diff options
author | konsumlamm <44230978+konsumlamm@users.noreply.github.com> | 2021-02-15 13:57:15 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-02-15 13:57:15 +0100 |
commit | 56f5010fa405018d40c4416ffe86bd3aaa1cb75a (patch) | |
tree | a74e77bb1fcdd2044793f7bad6a5263fafff4c2e /lib/pure/collections | |
parent | 8f54d3b792a987ae35050bf5e80063eac9821320 (diff) | |
download | Nim-56f5010fa405018d40c4416ffe86bd3aaa1cb75a.tar.gz |
Improve the heapqueue module (#17034)
Improve documentation Optimize toHeapQueue Rename siftup and siftdown Add tests for the heap property
Diffstat (limited to 'lib/pure/collections')
-rw-r--r-- | lib/pure/collections/heapqueue.nim | 137 |
1 files changed, 82 insertions, 55 deletions
diff --git a/lib/pure/collections/heapqueue.nim b/lib/pure/collections/heapqueue.nim index 30fa5dae8..89e532951 100644 --- a/lib/pure/collections/heapqueue.nim +++ b/lib/pure/collections/heapqueue.nim @@ -8,31 +8,27 @@ ## The `heapqueue` module implements a -## `heap data structure<https://en.wikipedia.org/wiki/Heap_(data_structure)>`_ -## that can be used as a -## `priority queue<https://en.wikipedia.org/wiki/Priority_queue>`_. -## Heaps are arrays for which `a[k] <= a[2*k+1]` and `a[k] <= a[2*k+2]` for -## all `k`, counting elements from 0. The interesting property of a heap is that +## `binary heap data structure<https://en.wikipedia.org/wiki/Binary_heap>`_ +## that can be used as a `priority queue<https://en.wikipedia.org/wiki/Priority_queue>`_. +## They are represented as arrays for which `a[k] <= a[2*k+1]` and `a[k] <= a[2*k+2]` +## for all indices `k` (counting elements from 0). The interesting property of a heap is that ## `a[0]` is always its smallest element. ## ## Basic usage ## ----------- ## - runnableExamples: - var heap = initHeapQueue[int]() - heap.push(8) - heap.push(2) + var heap = [8, 2].toHeapQueue heap.push(5) - # The first element is the lowest element + # the first element is the lowest element assert heap[0] == 2 - # Remove and return the lowest element + # remove and return the lowest element assert heap.pop() == 2 - # The lowest element remaining is 5 + # the lowest element remaining is 5 assert heap[0] == 5 -## Usage with custom object -## ------------------------ +## Usage with custom objects +## ------------------------- ## To use a `HeapQueue` with a custom object, the `<` operator must be ## implemented. @@ -48,6 +44,7 @@ runnableExamples: assert jobs[0].priority == 1 + import std/private/since type HeapQueue*[T] = object @@ -57,27 +54,33 @@ type HeapQueue*[T] = object proc initHeapQueue*[T](): HeapQueue[T] = ## Creates a new empty heap. ## - ## See also: + ## Heaps are initialized by default, so it is not necessary to call + ## this function explicitly. + ## + ## **See also:** ## * `toHeapQueue proc <#toHeapQueue,openArray[T]>`_ discard proc len*[T](heap: HeapQueue[T]): int {.inline.} = ## Returns the number of elements of `heap`. + runnableExamples: + let heap = [9, 5, 8].toHeapQueue + assert heap.len == 3 + heap.data.len proc `[]`*[T](heap: HeapQueue[T], i: Natural): lent T {.inline.} = ## Accesses the i-th element of `heap`. heap.data[i] -proc heapCmp[T](x, y: T): bool {.inline.} = - return (x < y) +proc heapCmp[T](x, y: T): bool {.inline.} = x < y -proc siftdown[T](heap: var HeapQueue[T], startpos, p: int) = - ## 'heap' is a heap at all indices >= startpos, except possibly for `pos`. `pos` +proc siftup[T](heap: var HeapQueue[T], startpos, p: int) = + ## `heap` is a heap at all indices >= `startpos`, except possibly for `p`. `p` ## is the index of a leaf with a possibly out-of-order value. Restores the ## heap invariant. var pos = p - var newitem = heap[pos] + let newitem = heap[pos] # Follow the path to the root, moving parents down until finding a place # newitem fits. while pos > startpos: @@ -90,13 +93,14 @@ proc siftdown[T](heap: var HeapQueue[T], startpos, p: int) = break heap.data[pos] = newitem -proc siftup[T](heap: var HeapQueue[T], p: int) = +proc siftdownToBottom[T](heap: var HeapQueue[T], p: int) = + # This is faster when the element should be close to the bottom. let endpos = len(heap) var pos = p let startpos = pos let newitem = heap[pos] # Bubble up the smaller child until hitting a leaf. - var childpos = 2*pos + 1 # leftmost child position + var childpos = 2 * pos + 1 # leftmost child position while childpos < endpos: # Set childpos to index of smaller child. let rightpos = childpos + 1 @@ -105,52 +109,71 @@ proc siftup[T](heap: var HeapQueue[T], p: int) = # Move the smaller child up. heap.data[pos] = heap[childpos] pos = childpos - childpos = 2*pos + 1 - # The leaf at pos is empty now. Put newitem there, and bubble it up + childpos = 2 * pos + 1 + # The leaf at pos is empty now. Put newitem there, and bubble it up # to its final resting place (by sifting its parents down). heap.data[pos] = newitem - siftdown(heap, startpos, pos) + siftup(heap, startpos, pos) + +proc siftdown[T](heap: var HeapQueue[T], p: int) = + let endpos = len(heap) + var pos = p + let newitem = heap[pos] + var childpos = 2 * pos + 1 + while childpos < endpos: + let rightpos = childpos + 1 + if rightpos < endpos and not heapCmp(heap[childpos], heap[rightpos]): + childpos = rightpos + if not heapCmp(heap[childpos], newitem): + break + heap.data[pos] = heap[childpos] + pos = childpos + childpos = 2 * pos + 1 + heap.data[pos] = newitem proc push*[T](heap: var HeapQueue[T], item: sink T) = - ## Pushes `item` onto heap, maintaining the heap invariant. + ## Pushes `item` onto `heap`, maintaining the heap invariant. heap.data.add(item) - siftdown(heap, 0, len(heap)-1) + siftup(heap, 0, len(heap) - 1) proc toHeapQueue*[T](x: openArray[T]): HeapQueue[T] {.since: (1, 3).} = ## Creates a new HeapQueue that contains the elements of `x`. ## - ## See also: + ## **See also:** ## * `initHeapQueue proc <#initHeapQueue>`_ runnableExamples: - var heap = toHeapQueue([9, 5, 8]) + var heap = [9, 5, 8].toHeapQueue assert heap.pop() == 5 assert heap[0] == 8 - result = initHeapQueue[T]() - for item in items(x): - result.push(item) + # see https://en.wikipedia.org/wiki/Binary_heap#Building_a_heap + result.data = @x + for i in countdown(x.len div 2 - 1, 0): + siftdown(result, i) proc pop*[T](heap: var HeapQueue[T]): T = ## Pops and returns the smallest item from `heap`, ## maintaining the heap invariant. runnableExamples: - var heap = toHeapQueue([9, 5, 8]) + var heap = [9, 5, 8].toHeapQueue assert heap.pop() == 5 + let lastelt = heap.data.pop() if heap.len > 0: result = heap[0] heap.data[0] = lastelt - siftup(heap, 0) + siftdownToBottom(heap, 0) else: result = lastelt proc find*[T](heap: HeapQueue[T], x: T): int {.since: (1, 3).} = - ## Linear scan to find index of item ``x`` or -1 if not found. + ## Linear scan to find the index of the item `x` or -1 if not found. runnableExamples: - var heap = toHeapQueue([9, 5, 8]) + let heap = [9, 5, 8].toHeapQueue assert heap.find(5) == 0 assert heap.find(9) == 1 assert heap.find(777) == -1 + result = -1 for i in 0 ..< heap.len: if heap[i] == x: return i @@ -158,65 +181,69 @@ proc find*[T](heap: HeapQueue[T], x: T): int {.since: (1, 3).} = proc del*[T](heap: var HeapQueue[T], index: Natural) = ## Removes the element at `index` from `heap`, maintaining the heap invariant. runnableExamples: - var heap = toHeapQueue([9, 5, 8]) + var heap = [9, 5, 8].toHeapQueue heap.del(1) assert heap[0] == 5 assert heap[1] == 8 + swap(heap.data[^1], heap.data[index]) let newLen = heap.len - 1 heap.data.setLen(newLen) if index < newLen: - heap.siftup(index) + siftdownToBottom(heap, index) proc replace*[T](heap: var HeapQueue[T], item: sink T): T = ## Pops and returns the current smallest value, and add the new item. - ## This is more efficient than pop() followed by push(), and can be + ## This is more efficient than `pop()` followed by `push()`, and can be ## more appropriate when using a fixed-size heap. Note that the value - ## returned may be larger than item! That constrains reasonable uses of - ## this routine unless written as part of a conditional replacement: + ## returned may be larger than `item`! That constrains reasonable uses of + ## this routine unless written as part of a conditional replacement. + ## + ## **See also:** + ## * `pushpop proc <#pushpop,HeapQueue[T],sinkT>`_ runnableExamples: - var heap = initHeapQueue[int]() - heap.push(5) - heap.push(12) + var heap = [5, 12].toHeapQueue assert heap.replace(6) == 5 assert heap.len == 2 assert heap[0] == 6 assert heap.replace(4) == 6 + result = heap[0] heap.data[0] = item - siftup(heap, 0) + siftdown(heap, 0) proc pushpop*[T](heap: var HeapQueue[T], item: sink T): T = - ## Fast version of a push followed by a pop. + ## Fast version of a `push()` followed by a `pop()`. + ## + ## **See also:** + ## * `replace proc <#replace,HeapQueue[T],sinkT>`_ runnableExamples: - var heap = initHeapQueue[int]() - heap.push(5) - heap.push(12) + var heap = [5, 12].toHeapQueue assert heap.pushpop(6) == 5 assert heap.len == 2 assert heap[0] == 6 assert heap.pushpop(4) == 4 + result = item if heap.len > 0 and heapCmp(heap.data[0], result): swap(result, heap.data[0]) - siftup(heap, 0) + siftdown(heap, 0) proc clear*[T](heap: var HeapQueue[T]) = ## Removes all elements from `heap`, making it empty. runnableExamples: - var heap = initHeapQueue[int]() - heap.push(1) + var heap = [9, 5, 8].toHeapQueue heap.clear() assert heap.len == 0 + heap.data.setLen(0) proc `$`*[T](heap: HeapQueue[T]): string = ## Turns a heap into its string representation. runnableExamples: - var heap = initHeapQueue[int]() - heap.push(1) - heap.push(2) + let heap = [1, 2].toHeapQueue assert $heap == "[1, 2]" + result = "[" for x in heap.data: if result.len > 1: result.add(", ") |