discard """
action: run
output: '''
[Suite] random int
[Suite] random float
[Suite] cumsum
[Suite] random sample
[Suite] ^
'''
"""
import math, random, os
import unittest
import sets, tables
suite "random int":
test "there might be some randomness":
var set = initHashSet[int](128)
for i in 1..1000:
incl(set, rand(high(int)))
check len(set) == 1000
test "single number bounds work":
var rand: int
for i in 1..1000:
rand = rand(1000)
check rand < 1000
check rand > -1
test "slice bounds work":
var rand: int
for i in 1..1000:
rand = rand(100..1000)
check rand < 1000
check rand >= 100
test " again gives new numbers":
var rand1 = rand(1000000)
os.sleep(200)
var rand2 = rand(1000000)
check rand1 != rand2
suite "random float":
test "there might be some randomness":
var set = initHashSet[float](128)
for i in 1..100:
incl(set, rand(1.0))
check len(set) == 100
test "single number bounds work":
var rand: float
for i in 1..1000:
rand = rand(1000.0)
check rand < 1000.0
check rand > -1.0
test "slice bounds work":
var rand: float
for i in 1..1000:
rand = rand(100.0..1000.0)
check rand < 1000.0
check rand >= 100.0
test " again gives new numbers":
var rand1:float = rand(1000000.0)
os.sleep(200)
var rand2:float = rand(1000000.0)
check rand1 != rand2
suite "cumsum":
test "cumsum int seq return":
let counts = [ 1, 2, 3, 4 ]
check counts.cumsummed == [ 1, 3, 6, 10 ]
test "cumsum float seq return":
let counts = [ 1.0, 2.0, 3.0, 4.0 ]
check counts.cumsummed == [ 1.0, 3.0, 6.0, 10.0 ]
test "cumsum int in-place":
var counts = [ 1, 2, 3, 4 ]
counts.cumsum
check counts == [ 1, 3, 6, 10 ]
test "cumsum float in-place":
var counts = [ 1.0, 2.0, 3.0, 4.0 ]
counts.cumsum
check counts == [ 1.0, 3.0, 6.0, 10.0 ]
suite "random sample":
test "non-uniform array sample unnormalized int CDF":
let values = [ 10, 20, 30, 40, 50 ] # values
let counts = [ 4, 3, 2, 1, 0 ] # weights aka unnormalized probabilities
var histo = initCountTable[int]()
let cdf = counts.cumsummed # unnormalized CDF
for i in 0 ..< 5000:
histo.inc(sample(values, cdf))
check histo.len == 4 # number of non-zero in `counts`
# Any one bin is a binomial random var for n samples, each with prob p of
# adding a count to k; E[k]=p*n, Var k=p*(1-p)*n, approximately Normal for
# big n. So, P(abs(k - p*n)/sqrt(p*(1-p)*n))>3.0) =~ 0.0027, while
# P(wholeTestFails) =~ 1 - P(binPasses)^4 =~ 1 - (1-0.0027)^4 =~ 0.01.
for i, c in counts:
if c == 0:
check values[i] notin histo
continue
let p = float(c) / float(cdf[^1])
let n = 5000.0
let expected = p * n
let stdDev = sqrt(n * p * (1.0 - p))
check abs(float(histo[values[i]]) - expected) <= 3.0 * stdDev
test "non-uniform array sample normalized float CDF":
let values = [ 10, 20, 30, 40, 50 ] # values
let counts = [ 0.4, 0.3, 0.2, 0.1, 0 ] # probabilities
var histo = initCountTable[int]()
let cdf = counts.cumsummed # normalized CDF
for i in 0 ..< 5000:
histo.inc(sample(values, cdf))
check histo.len == 4 # number of non-zero in ``counts``
for i, c in counts:
if c == 0:
check values[i] notin histo
continue
let p = float(c) / float(cdf[^1])
let n = 5000.0
let expected = p * n
let stdDev = sqrt(n * p * (1.0 - p))
# NOTE: like unnormalized int CDF test, P(wholeTestFails) =~ 0.01.
check abs(float(histo[values[i]]) - expected) <= 3.0 * stdDev
suite "^":
test "compiles for valid types":
check: compiles(5 ^ 2)
check: compiles(5.5 ^ 2)
check: compiles(5.5 ^ 2.int8)
check: compiles(5.5 ^ 2.uint)
check: compiles(5.5 ^ 2.uint8)
check: not compiles(5.5 ^ 2.2)
block:
when not defined(js):
# Check for no side effect annotation
proc mySqrt(num: float): float {.noSideEffect.} =
return sqrt(num)
# check gamma function
assert(gamma(5.0) == 24.0) # 4!
assert(lgamma(1.0) == 0.0) # ln(1.0) == 0.0
assert(erf(6.0) > erf(5.0))
assert(erfc(6.0) < erfc(5.0))
# Function for approximate comparison of floats
proc `==~`(x, y: float): bool = (abs(x-y) < 1e-9)
block: # prod
doAssert prod([1, 2, 3, 4]) == 24
doAssert prod([1.5, 3.4]) == 5.1
let x: seq[float] = @[]
doAssert prod(x) == 1.0
block: # round() tests
# Round to 0 decimal places
doAssert round(54.652) ==~ 55.0
doAssert round(54.352) ==~ 54.0
doAssert round(-54.652) ==~ -55.0
doAssert round(-54.352) ==~ -54.0
doAssert round(0.0) ==~ 0.0
block: # splitDecimal() tests
doAssert splitDecimal(54.674).intpart ==~ 54.0
doAssert splitDecimal(54.674).floatpart ==~ 0.674
doAssert splitDecimal(-693.4356).intpart ==~ -693.0
doAssert splitDecimal(-693.4356).floatpart ==~ -0.4356
doAssert splitDecimal(0.0).intpart ==~ 0.0
doAssert splitDecimal(0.0).floatpart ==~ 0.0
block: # trunc tests for vcc
doAssert(trunc(-1.1) == -1)
doAssert(trunc(1.1) == 1)
doAssert(trunc(-0.1) == -0)
doAssert(trunc(0.1) == 0)
#special case
doAssert(classify(trunc(1e1000000)) == fcInf)
doAssert(classify(trunc(-1e1000000)) == fcNegInf)
doAssert(classify(trunc(0.0/0.0)) == fcNan)
doAssert(classify(trunc(0.0)) == fcZero)
#trick the compiler to produce signed zero
let
f_neg_one = -1.0
f_zero = 0.0
f_nan = f_zero / f_zero
doAssert(classify(trunc(f_neg_one*f_zero)) == fcNegZero)
doAssert(trunc(-1.1'f32) == -1)
doAssert(trunc(1.1'f32) == 1)
doAssert(trunc(-0.1'f32) == -0)
doAssert(trunc(0.1'f32) == 0)
doAssert(classify(trunc(1e1000000'f32)) == fcInf)
doAssert(classify(trunc(-1e1000000'f32)) == fcNegInf)
doAssert(classify(trunc(f_nan.float32)) == fcNan)
doAssert(classify(trunc(0.0'f32)) == fcZero)
block: # sgn() tests
assert sgn(1'i8) == 1
assert sgn(1'i16) == 1
assert sgn(1'i32) == 1
assert sgn(1'i64) == 1
assert sgn(1'u8) == 1
assert sgn(1'u16) == 1
assert sgn(1'u32) == 1
assert sgn(1'u64) == 1
assert sgn(-12342.8844'f32) == -1
assert sgn(123.9834'f64) == 1
assert sgn(0'i32) == 0
assert sgn(0'f32) == 0
assert sgn(NegInf) == -1
assert sgn(Inf) == 1
assert sgn(NaN) == 0
block: # fac() tests
try:
discard fac(-1)
except AssertionDefect:
discard
doAssert fac(0) == 1
doAssert fac(1) == 1
doAssert fac(2) == 2
doAssert fac(3) == 6
doAssert fac(4) == 24
block: # floorMod/floorDiv
doAssert floorDiv(8, 3) == 2
doAssert floorMod(8, 3) == 2
doAssert floorDiv(8, -3) == -3
doAssert floorMod(8, -3) == -1
doAssert floorDiv(-8, 3) == -3
doAssert floorMod(-8, 3) == 1
doAssert floorDiv(-8, -3) == 2
doAssert floorMod(-8, -3) == -2
doAssert floorMod(8.0, -3.0) ==~ -1.0
doAssert floorMod(-8.5, 3.0) ==~ 0.5
block: # log
doAssert log(4.0, 3.0) ==~ ln(4.0) / ln(3.0)
doAssert log2(8.0'f64) == 3.0'f64
doAssert log2(4.0'f64) == 2.0'f64
doAssert log2(2.0'f64) == 1.0'f64
doAssert log2(1.0'f64) == 0.0'f64
doAssert classify(log2(0.0'f64)) == fcNegInf
doAssert log2(8.0'f32) == 3.0'f32
doAssert log2(4.0'f32) == 2.0'f32
doAssert log2(2.0'f32) == 1.0'f32
doAssert log2(1.0'f32) == 0.0'f32
doAssert classify(log2(0.0'f32)) == fcNegInf