diff options
author | Araq <rumpf_a@web.de> | 2011-01-07 00:32:15 +0100 |
---|---|---|
committer | Araq <rumpf_a@web.de> | 2011-01-07 00:32:15 +0100 |
commit | 37741f28fdae14201fb6c087ae93eb9ba2586823 (patch) | |
tree | 1d52734f7b5e5112ae5224548899f22bece0d86e /lib/pure/complex.nim | |
parent | e008630838f545a04334ee71a5d6c52469fed056 (diff) | |
download | Nim-37741f28fdae14201fb6c087ae93eb9ba2586823.tar.gz |
additions to complex module
Diffstat (limited to 'lib/pure/complex.nim')
-rwxr-xr-x | lib/pure/complex.nim | 211 |
1 files changed, 205 insertions, 6 deletions
diff --git a/lib/pure/complex.nim b/lib/pure/complex.nim index c06451ca8..df08ace72 100755 --- a/lib/pure/complex.nim +++ b/lib/pure/complex.nim @@ -10,37 +10,67 @@ ## This module implements complex numbers. - {.push checks:off, line_dir:off, stack_trace:off, debugger:off.} # the user does not want to trace a part # of the standard library! + import math + +const + EPS = 5.0e-6 ## Epsilon used for float comparisons (should be smaller + ## if float is really float64, but w/ the current version + ## it seems to be float32?) + type - TComplex* = tuple[re, im: float] + TComplex* = tuple[re, im: float] ## a complex number, consisting of a real and an imaginary part proc `==` *(x, y: TComplex): bool = ## Compare two complex numbers `x` and `y` for equality. result = x.re == y.re and x.im == y.im +proc `=~` *(x, y: TComplex): bool = + ## Compare two complex numbers `x` and `y` approximately. + result = abs(x.re-y.re)<EPS and abs(x.im-y.im)<EPS + proc `+` *(x, y: TComplex): TComplex = ## Add two complex numbers. result.re = x.re + y.re result.im = x.im + y.im -proc `-` *(x, y: TComplex): TComplex = - ## Subtract two complex numbers. - result.re = x.re - y.re - result.im = x.im - y.im +proc `+` *(x: TComplex, y: float): TComplex = + ## Add complex `x` to float `y`. + result.re = x.re + y + result.im = x.im + +proc `+` *(x: float, y: TComplex): TComplex = + ## Add float `x` to complex `y`. + result.re = x + y.re + result.im = y.im + proc `-` *(z: TComplex): TComplex = ## Unary minus for complex numbers. result.re = -z.re result.im = -z.im +proc `-` *(x, y: TComplex): TComplex = + ## Subtract two complex numbers. + result.re = x.re - y.re + result.im = x.im - y.im + +proc `-` *(x: TComplex, y: float): TComplex = + ## Subtracts float `y` from complex `x`. + result = x + (-y) + +proc `-` *(x: float, y: TComplex): TComplex = + ## Subtracts complex `y` from float `x`. + result = x + (-y) + + proc `/` *(x, y: TComplex): TComplex = ## Divide `x` by `y`. var @@ -56,11 +86,33 @@ proc `/` *(x, y: TComplex): TComplex = result.re = (x.re + r * x.im) / den result.im = (x.im - r * x.re) / den +proc `/` *(x : TComplex, y: float ): TComplex = + ## Divide complex `x` by float `y`. + result.re = x.re/y + result.im = x.im/y + +proc `/` *(x : float, y: TComplex ): TComplex = + ## Divide float `x` by complex `y`. + var num : TComplex = (x, 0.0) + result = num/y + + proc `*` *(x, y: TComplex): TComplex = ## Multiply `x` with `y`. result.re = x.re * y.re - x.im * y.im result.im = x.im * y.re + x.re * y.im +proc `*` *(x: float, y: TComplex): TComplex = + ## Multiply float `x` with complex `y`. + result.re = x * y.re + result.im = x * y.im + +proc `*` *(x: TComplex, y: float): TComplex = + ## Multiply complex `x` with float `y`. + result.re = x.re * y + result.im = x.im * y + + proc abs*(z: TComplex): float = ## Return the distance from (0,0) to `z`. @@ -80,6 +132,7 @@ proc abs*(z: TComplex): float = temp = x / y result = y * sqrt(1.0 + temp * temp) + proc sqrt*(z: TComplex): TComplex = ## Square root for a complex number `z`. var x, y, w, r: float @@ -103,4 +156,150 @@ proc sqrt*(z: TComplex): TComplex = else: result.im = -w result.re = z.im / (result.im + result.im) + +proc exp*(z: TComplex): TComplex = + ## e raised to the power `z`. + var rho = exp(z.re) + var theta = z.im + result.re = rho*cos(theta) + result.im = rho*sin(theta) + + +proc ln*(z: TComplex): TComplex = + ## Returns the natural log of `z`. + result.re = ln(abs(z)) + result.im = arctan2(z.im,z.re) + +proc log10*(z: TComplex): TComplex = + ## Returns the log base 10 of `z`. + result = ln(z)/ln(10.0) + +proc log2*(z: TComplex): TComplex = + ## Returns the log base 2 of `z`. + result = ln(z)/ln(2.0) + + +proc pow*(x, y: TComplex): TComplex = + ## `x` raised to the power `y`. + if x.re == 0.0 and x.im == 0.0: + if y.re == 0.0 and y.im == 0.0: + result.re = 1.0 + result.im = 0.0 + else: + result.re = 0.0 + result.im = 0.0 + elif y.re == 1.0 and y.im == 0.0: + result = x + elif y.re == -1.0 and y.im == 0.0: + result = 1.0/x + else: + var rho = sqrt(x.re*x.re + x.im*x.im) + var theta = arctan2(x.im,x.re) + var s = pow(rho,y.re) * exp(-y.im*theta) + var r = y.re*theta + y.im*ln(rho) + result.re = s*cos(r) + result.im = s*sin(r) + + +proc sin*(z: TComplex): TComplex = + ## Returns the sine of `z`. + result.re = sin(z.re)*cosh(z.im) + result.im = cos(z.re)*sinh(z.im) + +proc arcsin*(z: TComplex): TComplex = + ## Returns the inverse sine of `z`. + var i: TComplex = (0.0,1.0) + result = -i*ln(i*z + sqrt(1.0-z*z)) + +proc cos*(z: TComplex): TComplex = + ## Returns the cosine of `z`. + result.re = cos(z.re)*cosh(z.im) + result.im = -sin(z.re)*sinh(z.im) + +proc arccos*(z: TComplex): TComplex = + ## Returns the inverse cosine of `z`. + var i: TComplex = (0.0,1.0) + result = -i*ln(z + sqrt(z*z-1.0)) + +proc tan*(z: TComplex): TComplex = + ## Returns the tangent of `z`. + result = sin(z)/cos(z) + +proc cot*(z: TComplex): TComplex = + ## Returns the cotangent of `z`. + result = cos(z)/sin(z) + +proc sec*(z: TComplex): TComplex = + ## Returns the secant of `z`. + result = 1.0/cos(z) + +proc csc*(z: TComplex): TComplex = + ## Returns the cosecant of `z`. + result = 1.0/sin(z) + + +proc sinh*(z: TComplex): TComplex = + ## Returns the hyperbolic sine of `z`. + result = 0.5*(exp(z)-exp(-z)) + +proc cosh*(z: TComplex): TComplex = + ## Returns the hyperbolic cosine of `z`. + result = 0.5*(exp(z)+exp(-z)) + + +proc `$`*(z: TComplex): string = + ## Returns `z`'s string representation as ``"(re, im)"``. + result = "(" & $z.re & ", " & $z.im & ")" + {.pop.} + + +when isMainModule: + var z = (0.0, 0.0) + var oo = (1.0,1.0) + var a = (1.0, 2.0) + var b = (-1.0, -2.0) + var m1 = (-1.0, 0.0) + var i = (0.0,1.0) + var one = (1.0,0.0) + var tt = (10.0, 20.0) + var ipi = (0.0, -PI) + + assert( a == a ) + assert( (a-a) == z ) + assert( (a+b) == z ) + assert( (a/b) == m1 ) + assert( (1.0/a) == (0.2, -0.4) ) + assert( (a*b) == (3.0, -4.0) ) + assert( 10.0*a == tt ) + assert( a*10.0 == tt ) + assert( tt/10.0 == a ) + assert( oo+(-1.0) == i ) + assert( (-1.0)+oo == i ) + assert( abs(oo) == sqrt(2.0) ) + assert( sqrt(m1) == i ) + assert( exp(ipi) =~ m1 ) + + assert( pow(a,b) =~ (-3.72999124927876, -1.68815826725068) ) + assert( pow(z,a) =~ (0.0, 0.0) ) + assert( pow(z,z) =~ (1.0, 0.0) ) + assert( pow(a,one) =~ a ) + assert( pow(a,m1) =~ (0.2, -0.4) ) + + assert( ln(a) =~ (0.804718956217050, 1.107148717794090) ) + assert( log10(a) =~ (0.349485002168009, 0.480828578784234) ) + assert( log2(a) =~ (1.16096404744368, 1.59727796468811) ) + + assert( sin(a) =~ (3.16577851321617, 1.95960104142161) ) + assert( cos(a) =~ (2.03272300701967, -3.05189779915180) ) + assert( tan(a) =~ (0.0338128260798967, 1.0147936161466335) ) + assert( cot(a) =~ 1.0/tan(a) ) + assert( sec(a) =~ 1.0/cos(a) ) + assert( csc(a) =~ 1.0/sin(a) ) + assert( arcsin(a) =~ (0.427078586392476, 1.528570919480998) ) + assert( arccos(a) =~ (1.14371774040242, -1.52857091948100) ) + + assert( cosh(a) =~ (-0.642148124715520, 1.068607421382778) ) + assert( sinh(a) =~ (-0.489056259041294, 1.403119250622040) ) + + |