diff options
author | flywind <43030857+xflywind@users.noreply.github.com> | 2020-11-22 04:20:33 +0800 |
---|---|---|
committer | GitHub <noreply@github.com> | 2020-11-21 12:20:33 -0800 |
commit | dd57d46f2f3a35878f48a1cd19bc85541f85c463 (patch) | |
tree | f05527237e9af205071a3f669b908c6ec929ee42 /lib/pure | |
parent | f3887dea2cc1969981fc62d5c91f1bafef755582 (diff) | |
download | Nim-dd57d46f2f3a35878f48a1cd19bc85541f85c463.tar.gz |
complex minor improvement (#16086)
Diffstat (limited to 'lib/pure')
-rw-r--r-- | lib/pure/complex.nim | 150 |
1 files changed, 21 insertions, 129 deletions
diff --git a/lib/pure/complex.nim b/lib/pure/complex.nim index d57adeb92..d1056e6e8 100644 --- a/lib/pure/complex.nim +++ b/lib/pure/complex.nim @@ -42,38 +42,38 @@ template im*(arg: float32): Complex32 = complex[float32](0, arg) template im*(arg: float64): Complex64 = complex[float64](0, arg) proc abs*[T](z: Complex[T]): T = - ## Return the distance from (0,0) to ``z``. + ## Returns the distance from (0,0) to ``z``. result = hypot(z.re, z.im) proc abs2*[T](z: Complex[T]): T = - ## Return the squared distance from (0,0) to ``z``. + ## Returns the squared distance from (0,0) to ``z``. result = z.re*z.re + z.im*z.im proc conjugate*[T](z: Complex[T]): Complex[T] = - ## Conjugate of complex number ``z``. + ## Conjugates of complex number ``z``. result.re = z.re result.im = -z.im proc inv*[T](z: Complex[T]): Complex[T] = - ## Multiplicative inverse of complex number ``z``. + ## Multiplicatives inverse of complex number ``z``. conjugate(z) / abs2(z) proc `==` *[T](x, y: Complex[T]): bool = - ## Compare two complex numbers ``x`` and ``y`` for equality. + ## Compares two complex numbers ``x`` and ``y`` for equality. result = x.re == y.re and x.im == y.im proc `+` *[T](x: T; y: Complex[T]): Complex[T] = - ## Add a real number to a complex number. + ## Adds a real number to a complex number. result.re = x + y.re result.im = y.im proc `+` *[T](x: Complex[T]; y: T): Complex[T] = - ## Add a complex number to a real number. + ## Adds a complex number to a real number. result.re = x.re + y result.im = x.im proc `+` *[T](x, y: Complex[T]): Complex[T] = - ## Add two complex numbers. + ## Adds two complex numbers. result.re = x.re + y.re result.im = x.im + y.im @@ -83,30 +83,30 @@ proc `-` *[T](z: Complex[T]): Complex[T] = result.im = -z.im proc `-` *[T](x: T; y: Complex[T]): Complex[T] = - ## Subtract a complex number from a real number. + ## Subtracts a complex number from a real number. x + (-y) proc `-` *[T](x: Complex[T]; y: T): Complex[T] = - ## Subtract a real number from a complex number. + ## Subtracts a real number from a complex number. result.re = x.re - y result.im = x.im proc `-` *[T](x, y: Complex[T]): Complex[T] = - ## Subtract two complex numbers. + ## Subtracts two complex numbers. result.re = x.re - y.re result.im = x.im - y.im proc `/` *[T](x: Complex[T]; y: T): Complex[T] = - ## Divide complex number ``x`` by real number ``y``. + ## Divides complex number ``x`` by real number ``y``. result.re = x.re / y result.im = x.im / y proc `/` *[T](x: T; y: Complex[T]): Complex[T] = - ## Divide real number ``x`` by complex number ``y``. + ## Divides real number ``x`` by complex number ``y``. result = x * inv(y) proc `/` *[T](x, y: Complex[T]): Complex[T] = - ## Divide ``x`` by ``y``. + ## Divides ``x`` by ``y``. var r, den: T if abs(y.re) < abs(y.im): r = y.re / y.im @@ -120,39 +120,39 @@ proc `/` *[T](x, y: Complex[T]): Complex[T] = result.im = (x.im - r * x.re) / den proc `*` *[T](x: T; y: Complex[T]): Complex[T] = - ## Multiply a real number and a complex number. + ## Multiplies a real number and a complex number. result.re = x * y.re result.im = x * y.im proc `*` *[T](x: Complex[T]; y: T): Complex[T] = - ## Multiply a complex number with a real number. + ## Multiplies a complex number with a real number. result.re = x.re * y result.im = x.im * y proc `*` *[T](x, y: Complex[T]): Complex[T] = - ## Multiply ``x`` with ``y``. + ## Multiplies ``x`` with ``y``. result.re = x.re * y.re - x.im * y.im result.im = x.im * y.re + x.re * y.im proc `+=` *[T](x: var Complex[T]; y: Complex[T]) = - ## Add ``y`` to ``x``. + ## Adds ``y`` to ``x``. x.re += y.re x.im += y.im proc `-=` *[T](x: var Complex[T]; y: Complex[T]) = - ## Subtract ``y`` from ``x``. + ## Subtracts ``y`` from ``x``. x.re -= y.re x.im -= y.im proc `*=` *[T](x: var Complex[T]; y: Complex[T]) = - ## Multiply ``y`` to ``x``. + ## Multiplies ``y`` to ``x``. let im = x.im * y.re + x.re * y.im x.re = x.re * y.re - x.im * y.im x.im = im proc `/=` *[T](x: var Complex[T]; y: Complex[T]) = - ## Divide ``x`` by ``y`` in place. + ## Divides ``x`` by ``y`` in place. x = x / y @@ -346,111 +346,3 @@ proc `$`*(z: Complex): string = result = "(" & $z.re & ", " & $z.im & ")" {.pop.} - - -when isMainModule: - proc `=~`[T](x, y: Complex[T]): bool = - result = abs(x.re-y.re) < 1e-6 and abs(x.im-y.im) < 1e-6 - - proc `=~`[T](x: Complex[T]; y: T): bool = - result = abs(x.re-y) < 1e-6 and abs(x.im) < 1e-6 - - var - z: Complex64 = complex(0.0, 0.0) - oo: Complex64 = complex(1.0, 1.0) - a: Complex64 = complex(1.0, 2.0) - b: Complex64 = complex(-1.0, -2.0) - m1: Complex64 = complex(-1.0, 0.0) - i: Complex64 = complex(0.0, 1.0) - one: Complex64 = complex(1.0, 0.0) - tt: Complex64 = complex(10.0, 20.0) - ipi: Complex64 = complex(0.0, -PI) - - doAssert(a/2.0 =~ complex(0.5, 1.0)) - doAssert(a == a) - doAssert((a-a) == z) - doAssert((a+b) == z) - doAssert((a+b) =~ 0.0) - doAssert((a/b) == m1) - doAssert((1.0/a) =~ complex(0.2, -0.4)) - doAssert((a*b) == complex(3.0, -4.0)) - doAssert(10.0*a == tt) - doAssert(a*10.0 == tt) - doAssert(tt/10.0 == a) - doAssert(oo+(-1.0) == i) - doAssert( (-1.0)+oo == i) - doAssert(abs(oo) == sqrt(2.0)) - doAssert(conjugate(a) == complex(1.0, -2.0)) - doAssert(sqrt(m1) == i) - doAssert(exp(ipi) =~ m1) - - doAssert(pow(a, b) =~ complex(-3.72999124927876, -1.68815826725068)) - doAssert(pow(z, a) =~ complex(0.0, 0.0)) - doAssert(pow(z, z) =~ complex(1.0, 0.0)) - doAssert(pow(a, one) =~ a) - doAssert(pow(a, m1) =~ complex(0.2, -0.4)) - doAssert(pow(a, 2.0) =~ complex(-3.0, 4.0)) - doAssert(pow(a, 2) =~ complex(-3.0, 4.0)) - doAssert(not(pow(a, 2.0) =~ a)) - - doAssert(ln(a) =~ complex(0.804718956217050, 1.107148717794090)) - doAssert(log10(a) =~ complex(0.349485002168009, 0.480828578784234)) - doAssert(log2(a) =~ complex(1.16096404744368, 1.59727796468811)) - - doAssert(sin(a) =~ complex(3.16577851321617, 1.95960104142161)) - doAssert(cos(a) =~ complex(2.03272300701967, -3.05189779915180)) - doAssert(tan(a) =~ complex(0.0338128260798967, 1.0147936161466335)) - doAssert(cot(a) =~ 1.0 / tan(a)) - doAssert(sec(a) =~ 1.0 / cos(a)) - doAssert(csc(a) =~ 1.0 / sin(a)) - doAssert(arcsin(a) =~ complex(0.427078586392476, 1.528570919480998)) - doAssert(arccos(a) =~ complex(1.14371774040242, -1.52857091948100)) - doAssert(arctan(a) =~ complex(1.338972522294494, 0.402359478108525)) - doAssert(arccot(a) =~ complex(0.2318238045004031, -0.402359478108525)) - doAssert(arcsec(a) =~ complex(1.384478272687081, 0.3965682301123288)) - doAssert(arccsc(a) =~ complex(0.1863180541078155, -0.3965682301123291)) - - doAssert(cosh(a) =~ complex(-0.642148124715520, 1.068607421382778)) - doAssert(sinh(a) =~ complex(-0.489056259041294, 1.403119250622040)) - doAssert(tanh(a) =~ complex(1.1667362572409199, -0.243458201185725)) - doAssert(sech(a) =~ 1.0 / cosh(a)) - doAssert(csch(a) =~ 1.0 / sinh(a)) - doAssert(coth(a) =~ 1.0 / tanh(a)) - doAssert(arccosh(a) =~ complex(1.528570919480998, 1.14371774040242)) - doAssert(arcsinh(a) =~ complex(1.469351744368185, 1.06344002357775)) - doAssert(arctanh(a) =~ complex(0.173286795139986, 1.17809724509617)) - doAssert(arcsech(a) =~ arccosh(1.0/a)) - doAssert(arccsch(a) =~ arcsinh(1.0/a)) - doAssert(arccoth(a) =~ arctanh(1.0/a)) - - doAssert(phase(a) == 1.1071487177940904) - var t = polar(a) - doAssert(rect(t.r, t.phi) =~ a) - doAssert(rect(1.0, 2.0) =~ complex(-0.4161468365471424, 0.9092974268256817)) - - - var - i64: Complex32 = complex(0.0f, 1.0f) - a64: Complex32 = 2.0f*i64 + 1.0.float32 - b64: Complex32 = complex(-1.0'f32, -2.0'f32) - - doAssert(a64 == a64) - doAssert(a64 == -b64) - doAssert(a64 + b64 =~ 0.0'f32) - doAssert(not(pow(a64, b64) =~ a64)) - doAssert(pow(a64, 0.5f) =~ sqrt(a64)) - doAssert(pow(a64, 2) =~ complex(-3.0'f32, 4.0'f32)) - doAssert(sin(arcsin(b64)) =~ b64) - doAssert(cosh(arccosh(a64)) =~ a64) - - doAssert(phase(a64) - 1.107149f < 1e-6) - var t64 = polar(a64) - doAssert(rect(t64.r, t64.phi) =~ a64) - doAssert(rect(1.0f, 2.0f) =~ complex(-0.4161468f, 0.90929742f)) - doAssert(sizeof(a64) == 8) - doAssert(sizeof(a) == 16) - - doAssert 123.0.im + 456.0 == complex64(456, 123) - - var localA = complex(0.1'f32) - doAssert localA.im is float32 |