diff options
author | ee7 <45465154+ee7@users.noreply.github.com> | 2020-12-09 10:57:12 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2020-12-09 10:57:12 +0100 |
commit | 140ebe6019d097eacd5bb81f2937647d2b7d9954 (patch) | |
tree | 05ccf298b14743e917d726f8c97faf3556fc8587 /lib | |
parent | 40255f6721154c35a8f66653826928123178f1bb (diff) | |
download | Nim-140ebe6019d097eacd5bb81f2937647d2b7d9954.tar.gz |
complex.nim: Use `func` everywhere (#16294)
Diffstat (limited to 'lib')
-rw-r--r-- | lib/pure/complex.nim | 120 |
1 files changed, 60 insertions, 60 deletions
diff --git a/lib/pure/complex.nim b/lib/pure/complex.nim index d1056e6e8..04e5e8e56 100644 --- a/lib/pure/complex.nim +++ b/lib/pure/complex.nim @@ -24,15 +24,15 @@ type Complex32* = Complex[float32] ## Alias for a pair of 32-bit floats. -proc complex*[T: SomeFloat](re: T; im: T = 0.0): Complex[T] = +func complex*[T: SomeFloat](re: T; im: T = 0.0): Complex[T] = result.re = re result.im = im -proc complex32*(re: float32; im: float32 = 0.0): Complex[float32] = +func complex32*(re: float32; im: float32 = 0.0): Complex[float32] = result.re = re result.im = im -proc complex64*(re: float64; im: float64 = 0.0): Complex[float64] = +func complex64*(re: float64; im: float64 = 0.0): Complex[float64] = result.re = re result.im = im @@ -41,71 +41,71 @@ template im*(arg: typedesc[float64]): Complex64 = complex[float64](0, 1) template im*(arg: float32): Complex32 = complex[float32](0, arg) template im*(arg: float64): Complex64 = complex[float64](0, arg) -proc abs*[T](z: Complex[T]): T = +func abs*[T](z: Complex[T]): T = ## Returns the distance from (0,0) to ``z``. result = hypot(z.re, z.im) -proc abs2*[T](z: Complex[T]): T = +func abs2*[T](z: Complex[T]): T = ## Returns the squared distance from (0,0) to ``z``. result = z.re*z.re + z.im*z.im -proc conjugate*[T](z: Complex[T]): Complex[T] = +func conjugate*[T](z: Complex[T]): Complex[T] = ## Conjugates of complex number ``z``. result.re = z.re result.im = -z.im -proc inv*[T](z: Complex[T]): Complex[T] = +func inv*[T](z: Complex[T]): Complex[T] = ## Multiplicatives inverse of complex number ``z``. conjugate(z) / abs2(z) -proc `==` *[T](x, y: Complex[T]): bool = +func `==` *[T](x, y: Complex[T]): bool = ## Compares two complex numbers ``x`` and ``y`` for equality. result = x.re == y.re and x.im == y.im -proc `+` *[T](x: T; y: Complex[T]): Complex[T] = +func `+` *[T](x: T; y: Complex[T]): Complex[T] = ## Adds a real number to a complex number. result.re = x + y.re result.im = y.im -proc `+` *[T](x: Complex[T]; y: T): Complex[T] = +func `+` *[T](x: Complex[T]; y: T): Complex[T] = ## Adds a complex number to a real number. result.re = x.re + y result.im = x.im -proc `+` *[T](x, y: Complex[T]): Complex[T] = +func `+` *[T](x, y: Complex[T]): Complex[T] = ## Adds two complex numbers. result.re = x.re + y.re result.im = x.im + y.im -proc `-` *[T](z: Complex[T]): Complex[T] = +func `-` *[T](z: Complex[T]): Complex[T] = ## Unary minus for complex numbers. result.re = -z.re result.im = -z.im -proc `-` *[T](x: T; y: Complex[T]): Complex[T] = +func `-` *[T](x: T; y: Complex[T]): Complex[T] = ## Subtracts a complex number from a real number. x + (-y) -proc `-` *[T](x: Complex[T]; y: T): Complex[T] = +func `-` *[T](x: Complex[T]; y: T): Complex[T] = ## Subtracts a real number from a complex number. result.re = x.re - y result.im = x.im -proc `-` *[T](x, y: Complex[T]): Complex[T] = +func `-` *[T](x, y: Complex[T]): Complex[T] = ## Subtracts two complex numbers. result.re = x.re - y.re result.im = x.im - y.im -proc `/` *[T](x: Complex[T]; y: T): Complex[T] = +func `/` *[T](x: Complex[T]; y: T): Complex[T] = ## Divides complex number ``x`` by real number ``y``. result.re = x.re / y result.im = x.im / y -proc `/` *[T](x: T; y: Complex[T]): Complex[T] = +func `/` *[T](x: T; y: Complex[T]): Complex[T] = ## Divides real number ``x`` by complex number ``y``. result = x * inv(y) -proc `/` *[T](x, y: Complex[T]): Complex[T] = +func `/` *[T](x, y: Complex[T]): Complex[T] = ## Divides ``x`` by ``y``. var r, den: T if abs(y.re) < abs(y.im): @@ -119,44 +119,44 @@ proc `/` *[T](x, y: Complex[T]): Complex[T] = result.re = (x.re + r * x.im) / den result.im = (x.im - r * x.re) / den -proc `*` *[T](x: T; y: Complex[T]): Complex[T] = +func `*` *[T](x: T; y: Complex[T]): Complex[T] = ## Multiplies a real number and a complex number. result.re = x * y.re result.im = x * y.im -proc `*` *[T](x: Complex[T]; y: T): Complex[T] = +func `*` *[T](x: Complex[T]; y: T): Complex[T] = ## Multiplies a complex number with a real number. result.re = x.re * y result.im = x.im * y -proc `*` *[T](x, y: Complex[T]): Complex[T] = +func `*` *[T](x, y: Complex[T]): Complex[T] = ## Multiplies ``x`` with ``y``. result.re = x.re * y.re - x.im * y.im result.im = x.im * y.re + x.re * y.im -proc `+=` *[T](x: var Complex[T]; y: Complex[T]) = +func `+=` *[T](x: var Complex[T]; y: Complex[T]) = ## Adds ``y`` to ``x``. x.re += y.re x.im += y.im -proc `-=` *[T](x: var Complex[T]; y: Complex[T]) = +func `-=` *[T](x: var Complex[T]; y: Complex[T]) = ## Subtracts ``y`` from ``x``. x.re -= y.re x.im -= y.im -proc `*=` *[T](x: var Complex[T]; y: Complex[T]) = +func `*=` *[T](x: var Complex[T]; y: Complex[T]) = ## Multiplies ``y`` to ``x``. let im = x.im * y.re + x.re * y.im x.re = x.re * y.re - x.im * y.im x.im = im -proc `/=` *[T](x: var Complex[T]; y: Complex[T]) = +func `/=` *[T](x: var Complex[T]; y: Complex[T]) = ## Divides ``x`` by ``y`` in place. x = x / y -proc sqrt*[T](z: Complex[T]): Complex[T] = +func sqrt*[T](z: Complex[T]): Complex[T] = ## Square root for a complex number ``z``. var x, y, w, r: T @@ -179,7 +179,7 @@ proc sqrt*[T](z: Complex[T]): Complex[T] = result.im = if z.im >= 0.0: w else: -w result.re = z.im / (result.im + result.im) -proc exp*[T](z: Complex[T]): Complex[T] = +func exp*[T](z: Complex[T]): Complex[T] = ## ``e`` raised to the power ``z``. var rho = exp(z.re) @@ -187,20 +187,20 @@ proc exp*[T](z: Complex[T]): Complex[T] = result.re = rho * cos(theta) result.im = rho * sin(theta) -proc ln*[T](z: Complex[T]): Complex[T] = +func ln*[T](z: Complex[T]): Complex[T] = ## Returns the natural log of ``z``. result.re = ln(abs(z)) result.im = arctan2(z.im, z.re) -proc log10*[T](z: Complex[T]): Complex[T] = +func log10*[T](z: Complex[T]): Complex[T] = ## Returns the log base 10 of ``z``. result = ln(z) / ln(10.0) -proc log2*[T](z: Complex[T]): Complex[T] = +func log2*[T](z: Complex[T]): Complex[T] = ## Returns the log base 2 of ``z``. result = ln(z) / ln(2.0) -proc pow*[T](x, y: Complex[T]): Complex[T] = +func pow*[T](x, y: Complex[T]): Complex[T] = ## ``x`` raised to the power ``y``. if x.re == 0.0 and x.im == 0.0: if y.re == 0.0 and y.im == 0.0: @@ -222,118 +222,118 @@ proc pow*[T](x, y: Complex[T]): Complex[T] = result.re = s * cos(r) result.im = s * sin(r) -proc pow*[T](x: Complex[T]; y: T): Complex[T] = +func pow*[T](x: Complex[T]; y: T): Complex[T] = ## Complex number ``x`` raised to the power ``y``. pow(x, complex[T](y)) -proc sin*[T](z: Complex[T]): Complex[T] = +func sin*[T](z: Complex[T]): Complex[T] = ## Returns the sine of ``z``. result.re = sin(z.re) * cosh(z.im) result.im = cos(z.re) * sinh(z.im) -proc arcsin*[T](z: Complex[T]): Complex[T] = +func arcsin*[T](z: Complex[T]): Complex[T] = ## Returns the inverse sine of ``z``. result = -im(T) * ln(im(T) * z + sqrt(T(1.0) - z*z)) -proc cos*[T](z: Complex[T]): Complex[T] = +func cos*[T](z: Complex[T]): Complex[T] = ## Returns the cosine of ``z``. result.re = cos(z.re) * cosh(z.im) result.im = -sin(z.re) * sinh(z.im) -proc arccos*[T](z: Complex[T]): Complex[T] = +func arccos*[T](z: Complex[T]): Complex[T] = ## Returns the inverse cosine of ``z``. result = -im(T) * ln(z + sqrt(z*z - T(1.0))) -proc tan*[T](z: Complex[T]): Complex[T] = +func tan*[T](z: Complex[T]): Complex[T] = ## Returns the tangent of ``z``. result = sin(z) / cos(z) -proc arctan*[T](z: Complex[T]): Complex[T] = +func arctan*[T](z: Complex[T]): Complex[T] = ## Returns the inverse tangent of ``z``. result = T(0.5)*im(T) * (ln(T(1.0) - im(T)*z) - ln(T(1.0) + im(T)*z)) -proc cot*[T](z: Complex[T]): Complex[T] = +func cot*[T](z: Complex[T]): Complex[T] = ## Returns the cotangent of ``z``. result = cos(z)/sin(z) -proc arccot*[T](z: Complex[T]): Complex[T] = +func arccot*[T](z: Complex[T]): Complex[T] = ## Returns the inverse cotangent of ``z``. result = T(0.5)*im(T) * (ln(T(1.0) - im(T)/z) - ln(T(1.0) + im(T)/z)) -proc sec*[T](z: Complex[T]): Complex[T] = +func sec*[T](z: Complex[T]): Complex[T] = ## Returns the secant of ``z``. result = T(1.0) / cos(z) -proc arcsec*[T](z: Complex[T]): Complex[T] = +func arcsec*[T](z: Complex[T]): Complex[T] = ## Returns the inverse secant of ``z``. result = -im(T) * ln(im(T) * sqrt(1.0 - 1.0/(z*z)) + T(1.0)/z) -proc csc*[T](z: Complex[T]): Complex[T] = +func csc*[T](z: Complex[T]): Complex[T] = ## Returns the cosecant of ``z``. result = T(1.0) / sin(z) -proc arccsc*[T](z: Complex[T]): Complex[T] = +func arccsc*[T](z: Complex[T]): Complex[T] = ## Returns the inverse cosecant of ``z``. result = -im(T) * ln(sqrt(T(1.0) - T(1.0)/(z*z)) + im(T)/z) -proc sinh*[T](z: Complex[T]): Complex[T] = +func sinh*[T](z: Complex[T]): Complex[T] = ## Returns the hyperbolic sine of ``z``. result = T(0.5) * (exp(z) - exp(-z)) -proc arcsinh*[T](z: Complex[T]): Complex[T] = +func arcsinh*[T](z: Complex[T]): Complex[T] = ## Returns the inverse hyperbolic sine of ``z``. result = ln(z + sqrt(z*z + 1.0)) -proc cosh*[T](z: Complex[T]): Complex[T] = +func cosh*[T](z: Complex[T]): Complex[T] = ## Returns the hyperbolic cosine of ``z``. result = T(0.5) * (exp(z) + exp(-z)) -proc arccosh*[T](z: Complex[T]): Complex[T] = +func arccosh*[T](z: Complex[T]): Complex[T] = ## Returns the inverse hyperbolic cosine of ``z``. result = ln(z + sqrt(z*z - T(1.0))) -proc tanh*[T](z: Complex[T]): Complex[T] = +func tanh*[T](z: Complex[T]): Complex[T] = ## Returns the hyperbolic tangent of ``z``. result = sinh(z) / cosh(z) -proc arctanh*[T](z: Complex[T]): Complex[T] = +func arctanh*[T](z: Complex[T]): Complex[T] = ## Returns the inverse hyperbolic tangent of ``z``. result = T(0.5) * (ln((T(1.0)+z) / (T(1.0)-z))) -proc sech*[T](z: Complex[T]): Complex[T] = +func sech*[T](z: Complex[T]): Complex[T] = ## Returns the hyperbolic secant of ``z``. result = T(2.0) / (exp(z) + exp(-z)) -proc arcsech*[T](z: Complex[T]): Complex[T] = +func arcsech*[T](z: Complex[T]): Complex[T] = ## Returns the inverse hyperbolic secant of ``z``. result = ln(1.0/z + sqrt(T(1.0)/z+T(1.0)) * sqrt(T(1.0)/z-T(1.0))) -proc csch*[T](z: Complex[T]): Complex[T] = +func csch*[T](z: Complex[T]): Complex[T] = ## Returns the hyperbolic cosecant of ``z``. result = T(2.0) / (exp(z) - exp(-z)) -proc arccsch*[T](z: Complex[T]): Complex[T] = +func arccsch*[T](z: Complex[T]): Complex[T] = ## Returns the inverse hyperbolic cosecant of ``z``. result = ln(T(1.0)/z + sqrt(T(1.0)/(z*z) + T(1.0))) -proc coth*[T](z: Complex[T]): Complex[T] = +func coth*[T](z: Complex[T]): Complex[T] = ## Returns the hyperbolic cotangent of ``z``. result = cosh(z) / sinh(z) -proc arccoth*[T](z: Complex[T]): Complex[T] = +func arccoth*[T](z: Complex[T]): Complex[T] = ## Returns the inverse hyperbolic cotangent of ``z``. result = T(0.5) * (ln(T(1.0) + T(1.0)/z) - ln(T(1.0) - T(1.0)/z)) -proc phase*[T](z: Complex[T]): T = +func phase*[T](z: Complex[T]): T = ## Returns the phase of ``z``. arctan2(z.im, z.re) -proc polar*[T](z: Complex[T]): tuple[r, phi: T] = +func polar*[T](z: Complex[T]): tuple[r, phi: T] = ## Returns ``z`` in polar coordinates. (r: abs(z), phi: phase(z)) -proc rect*[T](r, phi: T): Complex[T] = +func rect*[T](r, phi: T): Complex[T] = ## Returns the complex number with polar coordinates ``r`` and ``phi``. ## ## | ``result.re = r * cos(phi)`` @@ -341,7 +341,7 @@ proc rect*[T](r, phi: T): Complex[T] = complex(r * cos(phi), r * sin(phi)) -proc `$`*(z: Complex): string = +func `$`*(z: Complex): string = ## Returns ``z``'s string representation as ``"(re, im)"``. result = "(" & $z.re & ", " & $z.im & ")" |