diff options
author | Arne Döring <arne.doering@gmx.net> | 2018-11-05 20:27:46 +0100 |
---|---|---|
committer | Andreas Rumpf <rumpf_a@web.de> | 2018-11-05 20:27:46 +0100 |
commit | cc5b8c6ad25b2db62274ca8fa76c4a5b3e794515 (patch) | |
tree | d107983330e5b6020899b437096b7f0513c64671 /lib | |
parent | da178e4090ca63396c05e656abae76974263be83 (diff) | |
download | Nim-cc5b8c6ad25b2db62274ca8fa76c4a5b3e794515.tar.gz |
Generic Complex type (#9590)
* remove `**` * const `im` can now be used with Complex64 * converters from float|int to Complex are replaced by procs * converters between various Complex types must stay to allow usage of `im` with Complex64 * limit types for `+`, `-`, `/`, and `*` between Complex and float * add `pow` for Complex and a number * complex type changes * unpublish approximation function
Diffstat (limited to 'lib')
-rw-r--r-- | lib/pure/complex.nim | 646 |
1 files changed, 329 insertions, 317 deletions
diff --git a/lib/pure/complex.nim b/lib/pure/complex.nim index ba5c571ce..8c191f731 100644 --- a/lib/pure/complex.nim +++ b/lib/pure/complex.nim @@ -9,78 +9,109 @@ -## This module implements complex numbers. -{.push checks:off, line_dir:off, stack_trace:off, debugger:off.} -# the user does not want to trace a part -# of the standard library! -import - math +## This module implements complex numbers. +## Complex numbers are currently implemented as generic on a 64-bit or 32-bit float. + +{.push checks: off, line_dir: off, stack_trace: off, debugger: off.} +# the user does not want to trace a part of the standard library! -const - EPS = 1.0e-7 ## Epsilon used for float comparisons. +import math type - Complex* = tuple[re, im: float] - ## a complex number, consisting of a real and an imaginary part - -const - im*: Complex = (re: 0.0, im: 1.0) - ## The imaginary unit. √-1. + Complex*[T: SomeFloat] = object + re, im: T + ## A complex number, consisting of a real and an imaginary part. + Complex64* = Complex[float64] + ## Alias for a pair of 64-bit floats. + Complex32* = Complex[float32] + ## Alias for a pair of 32-bit floats. + +proc complex*[T: SomeFloat](re: T; im: T = 0.0): Complex[T] = + result.re = re + result.im = im + +proc complex32*(re: float32; im: float32 = 0.0): Complex[float32] = + result.re = re + result.im = im + +proc complex64*(re: float64; im: float64 = 0.0): Complex[float64] = + result.re = re + result.im = im + +template im*(arg: typedesc[float32]): Complex32 = complex[float32](0, 1) +template im*(arg: typedesc[float64]): Complex64 = complex[float64](0, 1) +template im*(arg : float32): Complex32 = complex[float32](0, arg) +template im*(arg : float64): Complex64 = complex[float64](0, arg) + +proc abs*[T](z: Complex[T]): T = + ## Return the distance from (0,0) to ``z``. + result = hypot(z.re, z.im) + +proc abs2*[T](z: Complex[T]): T = + ## Return the squared distance from (0,0) to ``z``. + result = z.re*z.re + z.im*z.im + +proc conjugate*[T](z: Complex[T]): Complex[T] = + ## Conjugate of complex number ``z``. + result.re = z.re + result.im = -z.im -proc toComplex*(x: SomeInteger): Complex = - ## Convert some integer ``x`` to a complex number. - result.re = x - result.im = 0 +proc inv*[T](z: Complex[T]): Complex[T] = + ## Multiplicative inverse of complex number ``z``. + conjugate(z) / abs2(z) -proc `==` *(x, y: Complex): bool = - ## Compare two complex numbers `x` and `y` for equality. +proc `==` *[T](x, y: Complex[T]): bool = + ## Compare two complex numbers ``x`` and ``y`` for equality. result = x.re == y.re and x.im == y.im -proc `=~` *(x, y: Complex): bool = - ## Compare two complex numbers `x` and `y` approximately. - result = abs(x.re-y.re)<EPS and abs(x.im-y.im)<EPS - -proc `+` *(x, y: Complex): Complex = - ## Add two complex numbers. - result.re = x.re + y.re - result.im = x.im + y.im +proc `+` *[T](x: T, y: Complex[T]): Complex[T] = + ## Add a real number to a complex number. + result.re = x + y.re + result.im = y.im -proc `+` *(x: Complex, y: float): Complex = - ## Add complex `x` to float `y`. +proc `+` *[T](x: Complex[T], y: T): Complex[T] = + ## Add a complex number to a real number. result.re = x.re + y result.im = x.im -proc `+` *(x: float, y: Complex): Complex = - ## Add float `x` to complex `y`. - result.re = x + y.re - result.im = y.im - +proc `+` *[T](x, y: Complex[T]): Complex[T] = + ## Add two complex numbers. + result.re = x.re + y.re + result.im = x.im + y.im -proc `-` *(z: Complex): Complex = +proc `-` *[T](z: Complex[T]): Complex[T] = ## Unary minus for complex numbers. result.re = -z.re result.im = -z.im -proc `-` *(x, y: Complex): Complex = +proc `-` *[T](x: T, y: Complex[T]): Complex[T] = + ## Subtract a complex number from a real number. + x + (-y) + +proc `-` *[T](x: Complex[T], y: T): Complex[T] = + ## Subtract a real number from a complex number. + result.re = x.re - y + result.im = x.im + +proc `-` *[T](x, y: Complex[T]): Complex[T] = ## Subtract two complex numbers. result.re = x.re - y.re result.im = x.im - y.im -proc `-` *(x: Complex, y: float): Complex = - ## Subtracts float `y` from complex `x`. - result = x + (-y) - -proc `-` *(x: float, y: Complex): Complex = - ## Subtracts complex `y` from float `x`. - result = x + (-y) +proc `/` *[T](x: Complex[T], y: T): Complex[T] = + ## Divide complex number ``x`` by real number ``y``. + result.re = x.re / y + result.im = x.im / y +proc `/` *[T](x: T, y: Complex[T]): Complex[T] = + ## Divide real number ``x`` by complex number ``y``. + result = x * inv(y) -proc `/` *(x, y: Complex): Complex = - ## Divide `x` by `y`. - var - r, den: float +proc `/` *[T](x, y: Complex[T]): Complex[T] = + ## Divide ``x`` by ``y``. + var r, den: T if abs(y.re) < abs(y.im): r = y.re / y.im den = y.im + r * y.re @@ -92,101 +123,46 @@ proc `/` *(x, y: Complex): Complex = result.re = (x.re + r * x.im) / den result.im = (x.im - r * x.re) / den -proc `/` *(x : Complex, y: float ): Complex = - ## Divide complex `x` by float `y`. - result.re = x.re/y - result.im = x.im/y - -proc `/` *(x : float, y: Complex ): Complex = - ## Divide float `x` by complex `y`. - var num : Complex = (x, 0.0) - result = num/y - - -proc `*` *(x, y: Complex): Complex = - ## Multiply `x` with `y`. - result.re = x.re * y.re - x.im * y.im - result.im = x.im * y.re + x.re * y.im - -proc `*` *(x: float, y: Complex): Complex = - ## Multiply float `x` with complex `y`. +proc `*` *[T](x: T, y: Complex[T]): Complex[T] = + ## Multiply a real number and a complex number. result.re = x * y.re result.im = x * y.im -proc `*` *(x: Complex, y: float): Complex = - ## Multiply complex `x` with float `y`. +proc `*` *[T](x: Complex[T], y: T): Complex[T] = + ## Multiply a complex number with a real number. result.re = x.re * y result.im = x.im * y +proc `*` *[T](x, y: Complex[T]): Complex[T] = + ## Multiply ``x`` with ``y``. + result.re = x.re * y.re - x.im * y.im + result.im = x.im * y.re + x.re * y.im -proc `+=` *(x: var Complex, y: Complex) = - ## Add `y` to `x`. + +proc `+=` *[T](x: var Complex[T], y: Complex[T]) = + ## Add ``y`` to ``x``. x.re += y.re x.im += y.im -proc `+=` *(x: var Complex, y: float) = - ## Add `y` to the complex number `x`. - x.re += y - -proc `-=` *(x: var Complex, y: Complex) = - ## Subtract `y` from `x`. +proc `-=` *[T](x: var Complex[T], y: Complex[T]) = + ## Subtract ``y`` from ``x``. x.re -= y.re x.im -= y.im -proc `-=` *(x: var Complex, y: float) = - ## Subtract `y` from the complex number `x`. - x.re -= y - -proc `*=` *(x: var Complex, y: Complex) = - ## Multiply `y` to `x`. +proc `*=` *[T](x: var Complex[T], y: Complex[T]) = + ## Multiply ``y`` to ``x``. let im = x.im * y.re + x.re * y.im x.re = x.re * y.re - x.im * y.im x.im = im -proc `*=` *(x: var Complex, y: float) = - ## Multiply `y` to the complex number `x`. - x.re *= y - x.im *= y - -proc `/=` *(x: var Complex, y: Complex) = - ## Divide `x` by `y` in place. +proc `/=` *[T](x: var Complex[T], y: Complex[T]) = + ## Divide ``x`` by ``y`` in place. x = x / y -proc `/=` *(x : var Complex, y: float) = - ## Divide complex `x` by float `y` in place. - x.re /= y - x.im /= y - - -proc abs*(z: Complex): float = - ## Return the distance from (0,0) to `z`. - # optimized by checking special cases (sqrt is expensive) - var x, y, temp: float - - x = abs(z.re) - y = abs(z.im) - if x == 0.0: - result = y - elif y == 0.0: - result = x - elif x > y: - temp = y / x - result = x * sqrt(1.0 + temp * temp) - else: - temp = x / y - result = y * sqrt(1.0 + temp * temp) - - -proc conjugate*(z: Complex): Complex = - ## Conjugate of complex number `z`. - result.re = z.re - result.im = -z.im - - -proc sqrt*(z: Complex): Complex = - ## Square root for a complex number `z`. - var x, y, w, r: float +proc sqrt*[T](z: Complex[T]): Complex[T] = + ## Square root for a complex number ``z``. + var x, y, w, r: T if z.re == 0.0 and z.im == 0.0: result = z @@ -199,247 +175,283 @@ proc sqrt*(z: Complex): Complex = else: r = x / y w = sqrt(y) * sqrt(0.5 * (r + sqrt(1.0 + r * r))) + if z.re >= 0.0: result.re = w result.im = z.im / (w * 2.0) else: - if z.im >= 0.0: result.im = w - else: result.im = -w + result.im = if z.im >= 0.0: w else: -w result.re = z.im / (result.im + result.im) +proc exp*[T](z: Complex[T]): Complex[T] = + ## ``e`` raised to the power ``z``. + var + rho = exp(z.re) + theta = z.im + result.re = rho * cos(theta) + result.im = rho * sin(theta) -proc exp*(z: Complex): Complex = - ## e raised to the power `z`. - var rho = exp(z.re) - var theta = z.im - result.re = rho*cos(theta) - result.im = rho*sin(theta) - - -proc ln*(z: Complex): Complex = - ## Returns the natural log of `z`. +proc ln*[T](z: Complex[T]): Complex[T] = + ## Returns the natural log of ``z``. result.re = ln(abs(z)) - result.im = arctan2(z.im,z.re) - -proc log10*(z: Complex): Complex = - ## Returns the log base 10 of `z`. - result = ln(z)/ln(10.0) + result.im = arctan2(z.im, z.re) -proc log2*(z: Complex): Complex = - ## Returns the log base 2 of `z`. - result = ln(z)/ln(2.0) +proc log10*[T](z: Complex[T]): Complex[T] = + ## Returns the log base 10 of ``z``. + result = ln(z) / ln(10.0) +proc log2*[T](z: Complex[T]): Complex[T] = + ## Returns the log base 2 of ``z``. + result = ln(z) / ln(2.0) -proc pow*(x, y: Complex): Complex = - ## `x` raised to the power `y`. - if x.re == 0.0 and x.im == 0.0: - if y.re == 0.0 and y.im == 0.0: +proc pow*[T](x, y: Complex[T]): Complex[T] = + ## ``x`` raised to the power ``y``. + if x.re == 0.0 and x.im == 0.0: + if y.re == 0.0 and y.im == 0.0: result.re = 1.0 result.im = 0.0 else: result.re = 0.0 result.im = 0.0 - elif y.re == 1.0 and y.im == 0.0: + elif y.re == 1.0 and y.im == 0.0: result = x - elif y.re == -1.0 and y.im == 0.0: - result = 1.0/x + elif y.re == -1.0 and y.im == 0.0: + result = T(1.0) / x else: - var rho = sqrt(x.re*x.re + x.im*x.im) - var theta = arctan2(x.im,x.re) - var s = pow(rho,y.re) * exp(-y.im*theta) - var r = y.re*theta + y.im*ln(rho) - result.re = s*cos(r) - result.im = s*sin(r) - - -proc sin*(z: Complex): Complex = - ## Returns the sine of `z`. - result.re = sin(z.re)*cosh(z.im) - result.im = cos(z.re)*sinh(z.im) - -proc arcsin*(z: Complex): Complex = - ## Returns the inverse sine of `z`. - var i: Complex = (0.0,1.0) - result = -i*ln(i*z + sqrt(1.0-z*z)) - -proc cos*(z: Complex): Complex = - ## Returns the cosine of `z`. - result.re = cos(z.re)*cosh(z.im) - result.im = -sin(z.re)*sinh(z.im) - -proc arccos*(z: Complex): Complex = - ## Returns the inverse cosine of `z`. - var i: Complex = (0.0,1.0) - result = -i*ln(z + sqrt(z*z-1.0)) - -proc tan*(z: Complex): Complex = - ## Returns the tangent of `z`. - result = sin(z)/cos(z) - -proc arctan*(z: Complex): Complex = - ## Returns the inverse tangent of `z`. - var i: Complex = (0.0,1.0) - result = 0.5*i*(ln(1-i*z)-ln(1+i*z)) - -proc cot*(z: Complex): Complex = - ## Returns the cotangent of `z`. + var + rho = abs(x) + theta = arctan2(x.im, x.re) + s = pow(rho, y.re) * exp(-y.im * theta) + r = y.re * theta + y.im * ln(rho) + result.re = s * cos(r) + result.im = s * sin(r) + +proc pow*[T](x: Complex[T], y: T): Complex[T] = + ## Complex number ``x`` raised to the power ``y``. + pow(x, complex[T](y)) + + +proc sin*[T](z: Complex[T]): Complex[T] = + ## Returns the sine of ``z``. + result.re = sin(z.re) * cosh(z.im) + result.im = cos(z.re) * sinh(z.im) + +proc arcsin*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse sine of ``z``. + result = -im(T) * ln(im(T) * z + sqrt(T(1.0) - z*z)) + +proc cos*[T](z: Complex[T]): Complex[T] = + ## Returns the cosine of ``z``. + result.re = cos(z.re) * cosh(z.im) + result.im = -sin(z.re) * sinh(z.im) + +proc arccos*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse cosine of ``z``. + result = -im(T) * ln(z + sqrt(z*z - T(1.0))) + +proc tan*[T](z: Complex[T]): Complex[T] = + ## Returns the tangent of ``z``. + result = sin(z) / cos(z) + +proc arctan*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse tangent of ``z``. + result = T(0.5)*im(T) * (ln(T(1.0) - im(T)*z) - ln(T(1.0) + im(T)*z)) + +proc cot*[T](z: Complex[T]): Complex[T] = + ## Returns the cotangent of ``z``. result = cos(z)/sin(z) -proc arccot*(z: Complex): Complex = - ## Returns the inverse cotangent of `z`. - var i: Complex = (0.0,1.0) - result = 0.5*i*(ln(1-i/z)-ln(1+i/z)) +proc arccot*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse cotangent of ``z``. + result = T(0.5)*im(T) * (ln(T(1.0) - im(T)/z) - ln(T(1.0) + im(T)/z)) -proc sec*(z: Complex): Complex = - ## Returns the secant of `z`. - result = 1.0/cos(z) +proc sec*[T](z: Complex[T]): Complex[T] = + ## Returns the secant of ``z``. + result = T(1.0) / cos(z) -proc arcsec*(z: Complex): Complex = - ## Returns the inverse secant of `z`. - var i: Complex = (0.0,1.0) - result = -i*ln(i*sqrt(1-1/(z*z))+1/z) +proc arcsec*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse secant of ``z``. + result = -im(T) * ln(im(T) * sqrt(1.0 - 1.0/(z*z)) + T(1.0)/z) -proc csc*(z: Complex): Complex = - ## Returns the cosecant of `z`. - result = 1.0/sin(z) +proc csc*[T](z: Complex[T]): Complex[T] = + ## Returns the cosecant of ``z``. + result = T(1.0) / sin(z) -proc arccsc*(z: Complex): Complex = - ## Returns the inverse cosecant of `z`. - var i: Complex = (0.0,1.0) - result = -i*ln(sqrt(1-1/(z*z))+i/z) +proc arccsc*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse cosecant of ``z``. + result = -im(T) * ln(sqrt(T(1.0) - T(1.0)/(z*z)) + im(T)/z) +proc sinh*[T](z: Complex[T]): Complex[T] = + ## Returns the hyperbolic sine of ``z``. + result = T(0.5) * (exp(z) - exp(-z)) -proc sinh*(z: Complex): Complex = - ## Returns the hyperbolic sine of `z`. - result = 0.5*(exp(z)-exp(-z)) +proc arcsinh*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse hyperbolic sine of ``z``. + result = ln(z + sqrt(z*z + 1.0)) -proc arcsinh*(z: Complex): Complex = - ## Returns the inverse hyperbolic sine of `z`. - result = ln(z+sqrt(z*z+1)) +proc cosh*[T](z: Complex[T]): Complex[T] = + ## Returns the hyperbolic cosine of ``z``. + result = T(0.5) * (exp(z) + exp(-z)) -proc cosh*(z: Complex): Complex = - ## Returns the hyperbolic cosine of `z`. - result = 0.5*(exp(z)+exp(-z)) +proc arccosh*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse hyperbolic cosine of ``z``. + result = ln(z + sqrt(z*z - T(1.0))) -proc arccosh*(z: Complex): Complex = - ## Returns the inverse hyperbolic cosine of `z`. - result = ln(z+sqrt(z*z-1)) +proc tanh*[T](z: Complex[T]): Complex[T] = + ## Returns the hyperbolic tangent of ``z``. + result = sinh(z) / cosh(z) -proc tanh*(z: Complex): Complex = - ## Returns the hyperbolic tangent of `z`. - result = sinh(z)/cosh(z) +proc arctanh*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse hyperbolic tangent of ``z``. + result = T(0.5) * (ln((T(1.0)+z) / (T(1.0)-z))) -proc arctanh*(z: Complex): Complex = - ## Returns the inverse hyperbolic tangent of `z`. - result = 0.5*(ln((1+z)/(1-z))) +proc sech*[T](z: Complex[T]): Complex[T] = + ## Returns the hyperbolic secant of ``z``. + result = T(2.0) / (exp(z) + exp(-z)) -proc sech*(z: Complex): Complex = - ## Returns the hyperbolic secant of `z`. - result = 2/(exp(z)+exp(-z)) +proc arcsech*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse hyperbolic secant of ``z``. + result = ln(1.0/z + sqrt(T(1.0)/z+T(1.0)) * sqrt(T(1.0)/z-T(1.0))) -proc arcsech*(z: Complex): Complex = - ## Returns the inverse hyperbolic secant of `z`. - result = ln(1/z+sqrt(1/z+1)*sqrt(1/z-1)) +proc csch*[T](z: Complex[T]): Complex[T] = + ## Returns the hyperbolic cosecant of ``z``. + result = T(2.0) / (exp(z) - exp(-z)) -proc csch*(z: Complex): Complex = - ## Returns the hyperbolic cosecant of `z`. - result = 2/(exp(z)-exp(-z)) +proc arccsch*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse hyperbolic cosecant of ``z``. + result = ln(T(1.0)/z + sqrt(T(1.0)/(z*z) + T(1.0))) -proc arccsch*(z: Complex): Complex = - ## Returns the inverse hyperbolic cosecant of `z`. - result = ln(1/z+sqrt(1/(z*z)+1)) +proc coth*[T](z: Complex[T]): Complex[T] = + ## Returns the hyperbolic cotangent of ``z``. + result = cosh(z) / sinh(z) -proc coth*(z: Complex): Complex = - ## Returns the hyperbolic cotangent of `z`. - result = cosh(z)/sinh(z) +proc arccoth*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse hyperbolic cotangent of ``z``. + result = T(0.5) * (ln(T(1.0) + T(1.0)/z) - ln(T(1.0) - T(1.0)/z)) -proc arccoth*(z: Complex): Complex = - ## Returns the inverse hyperbolic cotangent of `z`. - result = 0.5*(ln(1+1/z)-ln(1-1/z)) - -proc phase*(z: Complex): float = - ## Returns the phase of `z`. +proc phase*[T](z: Complex[T]): T = + ## Returns the phase of ``z``. arctan2(z.im, z.re) -proc polar*(z: Complex): tuple[r, phi: float] = - ## Returns `z` in polar coordinates. - result.r = abs(z) - result.phi = phase(z) +proc polar*[T](z: Complex[T]): tuple[r, phi: T] = + ## Returns ``z`` in polar coordinates. + (r: abs(z), phi: phase(z)) -proc rect*(r: float, phi: float): Complex = - ## Returns the complex number with polar coordinates `r` and `phi`. - result.re = r * cos(phi) - result.im = r * sin(phi) +proc rect*[T](r, phi: T): Complex[T] = + ## Returns the complex number with polar coordinates ``r`` and ``phi``. + ## + ## | ``result.re = r * cos(phi)`` + ## | ``result.im = r * sin(phi)`` + complex(r * cos(phi), r * sin(phi)) proc `$`*(z: Complex): string = - ## Returns `z`'s string representation as ``"(re, im)"``. + ## Returns ``z``'s string representation as ``"(re, im)"``. result = "(" & $z.re & ", " & $z.im & ")" {.pop.} when isMainModule: - var z = (0.0, 0.0) - var oo = (1.0,1.0) - var a = (1.0, 2.0) - var b = (-1.0, -2.0) - var m1 = (-1.0, 0.0) - var i = (0.0,1.0) - var one = (1.0,0.0) - var tt = (10.0, 20.0) - var ipi = (0.0, -PI) - - assert( a == a ) - assert( (a-a) == z ) - assert( (a+b) == z ) - assert( (a/b) == m1 ) - assert( (1.0/a) == (0.2, -0.4) ) - assert( (a*b) == (3.0, -4.0) ) - assert( 10.0*a == tt ) - assert( a*10.0 == tt ) - assert( tt/10.0 == a ) - assert( oo+(-1.0) == i ) - assert( (-1.0)+oo == i ) - assert( abs(oo) == sqrt(2.0) ) - assert( conjugate(a) == (1.0, -2.0) ) - assert( sqrt(m1) == i ) - assert( exp(ipi) =~ m1 ) - - assert( pow(a,b) =~ (-3.72999124927876, -1.68815826725068) ) - assert( pow(z,a) =~ (0.0, 0.0) ) - assert( pow(z,z) =~ (1.0, 0.0) ) - assert( pow(a,one) =~ a ) - assert( pow(a,m1) =~ (0.2, -0.4) ) - - assert( ln(a) =~ (0.804718956217050, 1.107148717794090) ) - assert( log10(a) =~ (0.349485002168009, 0.480828578784234) ) - assert( log2(a) =~ (1.16096404744368, 1.59727796468811) ) - - assert( sin(a) =~ (3.16577851321617, 1.95960104142161) ) - assert( cos(a) =~ (2.03272300701967, -3.05189779915180) ) - assert( tan(a) =~ (0.0338128260798967, 1.0147936161466335) ) - assert( cot(a) =~ 1.0/tan(a) ) - assert( sec(a) =~ 1.0/cos(a) ) - assert( csc(a) =~ 1.0/sin(a) ) - assert( arcsin(a) =~ (0.427078586392476, 1.528570919480998) ) - assert( arccos(a) =~ (1.14371774040242, -1.52857091948100) ) - assert( arctan(a) =~ (1.338972522294494, 0.402359478108525) ) - - assert( cosh(a) =~ (-0.642148124715520, 1.068607421382778) ) - assert( sinh(a) =~ (-0.489056259041294, 1.403119250622040) ) - assert( tanh(a) =~ (1.1667362572409199,-0.243458201185725) ) - assert( sech(a) =~ 1/cosh(a) ) - assert( csch(a) =~ 1/sinh(a) ) - assert( coth(a) =~ 1/tanh(a) ) - assert( arccosh(a) =~ (1.528570919480998, 1.14371774040242) ) - assert( arcsinh(a) =~ (1.469351744368185, 1.06344002357775) ) - assert( arctanh(a) =~ (0.173286795139986, 1.17809724509617) ) - assert( arcsech(a) =~ arccosh(1/a) ) - assert( arccsch(a) =~ arcsinh(1/a) ) - assert( arccoth(a) =~ arctanh(1/a) ) - - assert( phase(a) == 1.1071487177940904 ) + proc `=~`[T](x, y: Complex[T]): bool = + result = abs(x.re-y.re) < 1e-6 and abs(x.im-y.im) < 1e-6 + + proc `=~`[T](x: Complex[T], y: T): bool = + result = abs(x.re-y) < 1e-6 and abs(x.im) < 1e-6 + + var + z: Complex64 = complex(0.0, 0.0) + oo: Complex64 = complex(1.0, 1.0) + a: Complex64 = complex(1.0, 2.0) + b: Complex64 = complex(-1.0, -2.0) + m1: Complex64 = complex(-1.0, 0.0) + i: Complex64 = complex(0.0, 1.0) + one: Complex64 = complex(1.0, 0.0) + tt: Complex64 = complex(10.0, 20.0) + ipi: Complex64 = complex(0.0, -PI) + + doAssert(a/2.0 =~ complex(0.5, 1.0)) + doAssert(a == a) + doAssert((a-a) == z) + doAssert((a+b) == z) + doAssert((a+b) =~ 0.0) + doAssert((a/b) == m1) + doAssert((1.0/a) == complex(0.2, -0.4)) + doAssert((a*b) == complex(3.0, -4.0)) + doAssert(10.0*a == tt) + doAssert(a*10.0 == tt) + doAssert(tt/10.0 == a) + doAssert(oo+(-1.0) == i) + doAssert( (-1.0)+oo == i) + doAssert(abs(oo) == sqrt(2.0)) + doAssert(conjugate(a) == complex(1.0, -2.0)) + doAssert(sqrt(m1) == i) + doAssert(exp(ipi) =~ m1) + + doAssert(pow(a, b) =~ complex(-3.72999124927876, -1.68815826725068)) + doAssert(pow(z, a) =~ complex(0.0, 0.0)) + doAssert(pow(z, z) =~ complex(1.0, 0.0)) + doAssert(pow(a, one) =~ a) + doAssert(pow(a, m1) =~ complex(0.2, -0.4)) + doAssert(pow(a, 2.0) =~ complex(-3.0, 4.0)) + doAssert(pow(a, 2) =~ complex(-3.0, 4.0)) + doAssert(not(pow(a, 2.0) =~ a)) + + doAssert(ln(a) =~ complex(0.804718956217050, 1.107148717794090)) + doAssert(log10(a) =~ complex(0.349485002168009, 0.480828578784234)) + doAssert(log2(a) =~ complex(1.16096404744368, 1.59727796468811)) + + doAssert(sin(a) =~ complex(3.16577851321617, 1.95960104142161)) + doAssert(cos(a) =~ complex(2.03272300701967, -3.05189779915180)) + doAssert(tan(a) =~ complex(0.0338128260798967, 1.0147936161466335)) + doAssert(cot(a) =~ 1.0 / tan(a)) + doAssert(sec(a) =~ 1.0 / cos(a)) + doAssert(csc(a) =~ 1.0 / sin(a)) + doAssert(arcsin(a) =~ complex(0.427078586392476, 1.528570919480998)) + doAssert(arccos(a) =~ complex(1.14371774040242, -1.52857091948100)) + doAssert(arctan(a) =~ complex(1.338972522294494, 0.402359478108525)) + doAssert(arccot(a) =~ complex(0.2318238045004031, -0.402359478108525)) + doAssert(arcsec(a) =~ complex(1.384478272687081, 0.3965682301123288)) + doAssert(arccsc(a) =~ complex(0.1863180541078155, -0.3965682301123291)) + + doAssert(cosh(a) =~ complex(-0.642148124715520, 1.068607421382778)) + doAssert(sinh(a) =~ complex(-0.489056259041294, 1.403119250622040)) + doAssert(tanh(a) =~ complex(1.1667362572409199, -0.243458201185725)) + doAssert(sech(a) =~ 1.0 / cosh(a)) + doAssert(csch(a) =~ 1.0 / sinh(a)) + doAssert(coth(a) =~ 1.0 / tanh(a)) + doAssert(arccosh(a) =~ complex(1.528570919480998, 1.14371774040242)) + doAssert(arcsinh(a) =~ complex(1.469351744368185, 1.06344002357775)) + doAssert(arctanh(a) =~ complex(0.173286795139986, 1.17809724509617)) + doAssert(arcsech(a) =~ arccosh(1.0/a)) + doAssert(arccsch(a) =~ arcsinh(1.0/a)) + doAssert(arccoth(a) =~ arctanh(1.0/a)) + + doAssert(phase(a) == 1.1071487177940904) var t = polar(a) - assert( rect(t.r, t.phi) =~ a ) - assert( rect(1.0, 2.0) =~ (-0.4161468365471424, 0.9092974268256817) ) + doAssert(rect(t.r, t.phi) =~ a) + doAssert(rect(1.0, 2.0) =~ complex(-0.4161468365471424, 0.9092974268256817)) + + + var + i64: Complex32 = complex(0.0f, 1.0f) + a64: Complex32 = 2.0f*i64 + 1.0.float32 + b64: Complex32 = complex(-1.0'f32, -2.0'f32) + + doAssert(a64 == a64) + doAssert(a64 == -b64) + doAssert(a64 + b64 =~ 0.0'f32) + doAssert(not(pow(a64, b64) =~ a64)) + doAssert(pow(a64, 0.5f) =~ sqrt(a64)) + doAssert(pow(a64, 2) =~ complex(-3.0'f32, 4.0'f32)) + doAssert(sin(arcsin(b64)) =~ b64) + doAssert(cosh(arccosh(a64)) =~ a64) + + doAssert(phase(a64) - 1.107149f < 1e-6) + var t64 = polar(a64) + doAssert(rect(t64.r, t64.phi) =~ a64) + doAssert(rect(1.0f, 2.0f) =~ complex(-0.4161468f, 0.90929742f)) + doAssert(sizeof(a64) == 8) + doAssert(sizeof(a) == 16) + + doAssert 123.0.im + 456.0 == complex64(456, 123) |