import macros
from strutils import IdentStartChars
import parseutils
import unicode
import math
import fenv
import pegs
import streams
type
FormatError = object of Exception ## Error in the format string.
Writer = concept W
## Writer to output a character `c`.
when (NimMajor, NimMinor, NimPatch) > (0, 10, 2):
write(W, 'c')
else:
block:
var x: W
write(x, char)
FmtAlign = enum ## Format alignment
faDefault ## default for given format type
faLeft ## left aligned
faRight ## right aligned
faCenter ## centered
faPadding ## right aligned, fill characters after sign (numbers only)
FmtSign = enum ## Format sign
fsMinus ## only unary minus, no reservered sign space for positive numbers
fsPlus ## unary minus and unary plus
fsSpace ## unary minus and reserved space for positive numbers
FmtType = enum ## Format type
ftDefault ## default format for given parameter type
ftStr ## string
ftChar ## character
ftDec ## decimal integer
ftBin ## binary integer
ftOct ## octal integer
ftHex ## hexadecimal integer
ftFix ## real number in fixed point notation
ftSci ## real number in scientific notation
ftGen ## real number in generic form (either fixed point or scientific)
ftPercent ## real number multiplied by 100 and % added
Format = tuple ## Formatting information.
typ: FmtType ## format type
precision: int ## floating point precision
width: int ## minimal width
fill: string ## the fill character, UTF8
align: FmtAlign ## alignment
sign: FmtSign ## sign notation
baseprefix: bool ## whether binary, octal, hex should be prefixed by 0b, 0x, 0o
upcase: bool ## upper case letters in hex or exponential formats
comma: bool ##
arysep: string ## separator for array elements
PartKind = enum pkStr, pkFmt
Part = object
## Information of a part of the target string.
case kind: PartKind ## type of the part
of pkStr:
str: string ## literal string
of pkFmt:
arg: int ## position argument
fmt: string ## format string
field: string ## field of argument to be accessed
index: int ## array index of argument to be accessed
nested: bool ## true if the argument contains nested formats
const
DefaultPrec = 6 ## Default precision for floating point numbers.
DefaultFmt: Format = (ftDefault, -1, -1, "", faDefault, fsMinus, false, false, false, "")
## Default format corresponding to the empty format string, i.e.
## `x.format("") == x.format(DefaultFmt)`.
round_nums = [0.5, 0.05, 0.005, 0.0005, 0.00005, 0.000005, 0.0000005, 0.00000005]
## Rounding offset for floating point numbers up to precision 8.
proc write(s: var string; c: char) =
s.add(c)
proc has(c: Captures; i: range[0..pegs.MaxSubpatterns-1]): bool {.nosideeffect, inline.} =
## Tests whether `c` contains a non-empty capture `i`.
let b = c.bounds(i)
result = b.first <= b.last
proc get(str: string; c: Captures; i: range[0..MaxSubpatterns-1]; def: char): char {.nosideeffect, inline.} =
## If capture `i` is non-empty return that portion of `str` casted
## to `char`, otherwise return `def`.
result = if c.has(i): str[c.bounds(i).first] else: def
proc get(str: string; c: Captures; i: range[0..MaxSubpatterns-1]; def: string; begoff: int = 0): string {.nosideeffect, inline.} =
## If capture `i` is non-empty return that portion of `str` as
## string, otherwise return `def`.
let b = c.bounds(i)
result = if c.has(i): str.substr(b.first + begoff, b.last) else: def
proc get(str: string; c: Captures; i: range[0..MaxSubpatterns-1]; def: int; begoff: int = 0): int {.nosideeffect, inline.} =
## If capture `i` is non-empty return that portion of `str`
## converted to int, otherwise return `def`.
if c.has(i):
discard str.parseInt(result, c.bounds(i).first + begoff)
else:
result = def
proc parse(fmt: string): Format {.nosideeffect.} =
# Converts the format string `fmt` into a `Format` structure.
let p =
sequence(capture(?sequence(anyRune(), &charSet({'<', '>', '=', '^'}))),
capture(?charSet({'<', '>', '=', '^'})),
capture(?charSet({'-', '+', ' '})),
capture(?charSet({'#'})),
capture(?(+digits())),
capture(?charSet({','})),
capture(?sequence(charSet({'.'}), +digits())),
capture(?charSet({'b', 'c', 'd', 'e', 'E', 'f', 'F', 'g', 'G', 'n', 'o', 's', 'x', 'X', '%'})),
capture(?sequence(charSet({'a'}), *pegs.any())))
# let p=peg"{(_&[<>=^])?}{[<>=^]?}{[-+ ]?}{[#]?}{[0-9]+?}{[,]?}{([.][0-9]+)?}{[bcdeEfFgGnosxX%]?}{(a.*)?}"
var caps: Captures
if fmt.rawmatch(p, 0, caps) < 0:
raise newException(FormatError, "Invalid format string")
result.fill = fmt.get(caps, 0, "")
case fmt.get(caps, 1, 0.char)
of '<': result.align = faLeft
of '>': result.align = faRight
of '^': result.align = faCenter
of '=': result.align = faPadding
else: result.align = faDefault
case fmt.get(caps, 2, '-')
of '-': result.sign = fsMinus
of '+': result.sign = fsPlus
of ' ': result.sign = fsSpace
else: result.sign = fsMinus
result.baseprefix = caps.has(3)
result.width = fmt.get(caps, 4, -1)
if caps.has(4) and fmt[caps.bounds(4).first] == '0':
if result.fill != "":
raise newException(FormatError, "Leading 0 in with not allowed with explicit fill character")
if result.align != faDefault:
raise newException(FormatError, "Leading 0 in with not allowed with explicit alignment")
result.fill = "0"
result.align = faPadding
result.comma = caps.has(5)
result.precision = fmt.get(caps, 6, -1, 1)
case fmt.get(caps, 7, 0.char)
of 's': result.typ = ftStr
of 'c': result.typ = ftChar
of 'd', 'n': result.typ = ftDec
of 'b': result.typ = ftBin
of 'o': result.typ = ftOct
of 'x': result.typ = ftHex
of 'X': result.typ = ftHex; result.upcase = true
of 'f', 'F': result.typ = ftFix
of 'e': result.typ = ftSci
of 'E': result.typ = ftSci; result.upcase = true
of 'g': result.typ = ftGen
of 'G': result.typ = ftGen; result.upcase = true
of '%': result.typ = ftPercent
else: result.typ = ftDefault
result.arysep = fmt.get(caps, 8, "", 1)
proc getalign(fmt: Format; defalign: FmtAlign; slen: int) : tuple[left, right:int] {.nosideeffect.} =
## Returns the number of left and right padding characters for a
## given format alignment and width of the object to be printed.
##
## `fmt`
## the format data
## `default`
## if `fmt.align == faDefault`, then this alignment is used
## `slen`
## the width of the object to be printed.
##
## The returned values `(left, right)` will be as minimal as possible
## so that `left + slen + right >= fmt.width`.
result.left = 0
result.right = 0
if (fmt.width >= 0) and (slen < fmt.width):
let alg = if fmt.align == faDefault: defalign else: fmt.align
case alg:
of faLeft: result.right = fmt.width - slen
of faRight, faPadding: result.left = fmt.width - slen
of faCenter:
result.left = (fmt.width - slen) div 2
result.right = fmt.width - slen - result.left
else: discard
proc writefill(o: var Writer; fmt: Format; n: int; signum: int = 0) =
## Write characters for filling. This function also writes the sign
## of a numeric format and handles the padding alignment
## accordingly.
##
## `o`
## output object
## `add`
## output function
## `fmt`
## format to be used (important for padding alignment)
## `n`
## the number of filling characters to be written
## `signum`
## the sign of the number to be written, < 0 negative, > 0 positive, = 0 zero
if fmt.align == faPadding and signum != 0:
if signum < 0: write(o, '-')
elif fmt.sign == fsPlus: write(o, '+')
elif fmt.sign == fsSpace: write(o, ' ')
if fmt.fill.len == 0:
for i in 1..n: write(o, ' ')
else:
for i in 1..n:
for c in fmt.fill:
write(o, c)
if fmt.align != faPadding and signum != 0:
if signum < 0: write(o, '-')
elif fmt.sign == fsPlus: write(o, '+')
elif fmt.sign == fsSpace: write(o, ' ')
proc writeformat(o: var Writer; s: string; fmt: Format) =
## Write string `s` according to format `fmt` using output object
## `o` and output function `add`.
if fmt.typ notin {ftDefault, ftStr}:
raise newException(FormatError, "String variable must have 's' format type")
# compute alignment
let len = if fmt.precision < 0: runelen(s) else: min(runelen(s), fmt.precision)
var alg = getalign(fmt, faLeft, len)
writefill(o, fmt, alg.left)
var pos = 0
for i in 0..len-1:
let rlen = runeLenAt(s, pos)
for j in pos..pos+rlen-1: write(o, s[j])
pos += rlen
writefill(o, fmt, alg.right)
proc writeformat(o: var Writer; c: char; fmt: Format) =
## Write character `c` according to format `fmt` using output object
## `o` and output function `add`.
if not (fmt.typ in {ftChar, ftDefault}):
raise newException(FormatError, "Character variable must have 'c' format type")
# compute alignment
var alg = getalign(fmt, faLeft, 1)
writefill(o, fmt, alg.left)
write(o, c)
writefill(o, fmt, alg.right)
proc writeformat(o: var Writer; c: Rune; fmt: Format) =
## Write rune `c` according to format `fmt` using output object
## `o` and output function `add`.
if not (fmt.typ in {ftChar, ftDefault}):
raise newException(FormatError, "Character variable must have 'c' format type")
# compute alignment
var alg = getalign(fmt, faLeft, 1)
writefill(o, fmt, alg.left)
let s = c.toUTF8
for c in s: write(o, c)
writefill(o, fmt, alg.right)
proc abs(x: SomeUnsignedInt): SomeUnsignedInt {.inline.} = x
## Return the absolute value of the unsigned int `x`.
proc writeformat(o: var Writer; i: SomeInteger; fmt: Format) =
## Write integer `i` according to format `fmt` using output object
## `o` and output function `add`.
var fmt = fmt
if fmt.typ == ftDefault:
fmt.typ = ftDec
if not (fmt.typ in {ftBin, ftOct, ftHex, ftDec}):
raise newException(FormatError, "Integer variable must of one of the following types: b,o,x,X,d,n")
var base: type(i)
var len = 0
case fmt.typ:
of ftDec:
base = 10
of ftBin:
base = 2
if fmt.baseprefix: len += 2
of ftOct:
base = 8
if fmt.baseprefix: len += 2
of ftHex:
base = 16
if fmt.baseprefix: len += 2
else: assert(false)
if fmt.sign != fsMinus or i < 0: len.inc
var x: type(i) = abs(i)
var irev: type(i) = 0
var ilen = 0
while x > 0.SomeInteger:
len.inc
ilen.inc
irev = irev * base + x mod base
x = x div base
if ilen == 0:
ilen.inc
len.inc
var alg = getalign(fmt, faRight, len)
writefill(o, fmt, alg.left, if i >= 0.SomeInteger: 1 else: -1)
if fmt.baseprefix:
case fmt.typ
of ftBin:
write(o, '0')
write(o, 'b')
of ftOct:
write(o, '0')
write(o, 'o')
of ftHex:
write(o, '0')
write(o, 'x')
else:
raise newException(FormatError, "# only allowed with b, o, x or X")
while ilen > 0:
ilen.dec
let c = irev mod base
irev = irev div base
if c < 10:
write(o, ('0'.int + c.int).char)
elif fmt.upcase:
write(o, ('A'.int + c.int - 10).char)
else:
write(o, ('a'.int + c.int - 10).char)
writefill(o, fmt, alg.right)
proc writeformat(o: var Writer; p: pointer; fmt: Format) =
## Write pointer `i` according to format `fmt` using output object
## `o` and output function `add`.
##
## Pointers are casted to unsigned int and formatted as hexadecimal
## with prefix unless specified otherwise.
var f = fmt
if f.typ == 0.char:
f.typ = 'x'
f.baseprefix = true
writeformat(o, add, cast[uint](p), f)
proc writeformat(o: var Writer; x: SomeFloat; fmt: Format) =
## Write real number `x` according to format `fmt` using output
## object `o` and output function `add`.
var fmt = fmt
# handle default format
if fmt.typ == ftDefault:
fmt.typ = ftGen
if fmt.precision < 0: fmt.precision = DefaultPrec
if not (fmt.typ in {ftFix, ftSci, ftGen, ftPercent}):
raise newException(FormatError, "Integer variable must of one of the following types: f,F,e,E,g,G,%")
let positive = x >= 0 and classify(x) != fcNegZero
var len = 0
if fmt.sign != fsMinus or not positive: len.inc
var prec = if fmt.precision < 0: DefaultPrec else: fmt.precision
var y = abs(x)
var exp = 0
var numstr, frstr: array[0..31, char]
var numlen, frbeg, frlen = 0
if fmt.typ == ftPercent: y *= 100
case classify(x):
of fcNan:
numstr[0..2] = ['n', 'a', 'n']
numlen = 3
of fcInf, fcNegInf:
numstr[0..2] = ['f', 'n', 'i']
numlen = 3
of fcZero, fcNegZero:
numstr[0] = '0'
numlen = 1
else: # a usual fractional number
if not (fmt.typ in {ftFix, ftPercent}): # not fixed point
exp = int(floor(log10(y)))
if fmt.typ == ftGen:
if prec == 0: prec = 1
if -4 <= exp and exp < prec:
prec = prec-1-exp
exp = 0
else:
prec = prec - 1
len += 4 # exponent
else:
len += 4 # exponent
# shift y so that 1 <= abs(y) < 2
if exp > 0: y /= pow(10.SomeFloat, abs(exp).SomeFloat)
elif exp < 0: y *= pow(10.SomeFloat, abs(exp).SomeFloat)
elif fmt.typ == ftPercent:
len += 1 # percent sign
# handle rounding by adding +0.5 * LSB
if prec < len(round_nums): y += round_nums[prec]
# split into integer and fractional part
var mult = 1'i64
for i in 1..prec: mult *= 10
var num = y.int64
var fr = ((y - num.SomeFloat) * mult.SomeFloat).int64
# build integer part string
while num != 0:
numstr[numlen] = ('0'.int + (num mod 10)).char
numlen.inc
num = num div 10
if numlen == 0:
numstr[0] = '0'
numlen.inc
# build fractional part string
while fr != 0:
frstr[frlen] = ('0'.int + (fr mod 10)).char
frlen.inc
fr = fr div 10
while frlen < prec:
frstr[frlen] = '0'
frlen.inc
# possible remove trailing 0
if fmt.typ == ftGen:
while frbeg < frlen and frstr[frbeg] == '0': frbeg.inc
# update length of string
len += numlen;
if frbeg < frlen:
len += 1 + frlen - frbeg # decimal point and fractional string
let alg = getalign(fmt, faRight, len)
writefill(o, fmt, alg.left, if positive: 1 else: -1)
for i in (numlen-1).countdown(0): write(o, numstr[i])
if frbeg < frlen:
write(o, '.')
for i in (frlen-1).countdown(frbeg): write(o, frstr[i])
if fmt.typ == ftSci or (fmt.typ == ftGen and exp != 0):
write(o, if fmt.upcase: 'E' else: 'e')
if exp >= 0:
write(o, '+')
else:
write(o, '-')
exp = -exp
if exp < 10:
write(o, '0')
write(o, ('0'.int + exp).char)
else:
var i=0
while exp > 0:
numstr[i] = ('0'.int + exp mod 10).char
i+=1
exp = exp div 10
while i>0:
i-=1
write(o, numstr[i])
if fmt.typ == ftPercent: write(o, '%')
writefill(o, fmt, alg.right)
proc writeformat(o: var Writer; b: bool; fmt: Format) =
## Write boolean value `b` according to format `fmt` using output
## object `o`. A boolean may be formatted numerically or as string.
## In the former case true is written as 1 and false as 0, in the
## latter the strings "true" and "false" are shown, respectively.
## The default is string format.
if fmt.typ in {ftStr, ftDefault}:
writeformat(o,
if b: "true"
else: "false",
fmt)
elif fmt.typ in {ftBin, ftOct, ftHex, ftDec}:
writeformat(o,
if b: 1
else: 0,
fmt)
else:
raise newException(FormatError, "Boolean values must of one of the following types: s,b,o,x,X,d,n")
proc writeformat(o: var Writer; ary: openarray[system.any]; fmt: Format) =
## Write array `ary` according to format `fmt` using output object
## `o` and output function `add`.
if ary.len == 0: return
var sep: string
var nxtfmt = fmt
if fmt.arysep == nil:
sep = "\t"
elif fmt.arysep.len == 0:
sep = ""
else:
let sepch = fmt.arysep[0]
let nxt = 1 + skipUntil(fmt.arysep, sepch, 1)
if nxt >= 1:
nxtfmt.arysep = fmt.arysep.substr(nxt)
sep = fmt.arysep.substr(1, nxt-1)
else:
nxtfmt.arysep = ""
sep = fmt.arysep.substr(1)
writeformat(o, ary[0], nxtfmt)
for i in 1..ary.len-1:
for c in sep: write(o, c)
writeformat(o, ary[i], nxtfmt)
proc addformat[T](o: var Writer; x: T; fmt: Format = DefaultFmt) {.inline.} =
## Write `x` formatted with `fmt` to `o`.
writeformat(o, x, fmt)
proc addformat[T](o: var Writer; x: T; fmt: string) {.inline.} =
## The same as `addformat(o, x, parse(fmt))`.
addformat(o, x, fmt.parse)
proc addformat(s: var string; x: string) {.inline.} =
## Write `x` to `s`. This is a fast specialized version for
## appending unformatted strings.
add(s, x)
proc addformat(f: File; x: string) {.inline.} =
## Write `x` to `f`. This is a fast specialized version for
## writing unformatted strings to a file.
write(f, x)
proc addformat[T](f: File; x: T; fmt: Format = DefaultFmt) {.inline.} =
## Write `x` to file `f` using format `fmt`.
var g = f
writeformat(g, x, fmt)
proc addformat[T](f: File; x: T; fmt: string) {.inline.} =
## Write `x` to file `f` using format string `fmt`. This is the same
## as `addformat(f, x, parse(fmt))`
addformat(f, x, parse(fmt))
proc addformat(s: Stream; x: string) {.inline.} =
## Write `x` to `s`. This is a fast specialized version for
## writing unformatted strings to a stream.
write(s, x)
proc addformat[T](s: Stream; x: T; fmt: Format = DefaultFmt) {.inline.} =
## Write `x` to stream `s` using format `fmt`.
var g = s
writeformat(g, x, fmt)
proc addformat[T](s: Stream; x: T; fmt: string) {.inline.} =
## Write `x` to stream `s` using format string `fmt`. This is the same
## as `addformat(s, x, parse(fmt))`
addformat(s, x, parse(fmt))
proc format[T](x: T; fmt: Format): string =
## Return `x` formatted as a string according to format `fmt`.
result = ""
addformat(result, x, fmt)
proc format[T](x: T; fmt: string): string =
## Return `x` formatted as a string according to format string `fmt`.
result = format(x, fmt.parse)
proc format[T](x: T): string {.inline.} =
## Return `x` formatted as a string according to the default format.
## The default format corresponds to an empty format string.
var fmt {.global.} : Format = DefaultFmt
result = format(x, fmt)
proc unquoted(s: string): string {.compileTime.} =
## Return `s` {{ and }} by single { and }, respectively.
result = ""
var pos = 0
while pos < s.len:
let nxt = pos + skipUntil(s, {'{', '}'})
result.add(s.substr(pos, nxt))
pos = nxt + 2
proc splitfmt(s: string): seq[Part] {.compiletime, nosideeffect.} =
## Split format string `s` into a sequence of "parts".
##
## Each part is either a literal string or a format specification. A
## format specification is a substring of the form
## "{[arg][:format]}" where `arg` is either empty or a number
## referring to the arg-th argument and an additional field or array
## index. The format string is a string accepted by `parse`.
let subpeg = sequence(capture(digits()),
capture(?sequence(charSet({'.'}), *pegs.identStartChars(), *identChars())),
capture(?sequence(charSet({'['}), +digits(), charSet({']'}))),
capture(?sequence(charSet({':'}), *pegs.any())))
result = @[]
var pos = 0
while true:
let oppos = pos + skipUntil(s, {'{', '}'}, pos)
# reached the end
if oppos >= s.len:
if pos < s.len:
result.add(Part(kind: pkStr, str: s.substr(pos).unquoted))
return
# skip double
if oppos + 1 < s.len and s[oppos] == s[oppos+1]:
result.add(Part(kind: pkStr, str: s.substr(pos, oppos)))
pos = oppos + 2
continue
if s[oppos] == '}':
error("Single '}' encountered in format string")
if oppos > pos:
result.add(Part(kind: pkStr, str: s.substr(pos, oppos-1).unquoted))
# find matching closing }
var lvl = 1
var nested = false
pos = oppos
while lvl > 0:
pos.inc
pos = pos + skipUntil(s, {'{', '}'}, pos)
if pos >= s.len:
error("Single '{' encountered in format string")
if s[pos] == '{':
lvl.inc
if lvl == 2:
nested = true
if lvl > 2:
error("Too many nested format levels")
else:
lvl.dec
let clpos = pos
var fmtpart = Part(kind: pkFmt, arg: -1, fmt: s.substr(oppos+1, clpos-1), field: "", index: int.high, nested: nested)
if fmtpart.fmt.len > 0:
var m: array[0..3, string]
if not fmtpart.fmt.match(subpeg, m):
error("invalid format string")
if m[1].len > 0:
fmtpart.field = m[1].substr(1)
if m[2].len > 0:
discard parseInt(m[2].substr(1, m[2].len-2), fmtpart.index)
if m[0].len > 0: discard parseInt(m[0], fmtpart.arg)
if m[3].len == 0:
fmtpart.fmt = ""
elif m[3][0] == ':':
fmtpart.fmt = m[3].substr(1)
else:
fmtpart.fmt = m[3]
result.add(fmtpart)
pos = clpos + 1
proc literal(s: string): NimNode {.compiletime, nosideeffect.} =
## Return the nim literal of string `s`. This handles the case if
## `s` is nil.
result = newLit(s)
proc literal(b: bool): NimNode {.compiletime, nosideeffect.} =
## Return the nim literal of boolean `b`. This is either `true`
## or `false` symbol.
result = if b: "true".ident else: "false".ident
proc literal[T](x: T): NimNode {.compiletime, nosideeffect.} =
## Return the nim literal of value `x`.
when type(x) is enum:
result = ($x).ident
else:
result = newLit(x)
proc generatefmt(fmtstr: string;
args: var openarray[tuple[arg:NimNode, cnt:int]];
arg: var int;): seq[tuple[val, fmt:NimNode]] {.compiletime.} =
## fmtstr
## the format string
## args
## array of expressions for the arguments
## arg
## the number of the next argument for automatic parsing
##
## If arg is < 0 then the functions assumes that explicit numbering
## must be used, otherwise automatic numbering is used starting at
## `arg`. The value of arg is updated according to the number of
## arguments being used. If arg == 0 then automatic and manual
## numbering is not decided (because no explicit manual numbering is
## fixed und no automatically numbered argument has been used so
## far).
##
## The function returns a list of pairs `(val, fmt)` where `val` is
## an expression to be formatted and `fmt` is the format string (or
## Format). Therefore, the resulting string can be generated by
## concatenating expressions `val.format(fmt)`. If `fmt` is `nil`
## then `val` is a (literal) string expression.
try:
result = @[]
for part in splitfmt(fmtstr):
case part.kind
of pkStr: result.add((newLit(part.str), nil))
of pkFmt:
# first compute the argument expression
# start with the correct index
var argexpr : NimNode
if part.arg >= 0:
if arg > 0:
error("Cannot switch from automatic field numbering to manual field specification")
if part.arg >= args.len:
error("Invalid explicit argument index: " & $part.arg)
argexpr = args[part.arg].arg
args[part.arg].cnt = args[part.arg].cnt + 1
arg = -1
else:
if arg < 0:
error("Cannot switch from manual field specification to automatic field numbering")
if arg >= args.len:
error("Too few arguments for format string")
argexpr = args[arg].arg
args[arg].cnt = args[arg].cnt + 1
arg.inc
# possible field access
if part.field.len > 0:
argexpr = newDotExpr(argexpr, part.field.ident)
# possible array access
if part.index < int.high:
argexpr = newNimNode(nnkBracketExpr).add(argexpr, newLit(part.index))
# now the expression for the format data
var fmtexpr: NimNode
if part.nested:
# nested format string. Compute the format string by
# concatenating the parts of the substring.
for e in generatefmt(part.fmt, args, arg):
var newexpr = if part.fmt.len == 0: e.val else: newCall(bindsym"format", e.val, e.fmt)
if fmtexpr != nil and fmtexpr.kind != nnkNilLit:
fmtexpr = infix(fmtexpr, "&", newexpr)
else:
fmtexpr = newexpr
else:
# literal format string, precompute the format data
fmtexpr = newNimNode(nnkPar)
for field, val in part.fmt.parse.fieldPairs:
fmtexpr.add(newNimNode(nnkExprColonExpr).add(field.ident, literal(val)))
# add argument
result.add((argexpr, fmtexpr))
finally:
discard
proc addfmtfmt(fmtstr: string; args: NimNode; retvar: NimNode): NimNode {.compileTime.} =
var argexprs = newseq[tuple[arg:NimNode; cnt:int]](args.len)
result = newNimNode(nnkStmtListExpr)
# generate let bindings for arguments
for i in 0..args.len-1:
let argsym = gensym(nskLet, "arg" & $i)
result.add(newLetStmt(argsym, args[i]))
argexprs[i].arg = argsym
# add result values
var arg = 0
for e in generatefmt(fmtstr, argexprs, arg):
if e.fmt == nil or e.fmt.kind == nnkNilLit:
result.add(newCall(bindsym"addformat", retvar, e.val))
else:
result.add(newCall(bindsym"addformat", retvar, e.val, e.fmt))
for i, arg in argexprs:
if arg.cnt == 0:
warning("Argument " & $(i+1) & " `" & args[i].repr & "` is not used in format string")
macro addfmt(s: var string, fmtstr: string{lit}, args: varargs[typed]): untyped =
## The same as `s.add(fmtstr.fmt(args...))` but faster.
result = addfmtfmt($fmtstr, args, s)
var s: string = ""
s.addfmt("a:{}", 42)