summary refs log tree commit diff stats
path: root/lib/pure/complex.nim
diff options
context:
space:
mode:
authorAndreas Rumpf <rumpf_a@web.de>2009-06-08 08:06:25 +0200
committerAndreas Rumpf <rumpf_a@web.de>2009-06-08 08:06:25 +0200
commit4d4b3b1c04d41868ebb58bd9ccba7b303007e900 (patch)
tree909ed0aad0b145733521f4ac2bfb938dd4b43785 /lib/pure/complex.nim
parentce88dc3e67436939b03f97e624c11ca6058fedce (diff)
downloadNim-4d4b3b1c04d41868ebb58bd9ccba7b303007e900.tar.gz
version0.7.10
Diffstat (limited to 'lib/pure/complex.nim')
-rw-r--r--lib/pure/complex.nim106
1 files changed, 106 insertions, 0 deletions
diff --git a/lib/pure/complex.nim b/lib/pure/complex.nim
new file mode 100644
index 000000000..f50ff4bd0
--- /dev/null
+++ b/lib/pure/complex.nim
@@ -0,0 +1,106 @@
+#
+#
+#            Nimrod's Runtime Library
+#        (c) Copyright 2006 Andreas Rumpf
+#
+#    See the file "copying.txt", included in this
+#    distribution, for details about the copyright.
+#
+
+
+
+## This module implements complex numbers.
+
+{.push checks:off, line_dir:off, stack_trace:off, debugger:off.}
+# the user does not want to trace a part
+# of the standard library!
+
+import
+  math
+
+type
+  TComplex* = tuple[re, im: float] 
+    ## a complex number, consisting of a real and an imaginary part
+
+proc `==` *(x, y: TComplex): bool =
+  ## Compare two complex numbers `x` and `y` for equality.
+  result = x.re == y.re and x.im == y.im
+
+proc `+` *(x, y: TComplex): TComplex =
+  ## Add two complex numbers.
+  result.re = x.re + y.re
+  result.im = x.im + y.im
+
+proc `-` *(x, y: TComplex): TComplex =
+  ## Subtract two complex numbers.
+  result.re = x.re - y.re
+  result.im = x.im - y.im
+
+proc `-` *(z: TComplex): TComplex =
+  ## Unary minus for complex numbers.
+  result.re = -z.re
+  result.im = -z.im
+
+proc `/` *(x, y: TComplex): TComplex =
+  ## Divide `x` by `y`.
+  var
+    r, den: float
+  if abs(y.re) < abs(y.im):
+    r = y.re / y.im
+    den = y.im + r * y.re
+    result.re = (x.re * r + x.im) / den
+    result.im = (x.im * r - x.re) / den
+  else:
+    r = y.im / y.re
+    den = y.re + r * y.im
+    result.re = (x.re + r * x.im) / den
+    result.im = (x.im - r * x.re) / den
+
+proc `*` *(x, y: TComplex): TComplex =
+  ## Multiply `x` with `y`.
+  result.re = x.re * y.re - x.im * y.im
+  result.im = x.im * y.re + x.re * y.im
+
+proc abs*(z: TComplex): float =
+  ## Return the distance from (0,0) to `z`.
+
+  # optimized by checking special cases (sqrt is expensive)
+  var x, y, temp: float
+
+  x = abs(z.re)
+  y = abs(z.im)
+  if x == 0.0:
+    result = y
+  elif y == 0.0:
+    result = x
+  elif x > y:
+    temp = y / x
+    result = x * sqrt(1.0 + temp * temp)
+  else:
+    temp = x / y
+    result = y * sqrt(1.0 + temp * temp)
+
+proc sqrt*(z: TComplex): TComplex =
+  ## Square root for a complex number `z`.
+  var x, y, w, r: float
+
+  if z.re == 0.0 and z.im == 0.0:
+    result = z
+  else:
+    x = abs(z.re)
+    y = abs(z.im)
+    if x >= y:
+      r = y / x
+      w = sqrt(x) * sqrt(0.5 * (1.0 + sqrt(1.0 + r * r)))
+    else:
+      r = x / y
+      w = sqrt(y) * sqrt(0.5 * (r + sqrt(1.0 + r * r)))
+    if z.re >= 0.0:
+      result.re = w
+      result.im = z.im / (w * 2)
+    else:
+      if z.im >= 0.0: result.im = w
+      else:           result.im = -w
+      result.re = z.im / (c.im + c.im)
+
+{.pop.}