diff options
author | konsumlamm <44230978+konsumlamm@users.noreply.github.com> | 2021-01-02 20:28:59 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-01-02 20:28:59 +0100 |
commit | 2eccef7ad6dd2941bcc78692b499b4cb269e9a2a (patch) | |
tree | ebf98be56e70fae670523839658aa25820f6b784 | |
parent | e869767aa72a71e673c2e8fdc51925f28c13d432 (diff) | |
download | Nim-2eccef7ad6dd2941bcc78692b499b4cb269e9a2a.tar.gz |
Algorithm improvements (#16529)
* Improve documentation for algorithm Remove unused import in algorithm tests Improve formatting * Reapply fix for reverse on empty openArray * Use 3rd person singular Add more explanations.
-rw-r--r-- | lib/pure/algorithm.nim | 276 | ||||
-rw-r--r-- | tests/stdlib/talgorithm.nim | 4 |
2 files changed, 144 insertions, 136 deletions
diff --git a/lib/pure/algorithm.nim b/lib/pure/algorithm.nim index f2e4848df..029e9abf8 100644 --- a/lib/pure/algorithm.nim +++ b/lib/pure/algorithm.nim @@ -7,11 +7,11 @@ # distribution, for details about the copyright. # -## This module implements some common generic algorithms. +## This module implements some common generic algorithms on `openArray`s. ## ## Basic usage ## =========== -## +## runnableExamples: type People = tuple @@ -30,9 +30,7 @@ runnableExamples: (year: 2010, name: "Jane")] proc myCmp(x, y: People): int = - if x.name < y.name: -1 - elif x.name == y.name: 0 - else: 1 + cmp(x.name, y.name) # Sorting with custom proc a.sort(myCmp) @@ -49,18 +47,18 @@ type Descending, Ascending proc `*`*(x: int, order: SortOrder): int {.inline.} = - ## Flips ``x`` if ``order == Descending``. - ## If ``order == Ascending`` then ``x`` is returned. + ## Flips the sign of `x` if `order == Descending`. + ## If `order == Ascending` then `x` is returned. ## - ## ``x`` is supposed to be the result of a comparator, i.e. - ## | ``< 0`` for *less than*, - ## | ``== 0`` for *equal*, - ## | ``> 0`` for *greater than*. + ## `x` is supposed to be the result of a comparator, i.e. + ## | `< 0` for *less than*, + ## | `== 0` for *equal*, + ## | `> 0` for *greater than*. runnableExamples: - assert `*`(-123, Descending) == 123 - assert `*`(123, Descending) == -123 - assert `*`(-123, Ascending) == -123 - assert `*`(123, Ascending) == 123 + assert -123 * Descending == 123 + assert 123 * Descending == -123 + assert -123 * Ascending == -123 + assert 123 * Ascending == 123 var y = order.ord - 1 result = (x xor y) - y @@ -71,9 +69,9 @@ template fillImpl[T](a: var openArray[T], first, last: int, value: T) = inc(x) proc fill*[T](a: var openArray[T], first, last: Natural, value: T) = - ## Fills the slice ``a[first..last]`` with ``value``. + ## Assigns `value` to all elements of the slice `a[first..last]`. ## - ## If an invalid range is passed, it raises IndexDefect. + ## If an invalid range is passed, it raises `IndexDefect`. runnableExamples: var a: array[6, int] a.fill(1, 3, 9) @@ -84,7 +82,7 @@ proc fill*[T](a: var openArray[T], first, last: Natural, value: T) = fillImpl(a, first, last, value) proc fill*[T](a: var openArray[T], value: T) = - ## Fills the container ``a`` with ``value``. + ## Assigns `value` to all elements of the container `a`. runnableExamples: var a: array[6, int] a.fill(9) @@ -95,13 +93,13 @@ proc fill*[T](a: var openArray[T], value: T) = proc reverse*[T](a: var openArray[T], first, last: Natural) = - ## Reverses the slice ``a[first..last]``. + ## Reverses the slice `a[first..last]`. ## - ## If an invalid range is passed, it raises IndexDefect. + ## If an invalid range is passed, it raises `IndexDefect`. ## ## **See also:** - ## * `reversed proc<#reversed,openArray[T],Natural,int>`_ reverse a slice and returns a ``seq[T]`` - ## * `reversed proc<#reversed,openArray[T]>`_ reverse and returns a ``seq[T]`` + ## * `reversed proc<#reversed,openArray[T],Natural,int>`_ reverse a slice and returns a `seq[T]` + ## * `reversed proc<#reversed,openArray[T]>`_ reverse and returns a `seq[T]` runnableExamples: var a = [1, 2, 3, 4, 5, 6] a.reverse(1, 3) @@ -117,23 +115,24 @@ proc reverse*[T](a: var openArray[T], first, last: Natural) = inc(x) proc reverse*[T](a: var openArray[T]) = - ## Reverses the contents of the container ``a``. + ## Reverses the contents of the container `a`. ## ## **See also:** - ## * `reversed proc<#reversed,openArray[T],Natural,int>`_ reverse a slice and returns a ``seq[T]`` - ## * `reversed proc<#reversed,openArray[T]>`_ reverse and returns a ``seq[T]`` + ## * `reversed proc<#reversed,openArray[T],Natural,int>`_ reverse a slice and returns a `seq[T]` + ## * `reversed proc<#reversed,openArray[T]>`_ reverse and returns a `seq[T]` runnableExamples: var a = [1, 2, 3, 4, 5, 6] a.reverse() assert a == [6, 5, 4, 3, 2, 1] a.reverse() assert a == [1, 2, 3, 4, 5, 6] + # the max is needed, since a.high is -1 if a is empty reverse(a, 0, max(0, a.high)) proc reversed*[T](a: openArray[T], first: Natural, last: int): seq[T] = - ## Returns the reverse of the slice ``a[first..last]``. + ## Returns the reverse of the slice `a[first..last]`. ## - ## If an invalid range is passed, it raises IndexDefect. + ## If an invalid range is passed, it raises `IndexDefect`. ## ## **See also:** ## * `reverse proc<#reverse,openArray[T],Natural,Natural>`_ reverse a slice @@ -143,7 +142,7 @@ proc reversed*[T](a: openArray[T], first: Natural, last: int): seq[T] = a = [1, 2, 3, 4, 5, 6] b = a.reversed(1, 3) assert b == @[4, 3, 2] - assert last >= first-1 + assert last >= first - 1 var i = last - first var x = first.int result = newSeq[T](i + 1) @@ -153,7 +152,7 @@ proc reversed*[T](a: openArray[T], first: Natural, last: int): seq[T] = inc(x) proc reversed*[T](a: openArray[T]): seq[T] = - ## Returns the reverse of the container ``a``. + ## Returns the reverse of the container `a`. ## ## **See also:** ## * `reverse proc<#reverse,openArray[T],Natural,Natural>`_ reverse a slice @@ -166,19 +165,20 @@ proc reversed*[T](a: openArray[T]): seq[T] = reversed(a, 0, a.high) proc binarySearch*[T, K](a: openArray[T], key: K, - cmp: proc (x: T, y: K): int {.closure.}): int = - ## Binary search for ``key`` in ``a``. Returns -1 if not found. + cmp: proc (x: T, y: K): int {.closure.}): int = + ## Binary search for `key` in `a`. Return the index of `key` or -1 if not found. + ## Assumes that `a` is sorted according to `cmp`. ## - ## ``cmp`` is the comparator function to use, the expected return values are - ## the same as that of system.cmp. + ## `cmp` is the comparator function to use, the expected return values are + ## the same as those of system.cmp. runnableExamples: assert binarySearch(["a", "b", "c", "d"], "d", system.cmp[string]) == 3 - assert binarySearch(["a", "b", "d", "c"], "d", system.cmp[string]) == 2 - if a.len == 0: - return -1 - + assert binarySearch(["a", "b", "c", "d"], "c", system.cmp[string]) == 2 let len = a.len + if len == 0: + return -1 + if len == 1: if cmp(a[0], key) == 0: return 0 @@ -196,7 +196,7 @@ proc binarySearch*[T, K](a: openArray[T], key: K, if cmpRes == 0: return i - if cmpRes < 1: + if cmpRes < 0: result = i step = step shr 1 if cmp(a[result], key) != 0: result = -1 @@ -216,30 +216,32 @@ proc binarySearch*[T, K](a: openArray[T], key: K, if result >= len or cmp(a[result], key) != 0: result = -1 proc binarySearch*[T](a: openArray[T], key: T): int = - ## Binary search for ``key`` in ``a``. Returns -1 if not found. + ## Binary search for `key` in `a`. Return the index of `key` or -1 if not found. + ## Assumes that `a` is sorted. runnableExamples: assert binarySearch([0, 1, 2, 3, 4], 4) == 4 - assert binarySearch([0, 1, 4, 2, 3], 4) == 2 + assert binarySearch([0, 1, 2, 3, 4], 2) == 2 binarySearch(a, key, cmp[T]) const onlySafeCode = true -proc lowerBound*[T, K](a: openArray[T], key: K, cmp: proc(x: T, k: K): int {. - closure.}): int = - ## Returns a position to the first element in the ``a`` that is greater than - ## ``key``, or last if no such element is found. +proc lowerBound*[T, K](a: openArray[T], key: K, + cmp: proc(x: T, k: K): int {.closure.}): int = + ## Returns the index of the first element in `a` that is not less than + ## (i.e. greater or equal to) `key`, or last if no such element is found. ## In other words if you have a sorted sequence and you call - ## ``insert(thing, elm, lowerBound(thing, elm))`` + ## `insert(thing, elm, lowerBound(thing, elm))` ## the sequence will still be sorted. + ## Assumes that `a` is sorted according to `cmp`. ## - ## If an invalid range is passed, it raises IndexDefect. + ## If an invalid range is passed, it raises `IndexDefect`. ## - ## The version uses ``cmp`` to compare the elements. - ## The expected return values are the same as that of ``system.cmp``. + ## This version uses `cmp` to compare the elements. + ## The expected return values are the same as those of `system.cmp`. ## ## **See also:** - ## * `upperBound proc<#upperBound,openArray[T],K,proc(T,K)>`_ sorted by ``cmp`` in the specified order + ## * `upperBound proc<#upperBound,openArray[T],K,proc(T,K)>`_ sorted by `cmp` in the specified order ## * `upperBound proc<#upperBound,openArray[T],T>`_ runnableExamples: var arr = @[1, 2, 3, 5, 6, 7, 8, 9] @@ -261,33 +263,35 @@ proc lowerBound*[T, K](a: openArray[T], key: K, cmp: proc(x: T, k: K): int {. count = step proc lowerBound*[T](a: openArray[T], key: T): int = lowerBound(a, key, cmp[T]) - ## Returns a position to the first element in the ``a`` that is greater than - ## ``key``, or last if no such element is found. + ## Returns the index of the first element in `a` that is not less than + ## (i.e. greater or equal to) `key`, or last if no such element is found. ## In other words if you have a sorted sequence and you call - ## ``insert(thing, elm, lowerBound(thing, elm))`` + ## `insert(thing, elm, lowerBound(thing, elm))` ## the sequence will still be sorted. + ## Assumes that `a` is sorted. ## - ## The version uses the default comparison function ``cmp``. + ## This version uses the default comparison function `cmp`. ## ## **See also:** - ## * `upperBound proc<#upperBound,openArray[T],K,proc(T,K)>`_ sorted by ``cmp`` in the specified order + ## * `upperBound proc<#upperBound,openArray[T],K,proc(T,K)>`_ sorted by `cmp` in the specified order ## * `upperBound proc<#upperBound,openArray[T],T>`_ -proc upperBound*[T, K](a: openArray[T], key: K, cmp: proc(x: T, k: K): int {. - closure.}): int = - ## Returns a position to the first element in the ``a`` that is not less - ## (i.e. greater or equal to) than ``key``, or last if no such element is found. +proc upperBound*[T, K](a: openArray[T], key: K, + cmp: proc(x: T, k: K): int {.closure.}): int = + ## Returns the index of the first element in `a` that is greater than + ## `key`, or last if no such element is found. ## In other words if you have a sorted sequence and you call - ## ``insert(thing, elm, upperBound(thing, elm))`` + ## `insert(thing, elm, upperBound(thing, elm))` ## the sequence will still be sorted. + ## Assumes that `a` is sorted according to `cmp`. ## - ## If an invalid range is passed, it raises IndexDefect. + ## If an invalid range is passed, it raises `IndexDefect`. ## - ## The version uses ``cmp`` to compare the elements. The expected - ## return values are the same as that of ``system.cmp``. + ## This version uses `cmp` to compare the elements. The expected + ## return values are the same as those of `system.cmp`. ## ## **See also:** - ## * `lowerBound proc<#lowerBound,openArray[T],K,proc(T,K)>`_ sorted by ``cmp`` in the specified order + ## * `lowerBound proc<#lowerBound,openArray[T],K,proc(T,K)>`_ sorted by `cmp` in the specified order ## * `lowerBound proc<#lowerBound,openArray[T],T>`_ runnableExamples: var arr = @[1, 2, 3, 5, 6, 7, 8, 9] @@ -309,19 +313,20 @@ proc upperBound*[T, K](a: openArray[T], key: K, cmp: proc(x: T, k: K): int {. count = step proc upperBound*[T](a: openArray[T], key: T): int = upperBound(a, key, cmp[T]) - ## Returns a position to the first element in the ``a`` that is not less - ## (i.e. greater or equal to) than ``key``, or last if no such element is found. + ## Returns the index of the first element in `a` that is greater than + ## `key`, or last if no such element is found. ## In other words if you have a sorted sequence and you call - ## ``insert(thing, elm, upperBound(thing, elm))`` + ## `insert(thing, elm, upperBound(thing, elm))` ## the sequence will still be sorted. + ## Assumes that `a` is sorted. ## - ## The version uses the default comparison function ``cmp``. + ## This version uses the default comparison function `cmp`. ## ## **See also:** - ## * `lowerBound proc<#lowerBound,openArray[T],K,proc(T,K)>`_ sorted by ``cmp`` in the specified order + ## * `lowerBound proc<#lowerBound,openArray[T],K,proc(T,K)>`_ sorted by `cmp` in the specified order ## * `lowerBound proc<#lowerBound,openArray[T],T>`_ -template `<-` (a, b) = +template `<-`(a, b) = when defined(gcDestructors): a = move b elif onlySafeCode: @@ -331,10 +336,10 @@ template `<-` (a, b) = proc merge[T](a, b: var openArray[T], lo, m, hi: int, cmp: proc (x, y: T): int {.closure.}, order: SortOrder) = - # optimization: If max(left) <= min(right) there is nothing to do! - # 1 2 3 4 ## 5 6 7 8 + # Optimization: If max(left) <= min(right) there is nothing to do! + # 1 2 3 4 ## 5 6 7 8 # -> O(n) for sorted arrays. - # On random data this safes up to 40% of merge calls + # On random data this saves up to 40% of merge calls. if cmp(a[m], a[m+1]) * order <= 0: return var j = lo # copy a[j..m] into b: @@ -372,14 +377,15 @@ func sort*[T](a: var openArray[T], cmp: proc (x, y: T): int {.closure.}, order = SortOrder.Ascending) = ## Default Nim sort (an implementation of merge sort). The sorting - ## is guaranteed to be stable and the worst case is guaranteed to - ## be O(n log n). + ## is guaranteed to be stable (that is, equal elements stay in the same order) + ## and the worst case is guaranteed to be O(n log n). + ## Sorts by `cmp` in the specified `order`. ## ## The current implementation uses an iterative ## mergesort to achieve this. It uses a temporary sequence of - ## length ``a.len div 2``. If you do not wish to provide your own - ## ``cmp``, you may use ``system.cmp`` or instead call the overloaded - ## version of ``sort``, which uses ``system.cmp``. + ## length `a.len div 2`. If you do not wish to provide your own + ## `cmp`, you may use `system.cmp` or instead call the overloaded + ## version of `sort`, which uses `system.cmp`. ## ## .. code-block:: nim ## @@ -400,7 +406,7 @@ func sort*[T](a: var openArray[T], ## ## **See also:** ## * `sort proc<#sort,openArray[T]>`_ - ## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by ``cmp`` in the specified order + ## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by `cmp` in the specified order ## * `sorted proc<#sorted,openArray[T]>`_ ## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_ runnableExamples: @@ -411,8 +417,7 @@ func sort*[T](a: var openArray[T], sort(d, myCmp) assert d == ["fo", "qux", "boo", "barr"] var n = a.len - var b: seq[T] - newSeq(b, n div 2) + var b = newSeq[T](n div 2) var s = 1 while s < n: var m = n-1-s @@ -423,17 +428,17 @@ func sort*[T](a: var openArray[T], proc sort*[T](a: var openArray[T], order = SortOrder.Ascending) = sort[T](a, system.cmp[T], order) - ## Shortcut version of ``sort`` that uses ``system.cmp[T]`` as the comparison function. + ## Shortcut version of `sort` that uses `system.cmp[T]` as the comparison function. ## ## **See also:** ## * `sort func<#sort,openArray[T],proc(T,T)>`_ - ## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by ``cmp`` in the specified order + ## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by `cmp` in the specified order ## * `sorted proc<#sorted,openArray[T]>`_ ## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_ proc sorted*[T](a: openArray[T], cmp: proc(x, y: T): int {.closure.}, order = SortOrder.Ascending): seq[T] = - ## Returns ``a`` sorted by ``cmp`` in the specified ``order``. + ## Returns `a` sorted by `cmp` in the specified `order`. ## ## **See also:** ## * `sort func<#sort,openArray[T],proc(T,T)>`_ @@ -454,7 +459,7 @@ proc sorted*[T](a: openArray[T], cmp: proc(x, y: T): int {.closure.}, sort(result, cmp, order) proc sorted*[T](a: openArray[T], order = SortOrder.Ascending): seq[T] = - ## Shortcut version of ``sorted`` that uses ``system.cmp[T]`` as the comparison function. + ## Shortcut version of `sorted` that uses `system.cmp[T]` as the comparison function. ## ## **See also:** ## * `sort func<#sort,openArray[T],proc(T,T)>`_ @@ -472,18 +477,18 @@ proc sorted*[T](a: openArray[T], order = SortOrder.Ascending): seq[T] = sorted[T](a, system.cmp[T], order) template sortedByIt*(seq1, op: untyped): untyped = - ## Convenience template around the ``sorted`` proc to reduce typing. + ## Convenience template around the `sorted` proc to reduce typing. ## - ## The template injects the ``it`` variable which you can use directly in an + ## The template injects the `it` variable which you can use directly in an ## expression. ## - ## Because the underlying ``cmp()`` is defined for tuples you can do + ## Because the underlying `cmp()` is defined for tuples you can also do ## a nested sort. ## ## **See also:** ## * `sort func<#sort,openArray[T],proc(T,T)>`_ ## * `sort proc<#sort,openArray[T]>`_ - ## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by ``cmp`` in the specified order + ## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by `cmp` in the specified order ## * `sorted proc<#sorted,openArray[T]>`_ runnableExamples: type Person = tuple[name: string, age: int] @@ -510,9 +515,9 @@ template sortedByIt*(seq1, op: untyped): untyped = func isSorted*[T](a: openArray[T], cmp: proc(x, y: T): int {.closure.}, order = SortOrder.Ascending): bool = - ## Checks to see whether ``a`` is already sorted in ``order`` - ## using ``cmp`` for the comparison. Parameters identical - ## to ``sort``. Requires O(n) time. + ## Checks to see whether `a` is already sorted in `order` + ## using `cmp` for the comparison. The parameters are identical + ## to `sort`. Requires O(n) time. ## ## **See also:** ## * `isSorted proc<#isSorted,openArray[T]>`_ @@ -535,7 +540,7 @@ func isSorted*[T](a: openArray[T], return false proc isSorted*[T](a: openArray[T], order = SortOrder.Ascending): bool = - ## Shortcut version of ``isSorted`` that uses ``system.cmp[T]`` as the comparison function. + ## Shortcut version of `isSorted` that uses `system.cmp[T]` as the comparison function. ## ## **See also:** ## * `isSorted func<#isSorted,openArray[T],proc(T,T)>`_ @@ -555,8 +560,10 @@ proc isSorted*[T](a: openArray[T], order = SortOrder.Ascending): bool = isSorted(a, system.cmp[T], order) proc product*[T](x: openArray[seq[T]]): seq[seq[T]] = - ## Produces the Cartesian product of the array. Warning: complexity - ## may explode. + ## Produces the Cartesian product of the array. + ## Every element of the result is a combination of one element from each seq in `x`, + ## with the ith element coming from `x[i]`. + ## Warning: complexity may explode. runnableExamples: assert product(@[@[1], @[2]]) == @[@[1, 2]] assert product(@[@["A", "K"], @["Q"]]) == @[@["K", "Q"], @["A", "Q"]] @@ -567,34 +574,33 @@ proc product*[T](x: openArray[seq[T]]): seq[seq[T]] = result = @x return var - indexes = newSeq[int](x.len) + indices = newSeq[int](x.len) initial = newSeq[int](x.len) index = 0 - var next = newSeq[T]() - next.setLen(x.len) + var next = newSeq[T](x.len) for i in 0..(x.len-1): if len(x[i]) == 0: return - initial[i] = len(x[i])-1 - indexes = initial + initial[i] = len(x[i]) - 1 + indices = initial while true: - while indexes[index] == -1: - indexes[index] = initial[index] + while indices[index] == -1: + indices[index] = initial[index] index += 1 if index == x.len: return - indexes[index] -= 1 - for ni, i in indexes: + indices[index] -= 1 + for ni, i in indices: next[ni] = x[ni][i] result.add(next) index = 0 - indexes[index] -= 1 + indices[index] -= 1 proc nextPermutation*[T](x: var openArray[T]): bool {.discardable.} = - ## Calculates the next lexicographic permutation, directly modifying ``x``. + ## Calculates the next lexicographic permutation, directly modifying `x`. ## The result is whether a permutation happened, otherwise we have reached ## the last-ordered permutation. ## ## If you start with an unsorted array/seq, the repeated permutations - ## will **not** give you all permutations but stop with last. + ## will **not** give you all permutations but stop with the last. ## ## **See also:** ## * `prevPermutation proc<#prevPermutation,openArray[T]>`_ @@ -630,7 +636,7 @@ proc nextPermutation*[T](x: var openArray[T]): bool {.discardable.} = proc prevPermutation*[T](x: var openArray[T]): bool {.discardable.} = ## Calculates the previous lexicographic permutation, directly modifying - ## ``x``. The result is whether a permutation happened, otherwise we have + ## `x`. The result is whether a permutation happened, otherwise we have ## reached the first-ordered permutation. ## ## **See also:** @@ -664,7 +670,8 @@ proc prevPermutation*[T](x: var openArray[T]): bool {.discardable.} = result = true proc rotateInternal[T](arg: var openArray[T]; first, middle, last: int): int = - ## A port of std::rotate from c++. Ported from `this reference <http://www.cplusplus.com/reference/algorithm/rotate/>`_. + ## A port of std::rotate from C++. + ## Ported from [this reference](http://www.cplusplus.com/reference/algorithm/rotate/). result = first + last - middle if first == middle or middle == last: @@ -716,30 +723,30 @@ proc rotatedInternal[T](arg: openArray[T]; first, middle, last: int): seq[T] = result[i] = arg[i] proc rotateLeft*[T](arg: var openArray[T]; slice: HSlice[int, int]; - dist: int): int {.discardable.} = + dist: int): int {.discardable.} = ## Performs a left rotation on a range of elements. If you want to rotate - ## right, use a negative ``dist``. Specifically, ``rotateLeft`` rotates - ## the elements at ``slice`` by ``dist`` positions. + ## right, use a negative `dist`. Specifically, `rotateLeft` rotates + ## the elements at `slice` by `dist` positions. ## - ## | The element at index ``slice.a + dist`` will be at index ``slice.a``. - ## | The element at index ``slice.b`` will be at ``slice.a + dist -1``. - ## | The element at index ``slice.a`` will be at ``slice.b + 1 - dist``. - ## | The element at index ``slice.a + dist - 1`` will be at ``slice.b``. + ## | The element at index `slice.a + dist` will be at index `slice.a`. + ## | The element at index `slice.b` will be at `slice.a + dist - 1`. + ## | The element at index `slice.a` will be at `slice.b + 1 - dist`. + ## | The element at index `slice.a + dist - 1` will be at `slice.b`. ## - ## Elements outside of ``slice`` will be left unchanged. - ## The time complexity is linear to ``slice.b - slice.a + 1``. - ## If an invalid range (``HSlice``) is passed, it raises IndexDefect. + ## Elements outside of `slice` will be left unchanged. + ## The time complexity is linear to `slice.b - slice.a + 1`. + ## If an invalid range (`HSlice`) is passed, it raises `IndexDefect`. ## - ## ``slice`` + ## `slice` ## The indices of the element range that should be rotated. ## - ## ``dist`` + ## `dist` ## The distance in amount of elements that the data should be rotated. ## Can be negative, can be any number. ## ## **See also:** ## * `rotateLeft proc<#rotateLeft,openArray[T],int>`_ for a version which rotates the whole container - ## * `rotatedLeft proc<#rotatedLeft,openArray[T],HSlice[int,int],int>`_ for a version which returns a ``seq[T]`` + ## * `rotatedLeft proc<#rotatedLeft,openArray[T],HSlice[int,int],int>`_ for a version which returns a `seq[T]` runnableExamples: var a = [0, 1, 2, 3, 4, 5] a.rotateLeft(1 .. 4, 3) @@ -751,15 +758,16 @@ proc rotateLeft*[T](arg: var openArray[T]; slice: HSlice[int, int]; doAssertRaises(IndexDefect, a.rotateLeft(1 .. 7, 2)) let sliceLen = slice.b + 1 - slice.a let distLeft = ((dist mod sliceLen) + sliceLen) mod sliceLen - arg.rotateInternal(slice.a, slice.a+distLeft, slice.b + 1) + arg.rotateInternal(slice.a, slice.a + distLeft, slice.b + 1) proc rotateLeft*[T](arg: var openArray[T]; dist: int): int {.discardable.} = - ## Default arguments for slice, so that this procedure operates on the entire - ## ``arg``, and not just on a part of it. + ## Same as `rotateLeft`, but with default arguments for slice, + ## so that this procedure operates on the entire + ## `arg`, and not just on a part of it. ## ## **See also:** ## * `rotateLeft proc<#rotateLeft,openArray[T],HSlice[int,int],int>`_ for a version which rotates a range - ## * `rotatedLeft proc<#rotatedLeft,openArray[T],int>`_ for a version which returns a ``seq[T]`` + ## * `rotatedLeft proc<#rotatedLeft,openArray[T],int>`_ for a version which returns a `seq[T]` runnableExamples: var a = [1, 2, 3, 4, 5] a.rotateLeft(2) @@ -773,17 +781,17 @@ proc rotateLeft*[T](arg: var openArray[T]; dist: int): int {.discardable.} = arg.rotateInternal(0, distLeft, arglen) proc rotatedLeft*[T](arg: openArray[T]; slice: HSlice[int, int], - dist: int): seq[T] = - ## Same as ``rotateLeft``, just with the difference that it does - ## not modify the argument. It creates a new ``seq`` instead. + dist: int): seq[T] = + ## Same as `rotateLeft`, just with the difference that it does + ## not modify the argument. It creates a new `seq` instead. ## - ## Elements outside of ``slice`` will be left unchanged. - ## If an invalid range (``HSlice``) is passed, it raises IndexDefect. + ## Elements outside of `slice` will be left unchanged. + ## If an invalid range (`HSlice`) is passed, it raises `IndexDefect`. ## - ## ``slice`` + ## `slice` ## The indices of the element range that should be rotated. ## - ## ``dist`` + ## `dist` ## The distance in amount of elements that the data should be rotated. ## Can be negative, can be any number. ## @@ -803,8 +811,8 @@ proc rotatedLeft*[T](arg: openArray[T]; slice: HSlice[int, int], arg.rotatedInternal(slice.a, slice.a+distLeft, slice.b+1) proc rotatedLeft*[T](arg: openArray[T]; dist: int): seq[T] = - ## Same as ``rotateLeft``, just with the difference that it does - ## not modify the argument. It creates a new ``seq`` instead. + ## Same as `rotateLeft`, just with the difference that it does + ## not modify the argument. It creates a new `seq` instead. ## ## **See also:** ## * `rotateLeft proc<#rotateLeft,openArray[T],int>`_ for the in-place version of this proc diff --git a/tests/stdlib/talgorithm.nim b/tests/stdlib/talgorithm.nim index 148a65289..47a8d327b 100644 --- a/tests/stdlib/talgorithm.nim +++ b/tests/stdlib/talgorithm.nim @@ -3,7 +3,7 @@ discard """ ''' """ #12928,10456 -import sequtils, strutils, algorithm, json +import sequtils, algorithm, json proc test() = try: @@ -14,7 +14,7 @@ proc test() = echo prefixes except: discard - + test() block: |