 2)
of nkSymChoice:
liMessage(n.info, errExprXAmbiguous, renderTree(n, {renderNoComments}))
result = nil
else:
#InternalError(n.info, nodeKindToStr[n.kind]);
liMessage(n.info, errInvalidExpressionX, renderTree(n, {renderNoComments}))
result = nil
incl(result.flags, nfSem)