diff options
author | ee7 <45465154+ee7@users.noreply.github.com> | 2020-12-07 23:26:14 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2020-12-07 23:26:14 +0100 |
commit | 2297b9623843bb4c1dbd201a8fb57f9ec334c164 (patch) | |
tree | b31873e5a9857ea0f929fce3bfa2668719ca9cca /lib | |
parent | 84fea7c1445475aba51d889668f250b0261443e4 (diff) | |
download | Nim-2297b9623843bb4c1dbd201a8fb57f9ec334c164.tar.gz |
math.nim: Use `func` everywhere (#16285)
* math.nim: procs with {.noSideEffect} -> funcs * math.nim: procs without {.noSideEffect.} -> funcs * math.nim: proc -> func in links * math.nim: proc -> func in doc comments * test: add `math` to strictFuncs test
Diffstat (limited to 'lib')
-rw-r--r-- | lib/pure/math.nim | 538 |
1 files changed, 268 insertions, 270 deletions
diff --git a/lib/pure/math.nim b/lib/pure/math.nim index 8f5b9a6f5..b2433d309 100644 --- a/lib/pure/math.nim +++ b/lib/pure/math.nim @@ -58,7 +58,7 @@ import std/private/since import bitops, fenv -proc binom*(n, k: int): int {.noSideEffect.} = +func binom*(n, k: int): int = ## Computes the `binomial coefficient <https://en.wikipedia.org/wiki/Binomial_coefficient>`_. runnableExamples: doAssert binom(6, 2) == binom(6, 4) @@ -71,17 +71,17 @@ proc binom*(n, k: int): int {.noSideEffect.} = for i in countup(2, k): result = (result * (n + 1 - i)) div i -proc createFactTable[N: static[int]]: array[N, int] = +func createFactTable[N: static[int]]: array[N, int] = result[0] = 1 for i in 1 ..< N: result[i] = result[i - 1] * i -proc fac*(n: int): int = +func fac*(n: int): int = ## Computes the `factorial <https://en.wikipedia.org/wiki/Factorial>`_ of ## a non-negative integer ``n``. ## ## See also: - ## * `prod proc <#prod,openArray[T]>`_ + ## * `prod func <#prod,openArray[T]>`_ runnableExamples: doAssert fac(3) == 6 doAssert fac(4) == 24 @@ -124,7 +124,7 @@ const type FloatClass* = enum ## Describes the class a floating point value belongs to. ## This is the type that is returned by - ## `classify proc <#classify,float>`_. + ## `classify func <#classify,float>`_. fcNormal, ## value is an ordinary nonzero floating point value fcSubnormal, ## value is a subnormal (a very small) floating point value fcZero, ## value is zero @@ -133,7 +133,7 @@ type fcInf, ## value is positive infinity fcNegInf ## value is negative infinity -proc classify*(x: float): FloatClass = +func classify*(x: float): FloatClass = ## Classifies a floating point value. ## ## Returns ``x``'s class as specified by `FloatClass enum<#FloatClass>`_. @@ -158,8 +158,8 @@ proc classify*(x: float): FloatClass = return fcSubnormal return fcNormal -proc almostEqual*[T: SomeFloat](x, y: T; unitsInLastPlace: Natural = 4): bool {. - since: (1, 5), inline, noSideEffect.} = +func almostEqual*[T: SomeFloat](x, y: T; unitsInLastPlace: Natural = 4): bool {. + since: (1, 5), inline.} = ## Checks if two float values are almost equal, using ## `machine epsilon <https://en.wikipedia.org/wiki/Machine_epsilon>`_. ## @@ -192,13 +192,13 @@ proc almostEqual*[T: SomeFloat](x, y: T; unitsInLastPlace: Natural = 4): bool {. result = diff <= epsilon(T) * abs(x + y) * T(unitsInLastPlace) or diff < minimumPositiveValue(T) -proc isPowerOfTwo*(x: int): bool {.noSideEffect.} = +func isPowerOfTwo*(x: int): bool = ## Returns ``true``, if ``x`` is a power of two, ``false`` otherwise. ## ## Zero and negative numbers are not a power of two. ## ## See also: - ## * `nextPowerOfTwo proc<#nextPowerOfTwo,int>`_ + ## * `nextPowerOfTwo func<#nextPowerOfTwo,int>`_ runnableExamples: doAssert isPowerOfTwo(16) == true doAssert isPowerOfTwo(5) == false @@ -206,13 +206,13 @@ proc isPowerOfTwo*(x: int): bool {.noSideEffect.} = doAssert isPowerOfTwo(-16) == false return (x > 0) and ((x and (x - 1)) == 0) -proc nextPowerOfTwo*(x: int): int {.noSideEffect.} = +func nextPowerOfTwo*(x: int): int = ## Returns ``x`` rounded up to the nearest power of two. ## ## Zero and negative numbers get rounded up to 1. ## ## See also: - ## * `isPowerOfTwo proc<#isPowerOfTwo,int>`_ + ## * `isPowerOfTwo func<#isPowerOfTwo,int>`_ runnableExamples: doAssert nextPowerOfTwo(16) == 16 doAssert nextPowerOfTwo(5) == 8 @@ -230,40 +230,40 @@ proc nextPowerOfTwo*(x: int): int {.noSideEffect.} = result = result or (result shr 1) result += 1 + ord(x <= 0) -proc sum*[T](x: openArray[T]): T {.noSideEffect.} = +func sum*[T](x: openArray[T]): T = ## Computes the sum of the elements in ``x``. ## ## If ``x`` is empty, 0 is returned. ## ## See also: - ## * `prod proc <#prod,openArray[T]>`_ - ## * `cumsum proc <#cumsum,openArray[T]>`_ - ## * `cumsummed proc <#cumsummed,openArray[T]>`_ + ## * `prod func <#prod,openArray[T]>`_ + ## * `cumsum func <#cumsum,openArray[T]>`_ + ## * `cumsummed func <#cumsummed,openArray[T]>`_ runnableExamples: doAssert sum([1, 2, 3, 4]) == 10 doAssert sum([-1.5, 2.7, -0.1]) == 1.1 for i in items(x): result = result + i -proc prod*[T](x: openArray[T]): T {.noSideEffect.} = +func prod*[T](x: openArray[T]): T = ## Computes the product of the elements in ``x``. ## ## If ``x`` is empty, 1 is returned. ## ## See also: - ## * `sum proc <#sum,openArray[T]>`_ - ## * `fac proc <#fac,int>`_ + ## * `sum func <#sum,openArray[T]>`_ + ## * `fac func <#fac,int>`_ runnableExamples: doAssert prod([1, 2, 3, 4]) == 24 doAssert prod([-4, 3, 5]) == -60 result = 1.T for i in items(x): result = result * i -proc cumsummed*[T](x: openArray[T]): seq[T] = +func cumsummed*[T](x: openArray[T]): seq[T] = ## Return cumulative (aka prefix) summation of ``x``. ## ## See also: - ## * `sum proc <#sum,openArray[T]>`_ - ## * `cumsum proc <#cumsum,openArray[T]>`_ for the in-place version + ## * `sum func <#sum,openArray[T]>`_ + ## * `cumsum func <#cumsum,openArray[T]>`_ for the in-place version runnableExamples: let a = [1, 2, 3, 4] doAssert cumsummed(a) == @[1, 3, 6, 10] @@ -271,13 +271,13 @@ proc cumsummed*[T](x: openArray[T]): seq[T] = result[0] = x[0] for i in 1 ..< x.len: result[i] = result[i-1] + x[i] -proc cumsum*[T](x: var openArray[T]) = +func cumsum*[T](x: var openArray[T]) = ## Transforms ``x`` in-place (must be declared as `var`) into its ## cumulative (aka prefix) summation. ## ## See also: - ## * `sum proc <#sum,openArray[T]>`_ - ## * `cumsummed proc <#cumsummed,openArray[T]>`_ for a version which + ## * `sum func <#sum,openArray[T]>`_ + ## * `cumsummed func <#cumsummed,openArray[T]>`_ for a version which ## returns cumsummed sequence runnableExamples: var a = [1, 2, 3, 4] @@ -285,40 +285,39 @@ proc cumsum*[T](x: var openArray[T]) = doAssert a == @[1, 3, 6, 10] for i in 1 ..< x.len: x[i] = x[i-1] + x[i] -{.push noSideEffect.} when not defined(js): # C - proc sqrt*(x: float32): float32 {.importc: "sqrtf", header: "<math.h>".} - proc sqrt*(x: float64): float64 {.importc: "sqrt", header: "<math.h>".} + func sqrt*(x: float32): float32 {.importc: "sqrtf", header: "<math.h>".} + func sqrt*(x: float64): float64 {.importc: "sqrt", header: "<math.h>".} ## Computes the square root of ``x``. ## ## See also: - ## * `cbrt proc <#cbrt,float64>`_ for cubic root + ## * `cbrt func <#cbrt,float64>`_ for cubic root ## ## .. code-block:: nim ## echo sqrt(4.0) ## 2.0 ## echo sqrt(1.44) ## 1.2 ## echo sqrt(-4.0) ## nan - proc cbrt*(x: float32): float32 {.importc: "cbrtf", header: "<math.h>".} - proc cbrt*(x: float64): float64 {.importc: "cbrt", header: "<math.h>".} + func cbrt*(x: float32): float32 {.importc: "cbrtf", header: "<math.h>".} + func cbrt*(x: float64): float64 {.importc: "cbrt", header: "<math.h>".} ## Computes the cubic root of ``x``. ## ## See also: - ## * `sqrt proc <#sqrt,float64>`_ for square root + ## * `sqrt func <#sqrt,float64>`_ for square root ## ## .. code-block:: nim ## echo cbrt(8.0) ## 2.0 ## echo cbrt(2.197) ## 1.3 ## echo cbrt(-27.0) ## -3.0 - proc ln*(x: float32): float32 {.importc: "logf", header: "<math.h>".} - proc ln*(x: float64): float64 {.importc: "log", header: "<math.h>".} + func ln*(x: float32): float32 {.importc: "logf", header: "<math.h>".} + func ln*(x: float64): float64 {.importc: "log", header: "<math.h>".} ## Computes the `natural logarithm <https://en.wikipedia.org/wiki/Natural_logarithm>`_ ## of ``x``. ## ## See also: - ## * `log proc <#log,T,T>`_ - ## * `log10 proc <#log10,float64>`_ - ## * `log2 proc <#log2,float64>`_ - ## * `exp proc <#exp,float64>`_ + ## * `log func <#log,T,T>`_ + ## * `log10 func <#log10,float64>`_ + ## * `log2 func <#log2,float64>`_ + ## * `exp func <#exp,float64>`_ ## ## .. code-block:: nim ## echo ln(exp(4.0)) ## 4.0 @@ -326,23 +325,23 @@ when not defined(js): # C ## echo ln(0.0) ## -inf ## echo ln(-7.0) ## nan else: # JS - proc sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.} - proc sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.} + func sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.} + func sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.} - proc cbrt*(x: float32): float32 {.importc: "Math.cbrt", nodecl.} - proc cbrt*(x: float64): float64 {.importc: "Math.cbrt", nodecl.} + func cbrt*(x: float32): float32 {.importc: "Math.cbrt", nodecl.} + func cbrt*(x: float64): float64 {.importc: "Math.cbrt", nodecl.} - proc ln*(x: float32): float32 {.importc: "Math.log", nodecl.} - proc ln*(x: float64): float64 {.importc: "Math.log", nodecl.} + func ln*(x: float32): float32 {.importc: "Math.log", nodecl.} + func ln*(x: float64): float64 {.importc: "Math.log", nodecl.} -proc log*[T: SomeFloat](x, base: T): T = +func log*[T: SomeFloat](x, base: T): T = ## Computes the logarithm of ``x`` to base ``base``. ## ## See also: - ## * `ln proc <#ln,float64>`_ - ## * `log10 proc <#log10,float64>`_ - ## * `log2 proc <#log2,float64>`_ - ## * `exp proc <#exp,float64>`_ + ## * `ln func <#ln,float64>`_ + ## * `log10 func <#log10,float64>`_ + ## * `log2 func <#log2,float64>`_ + ## * `exp func <#exp,float64>`_ ## ## .. code-block:: nim ## echo log(9.0, 3.0) ## 2.0 @@ -353,256 +352,256 @@ proc log*[T: SomeFloat](x, base: T): T = ln(x) / ln(base) when not defined(js): # C - proc log10*(x: float32): float32 {.importc: "log10f", header: "<math.h>".} - proc log10*(x: float64): float64 {.importc: "log10", header: "<math.h>".} + func log10*(x: float32): float32 {.importc: "log10f", header: "<math.h>".} + func log10*(x: float64): float64 {.importc: "log10", header: "<math.h>".} ## Computes the common logarithm (base 10) of ``x``. ## ## See also: - ## * `ln proc <#ln,float64>`_ - ## * `log proc <#log,T,T>`_ - ## * `log2 proc <#log2,float64>`_ - ## * `exp proc <#exp,float64>`_ + ## * `ln func <#ln,float64>`_ + ## * `log func <#log,T,T>`_ + ## * `log2 func <#log2,float64>`_ + ## * `exp func <#exp,float64>`_ ## ## .. code-block:: nim ## echo log10(100.0) ## 2.0 ## echo log10(0.0) ## nan ## echo log10(-100.0) ## -inf - proc exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".} - proc exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".} + func exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".} + func exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".} ## Computes the exponential function of ``x`` (e^x). ## ## See also: - ## * `ln proc <#ln,float64>`_ - ## * `log proc <#log,T,T>`_ - ## * `log10 proc <#log10,float64>`_ - ## * `log2 proc <#log2,float64>`_ + ## * `ln func <#ln,float64>`_ + ## * `log func <#log,T,T>`_ + ## * `log10 func <#log10,float64>`_ + ## * `log2 func <#log2,float64>`_ ## ## .. code-block:: nim ## echo exp(1.0) ## 2.718281828459045 ## echo ln(exp(4.0)) ## 4.0 ## echo exp(0.0) ## 1.0 ## echo exp(-1.0) ## 0.3678794411714423 - proc sin*(x: float32): float32 {.importc: "sinf", header: "<math.h>".} - proc sin*(x: float64): float64 {.importc: "sin", header: "<math.h>".} + func sin*(x: float32): float32 {.importc: "sinf", header: "<math.h>".} + func sin*(x: float64): float64 {.importc: "sin", header: "<math.h>".} ## Computes the sine of ``x``. ## ## See also: - ## * `cos proc <#cos,float64>`_ - ## * `tan proc <#tan,float64>`_ - ## * `arcsin proc <#arcsin,float64>`_ - ## * `sinh proc <#sinh,float64>`_ + ## * `cos func <#cos,float64>`_ + ## * `tan func <#tan,float64>`_ + ## * `arcsin func <#arcsin,float64>`_ + ## * `sinh func <#sinh,float64>`_ ## ## .. code-block:: nim ## echo sin(PI / 6) ## 0.4999999999999999 ## echo sin(degToRad(90.0)) ## 1.0 - proc cos*(x: float32): float32 {.importc: "cosf", header: "<math.h>".} - proc cos*(x: float64): float64 {.importc: "cos", header: "<math.h>".} + func cos*(x: float32): float32 {.importc: "cosf", header: "<math.h>".} + func cos*(x: float64): float64 {.importc: "cos", header: "<math.h>".} ## Computes the cosine of ``x``. ## ## See also: - ## * `sin proc <#sin,float64>`_ - ## * `tan proc <#tan,float64>`_ - ## * `arccos proc <#arccos,float64>`_ - ## * `cosh proc <#cosh,float64>`_ + ## * `sin func <#sin,float64>`_ + ## * `tan func <#tan,float64>`_ + ## * `arccos func <#arccos,float64>`_ + ## * `cosh func <#cosh,float64>`_ ## ## .. code-block:: nim ## echo cos(2 * PI) ## 1.0 ## echo cos(degToRad(60.0)) ## 0.5000000000000001 - proc tan*(x: float32): float32 {.importc: "tanf", header: "<math.h>".} - proc tan*(x: float64): float64 {.importc: "tan", header: "<math.h>".} + func tan*(x: float32): float32 {.importc: "tanf", header: "<math.h>".} + func tan*(x: float64): float64 {.importc: "tan", header: "<math.h>".} ## Computes the tangent of ``x``. ## ## See also: - ## * `sin proc <#sin,float64>`_ - ## * `cos proc <#cos,float64>`_ - ## * `arctan proc <#arctan,float64>`_ - ## * `tanh proc <#tanh,float64>`_ + ## * `sin func <#sin,float64>`_ + ## * `cos func <#cos,float64>`_ + ## * `arctan func <#arctan,float64>`_ + ## * `tanh func <#tanh,float64>`_ ## ## .. code-block:: nim ## echo tan(degToRad(45.0)) ## 0.9999999999999999 ## echo tan(PI / 4) ## 0.9999999999999999 - proc sinh*(x: float32): float32 {.importc: "sinhf", header: "<math.h>".} - proc sinh*(x: float64): float64 {.importc: "sinh", header: "<math.h>".} + func sinh*(x: float32): float32 {.importc: "sinhf", header: "<math.h>".} + func sinh*(x: float64): float64 {.importc: "sinh", header: "<math.h>".} ## Computes the `hyperbolic sine <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``. ## ## See also: - ## * `cosh proc <#cosh,float64>`_ - ## * `tanh proc <#tanh,float64>`_ - ## * `arcsinh proc <#arcsinh,float64>`_ - ## * `sin proc <#sin,float64>`_ + ## * `cosh func <#cosh,float64>`_ + ## * `tanh func <#tanh,float64>`_ + ## * `arcsinh func <#arcsinh,float64>`_ + ## * `sin func <#sin,float64>`_ ## ## .. code-block:: nim ## echo sinh(0.0) ## 0.0 ## echo sinh(1.0) ## 1.175201193643801 ## echo sinh(degToRad(90.0)) ## 2.301298902307295 - proc cosh*(x: float32): float32 {.importc: "coshf", header: "<math.h>".} - proc cosh*(x: float64): float64 {.importc: "cosh", header: "<math.h>".} + func cosh*(x: float32): float32 {.importc: "coshf", header: "<math.h>".} + func cosh*(x: float64): float64 {.importc: "cosh", header: "<math.h>".} ## Computes the `hyperbolic cosine <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``. ## ## See also: - ## * `sinh proc <#sinh,float64>`_ - ## * `tanh proc <#tanh,float64>`_ - ## * `arccosh proc <#arccosh,float64>`_ - ## * `cos proc <#cos,float64>`_ + ## * `sinh func <#sinh,float64>`_ + ## * `tanh func <#tanh,float64>`_ + ## * `arccosh func <#arccosh,float64>`_ + ## * `cos func <#cos,float64>`_ ## ## .. code-block:: nim ## echo cosh(0.0) ## 1.0 ## echo cosh(1.0) ## 1.543080634815244 ## echo cosh(degToRad(90.0)) ## 2.509178478658057 - proc tanh*(x: float32): float32 {.importc: "tanhf", header: "<math.h>".} - proc tanh*(x: float64): float64 {.importc: "tanh", header: "<math.h>".} + func tanh*(x: float32): float32 {.importc: "tanhf", header: "<math.h>".} + func tanh*(x: float64): float64 {.importc: "tanh", header: "<math.h>".} ## Computes the `hyperbolic tangent <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``. ## ## See also: - ## * `sinh proc <#sinh,float64>`_ - ## * `cosh proc <#cosh,float64>`_ - ## * `arctanh proc <#arctanh,float64>`_ - ## * `tan proc <#tan,float64>`_ + ## * `sinh func <#sinh,float64>`_ + ## * `cosh func <#cosh,float64>`_ + ## * `arctanh func <#arctanh,float64>`_ + ## * `tan func <#tan,float64>`_ ## ## .. code-block:: nim ## echo tanh(0.0) ## 0.0 ## echo tanh(1.0) ## 0.7615941559557649 ## echo tanh(degToRad(90.0)) ## 0.9171523356672744 - proc arccos*(x: float32): float32 {.importc: "acosf", header: "<math.h>".} - proc arccos*(x: float64): float64 {.importc: "acos", header: "<math.h>".} + func arccos*(x: float32): float32 {.importc: "acosf", header: "<math.h>".} + func arccos*(x: float64): float64 {.importc: "acos", header: "<math.h>".} ## Computes the arc cosine of ``x``. ## ## See also: - ## * `arcsin proc <#arcsin,float64>`_ - ## * `arctan proc <#arctan,float64>`_ - ## * `arctan2 proc <#arctan2,float64,float64>`_ - ## * `cos proc <#cos,float64>`_ + ## * `arcsin func <#arcsin,float64>`_ + ## * `arctan func <#arctan,float64>`_ + ## * `arctan2 func <#arctan2,float64,float64>`_ + ## * `cos func <#cos,float64>`_ ## ## .. code-block:: nim ## echo radToDeg(arccos(0.0)) ## 90.0 ## echo radToDeg(arccos(1.0)) ## 0.0 - proc arcsin*(x: float32): float32 {.importc: "asinf", header: "<math.h>".} - proc arcsin*(x: float64): float64 {.importc: "asin", header: "<math.h>".} + func arcsin*(x: float32): float32 {.importc: "asinf", header: "<math.h>".} + func arcsin*(x: float64): float64 {.importc: "asin", header: "<math.h>".} ## Computes the arc sine of ``x``. ## ## See also: - ## * `arccos proc <#arccos,float64>`_ - ## * `arctan proc <#arctan,float64>`_ - ## * `arctan2 proc <#arctan2,float64,float64>`_ - ## * `sin proc <#sin,float64>`_ + ## * `arccos func <#arccos,float64>`_ + ## * `arctan func <#arctan,float64>`_ + ## * `arctan2 func <#arctan2,float64,float64>`_ + ## * `sin func <#sin,float64>`_ ## ## .. code-block:: nim ## echo radToDeg(arcsin(0.0)) ## 0.0 ## echo radToDeg(arcsin(1.0)) ## 90.0 - proc arctan*(x: float32): float32 {.importc: "atanf", header: "<math.h>".} - proc arctan*(x: float64): float64 {.importc: "atan", header: "<math.h>".} + func arctan*(x: float32): float32 {.importc: "atanf", header: "<math.h>".} + func arctan*(x: float64): float64 {.importc: "atan", header: "<math.h>".} ## Calculate the arc tangent of ``x``. ## ## See also: - ## * `arcsin proc <#arcsin,float64>`_ - ## * `arccos proc <#arccos,float64>`_ - ## * `arctan2 proc <#arctan2,float64,float64>`_ - ## * `tan proc <#tan,float64>`_ + ## * `arcsin func <#arcsin,float64>`_ + ## * `arccos func <#arccos,float64>`_ + ## * `arctan2 func <#arctan2,float64,float64>`_ + ## * `tan func <#tan,float64>`_ ## ## .. code-block:: nim ## echo arctan(1.0) ## 0.7853981633974483 ## echo radToDeg(arctan(1.0)) ## 45.0 - proc arctan2*(y, x: float32): float32 {.importc: "atan2f", + func arctan2*(y, x: float32): float32 {.importc: "atan2f", header: "<math.h>".} - proc arctan2*(y, x: float64): float64 {.importc: "atan2", header: "<math.h>".} + func arctan2*(y, x: float64): float64 {.importc: "atan2", header: "<math.h>".} ## Calculate the arc tangent of ``y`` / ``x``. ## ## It produces correct results even when the resulting angle is near ## pi/2 or -pi/2 (``x`` near 0). ## ## See also: - ## * `arcsin proc <#arcsin,float64>`_ - ## * `arccos proc <#arccos,float64>`_ - ## * `arctan proc <#arctan,float64>`_ - ## * `tan proc <#tan,float64>`_ + ## * `arcsin func <#arcsin,float64>`_ + ## * `arccos func <#arccos,float64>`_ + ## * `arctan func <#arctan,float64>`_ + ## * `tan func <#tan,float64>`_ ## ## .. code-block:: nim ## echo arctan2(1.0, 0.0) ## 1.570796326794897 ## echo radToDeg(arctan2(1.0, 0.0)) ## 90.0 - proc arcsinh*(x: float32): float32 {.importc: "asinhf", header: "<math.h>".} - proc arcsinh*(x: float64): float64 {.importc: "asinh", header: "<math.h>".} + func arcsinh*(x: float32): float32 {.importc: "asinhf", header: "<math.h>".} + func arcsinh*(x: float64): float64 {.importc: "asinh", header: "<math.h>".} ## Computes the inverse hyperbolic sine of ``x``. - proc arccosh*(x: float32): float32 {.importc: "acoshf", header: "<math.h>".} - proc arccosh*(x: float64): float64 {.importc: "acosh", header: "<math.h>".} + func arccosh*(x: float32): float32 {.importc: "acoshf", header: "<math.h>".} + func arccosh*(x: float64): float64 {.importc: "acosh", header: "<math.h>".} ## Computes the inverse hyperbolic cosine of ``x``. - proc arctanh*(x: float32): float32 {.importc: "atanhf", header: "<math.h>".} - proc arctanh*(x: float64): float64 {.importc: "atanh", header: "<math.h>".} + func arctanh*(x: float32): float32 {.importc: "atanhf", header: "<math.h>".} + func arctanh*(x: float64): float64 {.importc: "atanh", header: "<math.h>".} ## Computes the inverse hyperbolic tangent of ``x``. else: # JS - proc log10*(x: float32): float32 {.importc: "Math.log10", nodecl.} - proc log10*(x: float64): float64 {.importc: "Math.log10", nodecl.} - proc log2*(x: float32): float32 {.importc: "Math.log2", nodecl.} - proc log2*(x: float64): float64 {.importc: "Math.log2", nodecl.} - proc exp*(x: float32): float32 {.importc: "Math.exp", nodecl.} - proc exp*(x: float64): float64 {.importc: "Math.exp", nodecl.} - - proc sin*[T: float32|float64](x: T): T {.importc: "Math.sin", nodecl.} - proc cos*[T: float32|float64](x: T): T {.importc: "Math.cos", nodecl.} - proc tan*[T: float32|float64](x: T): T {.importc: "Math.tan", nodecl.} - - proc sinh*[T: float32|float64](x: T): T {.importc: "Math.sinh", nodecl.} - proc cosh*[T: float32|float64](x: T): T {.importc: "Math.cosh", nodecl.} - proc tanh*[T: float32|float64](x: T): T {.importc: "Math.tanh", nodecl.} - - proc arcsin*[T: float32|float64](x: T): T {.importc: "Math.asin", nodecl.} - proc arccos*[T: float32|float64](x: T): T {.importc: "Math.acos", nodecl.} - proc arctan*[T: float32|float64](x: T): T {.importc: "Math.atan", nodecl.} - proc arctan2*[T: float32|float64](y, x: T): T {.importc: "Math.atan2", nodecl.} - - proc arcsinh*[T: float32|float64](x: T): T {.importc: "Math.asinh", nodecl.} - proc arccosh*[T: float32|float64](x: T): T {.importc: "Math.acosh", nodecl.} - proc arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.} - -proc cot*[T: float32|float64](x: T): T = 1.0 / tan(x) + func log10*(x: float32): float32 {.importc: "Math.log10", nodecl.} + func log10*(x: float64): float64 {.importc: "Math.log10", nodecl.} + func log2*(x: float32): float32 {.importc: "Math.log2", nodecl.} + func log2*(x: float64): float64 {.importc: "Math.log2", nodecl.} + func exp*(x: float32): float32 {.importc: "Math.exp", nodecl.} + func exp*(x: float64): float64 {.importc: "Math.exp", nodecl.} + + func sin*[T: float32|float64](x: T): T {.importc: "Math.sin", nodecl.} + func cos*[T: float32|float64](x: T): T {.importc: "Math.cos", nodecl.} + func tan*[T: float32|float64](x: T): T {.importc: "Math.tan", nodecl.} + + func sinh*[T: float32|float64](x: T): T {.importc: "Math.sinh", nodecl.} + func cosh*[T: float32|float64](x: T): T {.importc: "Math.cosh", nodecl.} + func tanh*[T: float32|float64](x: T): T {.importc: "Math.tanh", nodecl.} + + func arcsin*[T: float32|float64](x: T): T {.importc: "Math.asin", nodecl.} + func arccos*[T: float32|float64](x: T): T {.importc: "Math.acos", nodecl.} + func arctan*[T: float32|float64](x: T): T {.importc: "Math.atan", nodecl.} + func arctan2*[T: float32|float64](y, x: T): T {.importc: "Math.atan2", nodecl.} + + func arcsinh*[T: float32|float64](x: T): T {.importc: "Math.asinh", nodecl.} + func arccosh*[T: float32|float64](x: T): T {.importc: "Math.acosh", nodecl.} + func arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.} + +func cot*[T: float32|float64](x: T): T = 1.0 / tan(x) ## Computes the cotangent of ``x`` (1 / tan(x)). -proc sec*[T: float32|float64](x: T): T = 1.0 / cos(x) +func sec*[T: float32|float64](x: T): T = 1.0 / cos(x) ## Computes the secant of ``x`` (1 / cos(x)). -proc csc*[T: float32|float64](x: T): T = 1.0 / sin(x) +func csc*[T: float32|float64](x: T): T = 1.0 / sin(x) ## Computes the cosecant of ``x`` (1 / sin(x)). -proc coth*[T: float32|float64](x: T): T = 1.0 / tanh(x) +func coth*[T: float32|float64](x: T): T = 1.0 / tanh(x) ## Computes the hyperbolic cotangent of ``x`` (1 / tanh(x)). -proc sech*[T: float32|float64](x: T): T = 1.0 / cosh(x) +func sech*[T: float32|float64](x: T): T = 1.0 / cosh(x) ## Computes the hyperbolic secant of ``x`` (1 / cosh(x)). -proc csch*[T: float32|float64](x: T): T = 1.0 / sinh(x) +func csch*[T: float32|float64](x: T): T = 1.0 / sinh(x) ## Computes the hyperbolic cosecant of ``x`` (1 / sinh(x)). -proc arccot*[T: float32|float64](x: T): T = arctan(1.0 / x) +func arccot*[T: float32|float64](x: T): T = arctan(1.0 / x) ## Computes the inverse cotangent of ``x``. -proc arcsec*[T: float32|float64](x: T): T = arccos(1.0 / x) +func arcsec*[T: float32|float64](x: T): T = arccos(1.0 / x) ## Computes the inverse secant of ``x``. -proc arccsc*[T: float32|float64](x: T): T = arcsin(1.0 / x) +func arccsc*[T: float32|float64](x: T): T = arcsin(1.0 / x) ## Computes the inverse cosecant of ``x``. -proc arccoth*[T: float32|float64](x: T): T = arctanh(1.0 / x) +func arccoth*[T: float32|float64](x: T): T = arctanh(1.0 / x) ## Computes the inverse hyperbolic cotangent of ``x``. -proc arcsech*[T: float32|float64](x: T): T = arccosh(1.0 / x) +func arcsech*[T: float32|float64](x: T): T = arccosh(1.0 / x) ## Computes the inverse hyperbolic secant of ``x``. -proc arccsch*[T: float32|float64](x: T): T = arcsinh(1.0 / x) +func arccsch*[T: float32|float64](x: T): T = arcsinh(1.0 / x) ## Computes the inverse hyperbolic cosecant of ``x``. const windowsCC89 = defined(windows) and defined(bcc) when not defined(js): # C - proc hypot*(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>".} - proc hypot*(x, y: float64): float64 {.importc: "hypot", header: "<math.h>".} + func hypot*(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>".} + func hypot*(x, y: float64): float64 {.importc: "hypot", header: "<math.h>".} ## Computes the hypotenuse of a right-angle triangle with ``x`` and ## ``y`` as its base and height. Equivalent to ``sqrt(x*x + y*y)``. ## ## .. code-block:: nim ## echo hypot(4.0, 3.0) ## 5.0 - proc pow*(x, y: float32): float32 {.importc: "powf", header: "<math.h>".} - proc pow*(x, y: float64): float64 {.importc: "pow", header: "<math.h>".} + func pow*(x, y: float32): float32 {.importc: "powf", header: "<math.h>".} + func pow*(x, y: float64): float64 {.importc: "pow", header: "<math.h>".} ## Computes x to power raised of y. ## - ## To compute power between integers (e.g. 2^6), use `^ proc<#^,T,Natural>`_. + ## To compute power between integers (e.g. 2^6), use `^ func<#^,T,Natural>`_. ## ## See also: - ## * `^ proc<#^,T,Natural>`_ - ## * `sqrt proc <#sqrt,float64>`_ - ## * `cbrt proc <#cbrt,float64>`_ + ## * `^ func<#^,T,Natural>`_ + ## * `sqrt func <#sqrt,float64>`_ + ## * `cbrt func <#cbrt,float64>`_ ## ## .. code-block:: nim ## echo pow(100, 1.5) ## 1000.0 @@ -610,38 +609,38 @@ when not defined(js): # C # TODO: add C89 version on windows when not windowsCC89: - proc erf*(x: float32): float32 {.importc: "erff", header: "<math.h>".} - proc erf*(x: float64): float64 {.importc: "erf", header: "<math.h>".} + func erf*(x: float32): float32 {.importc: "erff", header: "<math.h>".} + func erf*(x: float64): float64 {.importc: "erf", header: "<math.h>".} ## Computes the `error function <https://en.wikipedia.org/wiki/Error_function>`_ for ``x``. ## ## Note: Not available for JS backend. - proc erfc*(x: float32): float32 {.importc: "erfcf", header: "<math.h>".} - proc erfc*(x: float64): float64 {.importc: "erfc", header: "<math.h>".} + func erfc*(x: float32): float32 {.importc: "erfcf", header: "<math.h>".} + func erfc*(x: float64): float64 {.importc: "erfc", header: "<math.h>".} ## Computes the `complementary error function <https://en.wikipedia.org/wiki/Error_function#Complementary_error_function>`_ for ``x``. ## ## Note: Not available for JS backend. - proc gamma*(x: float32): float32 {.importc: "tgammaf", header: "<math.h>".} - proc gamma*(x: float64): float64 {.importc: "tgamma", header: "<math.h>".} + func gamma*(x: float32): float32 {.importc: "tgammaf", header: "<math.h>".} + func gamma*(x: float64): float64 {.importc: "tgamma", header: "<math.h>".} ## Computes the `gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ for ``x``. ## ## Note: Not available for JS backend. ## ## See also: - ## * `lgamma proc <#lgamma,float64>`_ for a natural log of gamma function + ## * `lgamma func <#lgamma,float64>`_ for a natural log of gamma function ## ## .. code-block:: Nim ## echo gamma(1.0) # 1.0 ## echo gamma(4.0) # 6.0 ## echo gamma(11.0) # 3628800.0 ## echo gamma(-1.0) # nan - proc lgamma*(x: float32): float32 {.importc: "lgammaf", header: "<math.h>".} - proc lgamma*(x: float64): float64 {.importc: "lgamma", header: "<math.h>".} + func lgamma*(x: float32): float32 {.importc: "lgammaf", header: "<math.h>".} + func lgamma*(x: float64): float64 {.importc: "lgamma", header: "<math.h>".} ## Computes the natural log of the gamma function for ``x``. ## ## Note: Not available for JS backend. ## ## See also: - ## * `gamma proc <#gamma,float64>`_ for gamma function + ## * `gamma func <#gamma,float64>`_ for gamma function ## ## .. code-block:: Nim ## echo lgamma(1.0) # 1.0 @@ -649,29 +648,29 @@ when not defined(js): # C ## echo lgamma(11.0) # 15.10441257307552 ## echo lgamma(-1.0) # inf - proc floor*(x: float32): float32 {.importc: "floorf", header: "<math.h>".} - proc floor*(x: float64): float64 {.importc: "floor", header: "<math.h>".} + func floor*(x: float32): float32 {.importc: "floorf", header: "<math.h>".} + func floor*(x: float64): float64 {.importc: "floor", header: "<math.h>".} ## Computes the floor function (i.e., the largest integer not greater than ``x``). ## ## See also: - ## * `ceil proc <#ceil,float64>`_ - ## * `round proc <#round,float64>`_ - ## * `trunc proc <#trunc,float64>`_ + ## * `ceil func <#ceil,float64>`_ + ## * `round func <#round,float64>`_ + ## * `trunc func <#trunc,float64>`_ ## ## .. code-block:: nim ## echo floor(2.1) ## 2.0 ## echo floor(2.9) ## 2.0 ## echo floor(-3.5) ## -4.0 - proc ceil*(x: float32): float32 {.importc: "ceilf", header: "<math.h>".} - proc ceil*(x: float64): float64 {.importc: "ceil", header: "<math.h>".} + func ceil*(x: float32): float32 {.importc: "ceilf", header: "<math.h>".} + func ceil*(x: float64): float64 {.importc: "ceil", header: "<math.h>".} ## Computes the ceiling function (i.e., the smallest integer not smaller ## than ``x``). ## ## See also: - ## * `floor proc <#floor,float64>`_ - ## * `round proc <#round,float64>`_ - ## * `trunc proc <#trunc,float64>`_ + ## * `floor func <#floor,float64>`_ + ## * `round func <#round,float64>`_ + ## * `trunc func <#trunc,float64>`_ ## ## .. code-block:: nim ## echo ceil(2.1) ## 3.0 @@ -681,7 +680,7 @@ when not defined(js): # C when windowsCC89: # MSVC 2010 don't have trunc/truncf # this implementation was inspired by Go-lang Math.Trunc - proc truncImpl(f: float64): float64 = + func truncImpl(f: float64): float64 = const mask: uint64 = 0x7FF shift: uint64 = 64 - 12 @@ -701,7 +700,7 @@ when not defined(js): # C result = cast[float64](x) - proc truncImpl(f: float32): float32 = + func truncImpl(f: float32): float32 = const mask: uint32 = 0xFF shift: uint32 = 32 - 9 @@ -721,57 +720,57 @@ when not defined(js): # C result = cast[float32](x) - proc trunc*(x: float64): float64 = + func trunc*(x: float64): float64 = if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x result = truncImpl(x) - proc trunc*(x: float32): float32 = + func trunc*(x: float32): float32 = if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x result = truncImpl(x) - proc round*[T: float32|float64](x: T): T = + func round*[T: float32|float64](x: T): T = ## Windows compilers prior to MSVC 2012 do not implement 'round', ## 'roundl' or 'roundf'. result = if x < 0.0: ceil(x - T(0.5)) else: floor(x + T(0.5)) else: - proc round*(x: float32): float32 {.importc: "roundf", header: "<math.h>".} - proc round*(x: float64): float64 {.importc: "round", header: "<math.h>".} + func round*(x: float32): float32 {.importc: "roundf", header: "<math.h>".} + func round*(x: float64): float64 {.importc: "round", header: "<math.h>".} ## Rounds a float to zero decimal places. ## - ## Used internally by the `round proc <#round,T,int>`_ + ## Used internally by the `round func <#round,T,int>`_ ## when the specified number of places is 0. ## ## See also: - ## * `round proc <#round,T,int>`_ for rounding to the specific + ## * `round func <#round,T,int>`_ for rounding to the specific ## number of decimal places - ## * `floor proc <#floor,float64>`_ - ## * `ceil proc <#ceil,float64>`_ - ## * `trunc proc <#trunc,float64>`_ + ## * `floor func <#floor,float64>`_ + ## * `ceil func <#ceil,float64>`_ + ## * `trunc func <#trunc,float64>`_ ## ## .. code-block:: nim ## echo round(3.4) ## 3.0 ## echo round(3.5) ## 4.0 ## echo round(4.5) ## 5.0 - proc trunc*(x: float32): float32 {.importc: "truncf", header: "<math.h>".} - proc trunc*(x: float64): float64 {.importc: "trunc", header: "<math.h>".} + func trunc*(x: float32): float32 {.importc: "truncf", header: "<math.h>".} + func trunc*(x: float64): float64 {.importc: "trunc", header: "<math.h>".} ## Truncates ``x`` to the decimal point. ## ## See also: - ## * `floor proc <#floor,float64>`_ - ## * `ceil proc <#ceil,float64>`_ - ## * `round proc <#round,float64>`_ + ## * `floor func <#floor,float64>`_ + ## * `ceil func <#ceil,float64>`_ + ## * `round func <#round,float64>`_ ## ## .. code-block:: nim ## echo trunc(PI) # 3.0 ## echo trunc(-1.85) # -1.0 - proc `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>".} - proc `mod`*(x, y: float64): float64 {.importc: "fmod", header: "<math.h>".} + func `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>".} + func `mod`*(x, y: float64): float64 {.importc: "fmod", header: "<math.h>".} ## Computes the modulo operation for float values (the remainder of ``x`` divided by ``y``). ## ## See also: - ## * `floorMod proc <#floorMod,T,T>`_ for Python-like (% operator) behavior + ## * `floorMod func <#floorMod,T,T>`_ for Python-like (% operator) behavior ## ## .. code-block:: nim ## ( 6.5 mod 2.5) == 1.5 @@ -780,20 +779,20 @@ when not defined(js): # C ## (-6.5 mod -2.5) == -1.5 else: # JS - proc hypot*(x, y: float32): float32 {.importc: "Math.hypot", varargs, nodecl.} - proc hypot*(x, y: float64): float64 {.importc: "Math.hypot", varargs, nodecl.} - proc pow*(x, y: float32): float32 {.importc: "Math.pow", nodecl.} - proc pow*(x, y: float64): float64 {.importc: "Math.pow", nodecl.} - proc floor*(x: float32): float32 {.importc: "Math.floor", nodecl.} - proc floor*(x: float64): float64 {.importc: "Math.floor", nodecl.} - proc ceil*(x: float32): float32 {.importc: "Math.ceil", nodecl.} - proc ceil*(x: float64): float64 {.importc: "Math.ceil", nodecl.} - proc round*(x: float): float {.importc: "Math.round", nodecl.} - proc trunc*(x: float32): float32 {.importc: "Math.trunc", nodecl.} - proc trunc*(x: float64): float64 {.importc: "Math.trunc", nodecl.} - - proc `mod`*(x, y: float32): float32 {.importcpp: "# % #".} - proc `mod`*(x, y: float64): float64 {.importcpp: "# % #".} + func hypot*(x, y: float32): float32 {.importc: "Math.hypot", varargs, nodecl.} + func hypot*(x, y: float64): float64 {.importc: "Math.hypot", varargs, nodecl.} + func pow*(x, y: float32): float32 {.importc: "Math.pow", nodecl.} + func pow*(x, y: float64): float64 {.importc: "Math.pow", nodecl.} + func floor*(x: float32): float32 {.importc: "Math.floor", nodecl.} + func floor*(x: float64): float64 {.importc: "Math.floor", nodecl.} + func ceil*(x: float32): float32 {.importc: "Math.ceil", nodecl.} + func ceil*(x: float64): float64 {.importc: "Math.ceil", nodecl.} + func round*(x: float): float {.importc: "Math.round", nodecl.} + func trunc*(x: float32): float32 {.importc: "Math.trunc", nodecl.} + func trunc*(x: float64): float64 {.importc: "Math.trunc", nodecl.} + + func `mod`*(x, y: float32): float32 {.importcpp: "# % #".} + func `mod`*(x, y: float64): float64 {.importcpp: "# % #".} ## Computes the modulo operation for float values (the remainder of ``x`` divided by ``y``). ## ## .. code-block:: nim @@ -802,7 +801,7 @@ else: # JS ## ( 6.5 mod -2.5) == 1.5 ## (-6.5 mod -2.5) == -1.5 -proc round*[T: float32|float64](x: T, places: int): T = +func round*[T: float32|float64](x: T, places: int): T = ## Decimal rounding on a binary floating point number. ## ## This function is NOT reliable. Floating point numbers cannot hold @@ -823,7 +822,7 @@ proc round*[T: float32|float64](x: T, places: int): T = var mult = pow(10.0, places.T) result = round(x*mult)/mult -proc floorDiv*[T: SomeInteger](x, y: T): T = +func floorDiv*[T: SomeInteger](x, y: T): T = ## Floor division is conceptually defined as ``floor(x / y)``. ## ## This is different from the `system.div <system.html#div,int,int>`_ @@ -832,7 +831,7 @@ proc floorDiv*[T: SomeInteger](x, y: T): T = ## ## See also: ## * `system.div proc <system.html#div,int,int>`_ for integer division - ## * `floorMod proc <#floorMod,T,T>`_ for Python-like (% operator) behavior + ## * `floorMod func <#floorMod,T,T>`_ for Python-like (% operator) behavior ## ## .. code-block:: nim ## echo floorDiv( 13, 3) # 4 @@ -843,14 +842,14 @@ proc floorDiv*[T: SomeInteger](x, y: T): T = let r = x mod y if (r > 0 and y < 0) or (r < 0 and y > 0): result.dec 1 -proc floorMod*[T: SomeNumber](x, y: T): T = +func floorMod*[T: SomeNumber](x, y: T): T = ## Floor modulus is conceptually defined as ``x - (floorDiv(x, y) * y)``. ## - ## This proc behaves the same as the ``%`` operator in Python. + ## This func behaves the same as the ``%`` operator in Python. ## ## See also: - ## * `mod proc <#mod,float64,float64>`_ - ## * `floorDiv proc <#floorDiv,T,T>`_ + ## * `mod func <#mod,float64,float64>`_ + ## * `floorDiv func <#floorDiv,T,T>`_ ## ## .. code-block:: nim ## echo floorMod( 13, 3) # 1 @@ -861,11 +860,11 @@ proc floorMod*[T: SomeNumber](x, y: T): T = if (result > 0 and y < 0) or (result < 0 and y > 0): result += y when not defined(js): - proc c_frexp*(x: float32, exponent: var int32): float32 {. - importc: "frexp", header: "<math.h>".} - proc c_frexp*(x: float64, exponent: var int32): float64 {. - importc: "frexp", header: "<math.h>".} - proc frexp*[T, U](x: T, exponent: var U): T = + func c_frexp*(x: float32, exponent: var int32): float32 {. + importc: "frexp", header: "<math.h>".} + func c_frexp*(x: float64, exponent: var int32): float64 {. + importc: "frexp", header: "<math.h>".} + func frexp*[T, U](x: T, exponent: var U): T = ## Split a number into mantissa and exponent. ## ## ``frexp`` calculates the mantissa m (a float greater than or equal to 0.5 @@ -892,21 +891,21 @@ when not defined(js): if frac == 0.5: return T(exp - 1) log10(frac)*(1/ln2) + T(exp) - proc log2*(x: float32): float32 = log2Impl(x) - proc log2*(x: float64): float64 = log2Impl(x) + func log2*(x: float32): float32 = log2Impl(x) + func log2*(x: float64): float64 = log2Impl(x) ## Log2 returns the binary logarithm of x. ## The special cases are the same as for Log. else: - proc log2*(x: float32): float32 {.importc: "log2f", header: "<math.h>".} - proc log2*(x: float64): float64 {.importc: "log2", header: "<math.h>".} + func log2*(x: float32): float32 {.importc: "log2f", header: "<math.h>".} + func log2*(x: float64): float64 {.importc: "log2", header: "<math.h>".} ## Computes the binary logarithm (base 2) of ``x``. ## ## See also: - ## * `log proc <#log,T,T>`_ - ## * `log10 proc <#log10,float64>`_ - ## * `ln proc <#ln,float64>`_ - ## * `exp proc <#exp,float64>`_ + ## * `log func <#log,T,T>`_ + ## * `log10 func <#log10,float64>`_ + ## * `ln func <#ln,float64>`_ + ## * `exp func <#exp,float64>`_ ## ## .. code-block:: Nim ## echo log2(8.0) # 3.0 @@ -915,7 +914,7 @@ when not defined(js): ## echo log2(-2.0) # nan else: - proc frexp*[T: float32|float64](x: T, exponent: var int): T = + func frexp*[T: float32|float64](x: T, exponent: var int): T = if x == 0.0: exponent = 0 result = 0.0 @@ -931,7 +930,7 @@ else: if exponent == 1024 and result == 0.0: result = 0.99999999999999988898 -proc splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] = +func splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] = ## Breaks ``x`` into an integer and a fractional part. ## ## Returns a tuple containing ``intpart`` and ``floatpart`` representing @@ -952,29 +951,28 @@ proc splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] = result.intpart = -result.intpart result.floatpart = -result.floatpart -{.pop.} -proc degToRad*[T: float32|float64](d: T): T {.inline.} = +func degToRad*[T: float32|float64](d: T): T {.inline.} = ## Convert from degrees to radians. ## ## See also: - ## * `radToDeg proc <#radToDeg,T>`_ + ## * `radToDeg func <#radToDeg,T>`_ ## runnableExamples: doAssert degToRad(180.0) == 3.141592653589793 result = T(d) * RadPerDeg -proc radToDeg*[T: float32|float64](d: T): T {.inline.} = +func radToDeg*[T: float32|float64](d: T): T {.inline.} = ## Convert from radians to degrees. ## ## See also: - ## * `degToRad proc <#degToRad,T>`_ + ## * `degToRad func <#degToRad,T>`_ ## runnableExamples: doAssert radToDeg(2 * PI) == 360.0 result = T(d) / RadPerDeg -proc sgn*[T: SomeNumber](x: T): int {.inline.} = +func sgn*[T: SomeNumber](x: T): int {.inline.} = ## Sign function. ## ## Returns: @@ -991,17 +989,17 @@ proc sgn*[T: SomeNumber](x: T): int {.inline.} = {.pop.} {.pop.} -proc `^`*[T: SomeNumber](x: T, y: Natural): T = +func `^`*[T: SomeNumber](x: T, y: Natural): T = ## Computes ``x`` to the power ``y``. ## ## Exponent ``y`` must be non-negative, use - ## `pow proc <#pow,float64,float64>`_ for negative exponents. + ## `pow func <#pow,float64,float64>`_ for negative exponents. ## ## See also: - ## * `pow proc <#pow,float64,float64>`_ for negative exponent or + ## * `pow func <#pow,float64,float64>`_ for negative exponent or ## floats - ## * `sqrt proc <#sqrt,float64>`_ - ## * `cbrt proc <#cbrt,float64>`_ + ## * `sqrt func <#sqrt,float64>`_ + ## * `cbrt func <#cbrt,float64>`_ ## runnableExamples: assert -3.0^0 == 1.0 @@ -1026,7 +1024,7 @@ proc `^`*[T: SomeNumber](x: T, y: Natural): T = break x *= x -proc gcd*[T](x, y: T): T = +func gcd*[T](x, y: T): T = ## Computes the greatest common (positive) divisor of ``x`` and ``y``. ## ## Note that for floats, the result cannot always be interpreted as @@ -1034,8 +1032,8 @@ proc gcd*[T](x, y: T): T = ## where N and M are positive integers." ## ## See also: - ## * `gcd proc <#gcd,SomeInteger,SomeInteger>`_ for integer version - ## * `lcm proc <#lcm,T,T>`_ + ## * `gcd func <#gcd,SomeInteger,SomeInteger>`_ for integer version + ## * `lcm func <#lcm,T,T>`_ runnableExamples: doAssert gcd(13.5, 9.0) == 4.5 var (x, y) = (x, y) @@ -1044,13 +1042,13 @@ proc gcd*[T](x, y: T): T = swap x, y abs x -proc gcd*(x, y: SomeInteger): SomeInteger = +func gcd*(x, y: SomeInteger): SomeInteger = ## Computes the greatest common (positive) divisor of ``x`` and ``y``, ## using binary GCD (aka Stein's) algorithm. ## ## See also: - ## * `gcd proc <#gcd,T,T>`_ for floats version - ## * `lcm proc <#lcm,T,T>`_ + ## * `gcd func <#gcd,T,T>`_ for floats version + ## * `lcm func <#lcm,T,T>`_ runnableExamples: doAssert gcd(12, 8) == 4 doAssert gcd(17, 63) == 1 @@ -1077,11 +1075,11 @@ proc gcd*(x, y: SomeInteger): SomeInteger = x -= y y shl shift -proc gcd*[T](x: openArray[T]): T {.since: (1, 1).} = +func gcd*[T](x: openArray[T]): T {.since: (1, 1).} = ## Computes the greatest common (positive) divisor of the elements of ``x``. ## ## See also: - ## * `gcd proc <#gcd,T,T>`_ for integer version + ## * `gcd func <#gcd,T,T>`_ for integer version runnableExamples: doAssert gcd(@[13.5, 9.0]) == 4.5 result = x[0] @@ -1090,21 +1088,21 @@ proc gcd*[T](x: openArray[T]): T {.since: (1, 1).} = result = gcd(result, x[i]) inc(i) -proc lcm*[T](x, y: T): T = +func lcm*[T](x, y: T): T = ## Computes the least common multiple of ``x`` and ``y``. ## ## See also: - ## * `gcd proc <#gcd,T,T>`_ + ## * `gcd func <#gcd,T,T>`_ runnableExamples: doAssert lcm(24, 30) == 120 doAssert lcm(13, 39) == 39 x div gcd(x, y) * y -proc lcm*[T](x: openArray[T]): T {.since: (1, 1).} = +func lcm*[T](x: openArray[T]): T {.since: (1, 1).} = ## Computes the least common multiple of the elements of ``x``. ## ## See also: - ## * `gcd proc <#gcd,T,T>`_ for integer version + ## * `gcd func <#gcd,T,T>`_ for integer version runnableExamples: doAssert lcm(@[24, 30]) == 120 result = x[0] |