diff options
author | Andreas Rumpf <andreas@andreas-desktop> | 2009-12-09 01:49:43 +0100 |
---|---|---|
committer | Andreas Rumpf <andreas@andreas-desktop> | 2009-12-09 01:49:43 +0100 |
commit | 5d11292542c3e154ef84f261ca0461ce7d3ba4af (patch) | |
tree | 3d9453081a40865f4dab3dc4f58a0a9c3af04afd /nimlib/system.nim | |
parent | 93a140b904f3604dfb5b1dee773ac78d991aa49d (diff) | |
download | Nim-5d11292542c3e154ef84f261ca0461ce7d3ba4af.tar.gz |
Pascal version of compiler uses nimlib
Diffstat (limited to 'nimlib/system.nim')
-rwxr-xr-x | nimlib/system.nim | 1531 |
1 files changed, 1531 insertions, 0 deletions
diff --git a/nimlib/system.nim b/nimlib/system.nim new file mode 100755 index 000000000..174d739cd --- /dev/null +++ b/nimlib/system.nim @@ -0,0 +1,1531 @@ +# +# +# Nimrod's Runtime Library +# (c) Copyright 2009 Andreas Rumpf +# +# See the file "copying.txt", included in this +# distribution, for details about the copyright. +# + +## The compiler depends on the System module to work properly and the System +## module depends on the compiler. Most of the routines listed here use +## special compiler magic. +## Each module implicitly imports the System module; it may not be listed +## explicitly. Because of this there cannot be a user-defined module named +## ``system``. + +{.push hints: off.} + +type + int* {.magic: Int.} ## default integer type; bitwidth depends on + ## architecture, but is always the same as a pointer + int8* {.magic: Int8.} ## signed 8 bit integer type + int16* {.magic: Int16.} ## signed 16 bit integer type + int32* {.magic: Int32.} ## signed 32 bit integer type + int64* {.magic: Int64.} ## signed 64 bit integer type + float* {.magic: Float.} ## default floating point type + float32* {.magic: Float32.} ## 32 bit floating point type + float64* {.magic: Float64.} ## 64 bit floating point type +type # we need to start a new type section here, so that ``0`` can have a type + bool* {.magic: Bool.} = enum ## built-in boolean type + false = 0, true = 1 + +type + char* {.magic: Char.} ## built-in 8 bit character type (unsigned) + string* {.magic: String.} ## built-in string type + cstring* {.magic: Cstring.} ## built-in cstring (*compatible string*) type + pointer* {.magic: Pointer.} ## built-in pointer type + Ordinal* {.magic: Ordinal.}[T] + +type + `nil` {.magic: "Nil".} + expr* {.magic: Expr.} ## meta type to denote an expression (for templates) + stmt* {.magic: Stmt.} ## meta type to denote a statement (for templates) + typeDesc* {.magic: TypeDesc.} ## meta type to denote + ## a type description (for templates) + +proc defined*[T](x: T): bool {.magic: "Defined", noSideEffect.} + ## Special comile-time procedure that checks whether `x` is + ## defined. `x` has to be an identifier or a qualified identifier. + ## This can be used to check whether a library provides a certain + ## feature or not: + ## + ## .. code-block:: Nimrod + ## when not defined(strutils.toUpper): + ## # provide our own toUpper proc here, because strutils is + ## # missing it. + +proc definedInScope*[T](x: T): bool {. + magic: "DefinedInScope", noSideEffect.} + ## Special comile-time procedure that checks whether `x` is + ## defined in the current scope. `x` has to be an identifier. + +# these require compiler magic: +proc `not` *(x: bool): bool {.magic: "Not", noSideEffect.} + ## Boolean not; returns true iff ``x == false``. + +proc `and`*(x, y: bool): bool {.magic: "And", noSideEffect.} + ## Boolean ``and``; returns true iff ``x == y == true``. + ## Evaluation is short-circuited: This means that if ``x`` is false, + ## ``y`` will not even be evaluated. +proc `or`*(x, y: bool): bool {.magic: "Or", noSideEffect.} + ## Boolean ``or``; returns true iff ``not (not x and not y)``. + ## Evaluation is short-circuited: This means that if ``x`` is true, + ## ``y`` will not even be evaluated. +proc `xor`*(x, y: bool): bool {.magic: "Xor", noSideEffect.} + ## Boolean `exclusive or`; returns true iff ``x != y``. + +proc new*[T](a: var ref T) {.magic: "New", noSideEffect.} + ## creates a new object of type ``T`` and returns a safe (traced) + ## reference to it in ``a``. + +proc new*[T](a: var ref T, finalizer: proc (x: ref T)) {. + magic: "NewFinalize", noSideEffect.} + ## creates a new object of type ``T`` and returns a safe (traced) + ## reference to it in ``a``. When the garbage collector frees the object, + ## `finalizer` is called. The `finalizer` may not keep a reference to the + ## object pointed to by `x`. The `finalizer` cannot prevent the GC from + ## freeing the object. Note: The `finalizer` refers to the type `T`, not to + ## the object! This means that for each object of type `T` the finalizer + ## will be called! + +# for low and high the return type T may not be correct, but +# we handle that with compiler magic in SemLowHigh() +proc high*[T](x: T): T {.magic: "High", noSideEffect.} + ## returns the highest possible index of an array, a sequence, a string or + ## the highest possible value of an ordinal value `x`. As a special + ## semantic rule, `x` may also be a type identifier. + +proc low*[T](x: T): T {.magic: "Low", noSideEffect.} + ## returns the lowest possible index of an array, a sequence, a string or + ## the lowest possible value of an ordinal value `x`. As a special + ## semantic rule, `x` may also be a type identifier. + +type + range*{.magic: "Range".} [T] ## Generic type to construct range types. + array*{.magic: "Array".}[I, T] ## Generic type to construct + ## fixed-length arrays. + openarray*{.magic: "OpenArray".}[T] ## Generic type to construct open arrays. + ## Open arrays are implemented as a + ## pointer to the array data and a + ## length field. + seq*{.magic: "Seq".}[T] ## Generic type to construct sequences. + set*{.magic: "Set".}[T] ## Generic type to construct bit sets. + +when not defined(EcmaScript) and not defined(NimrodVM): + type + TGenericSeq {.compilerproc, pure.} = object + len, space: int + PGenericSeq {.exportc.} = ptr TGenericSeq + # len and space without counting the terminating zero: + NimStringDesc {.compilerproc, final.} = object of TGenericSeq + data: array[0..100_000_000, char] + NimString = ptr NimStringDesc + + include "system/hti" + +type + Byte* = Int8 ## this is an alias for ``int8``, that is a signed + ## int 8 bits wide. + + Natural* = range[0..high(int)] + ## is an int type ranging from zero to the maximum value + ## of an int. This type is often useful for documentation and debugging. + + Positive* = range[1..high(int)] + ## is an int type ranging from one to the maximum value + ## of an int. This type is often useful for documentation and debugging. + + TObject* {.exportc: "TNimObject".} = + object ## the root of Nimrod's object hierarchy. Objects should + ## inherit from TObject or one of its descendants. However, + ## objects that have no ancestor are allowed. + PObject* = ref TObject ## reference to TObject + + E_Base* {.compilerproc.} = object of TObject ## base exception class; + ## each exception has to + ## inherit from `E_Base`. + name*: cstring ## The exception's name is its Nimrod identifier. + ## This field is filled automatically in the + ## ``raise`` statement. + msg* {.exportc: "message".}: cstring ## the exception's message. Not + ## providing an + ## exception message is bad style. + + EAsynch* = object of E_Base ## Abstract exception class for + ## *asynchronous exceptions* (interrupts). + ## This is rarely needed: Most + ## exception types inherit from `ESynch` + ESynch* = object of E_Base ## Abstract exception class for + ## *synchronous exceptions*. Most exceptions + ## should be inherited (directly or indirectly) + ## from ESynch. + ESystem* = object of ESynch ## Abstract class for exceptions that the runtime + ## system raises. + EIO* = object of ESystem ## raised if an IO error occured. + EOS* = object of ESystem ## raised if an operating system service failed. + EInvalidLibrary* = object of EOS ## raised if a dynamic library + ## could not be loaded. + ERessourceExhausted* = object of ESystem ## raised if a ressource request + ## could not be fullfilled. + EArithmetic* = object of ESynch ## raised if any kind of arithmetic + ## error occured. + EDivByZero* {.compilerproc.} = + object of EArithmetic ## is the exception class for integer divide-by-zero + ## errors. + EOverflow* {.compilerproc.} = + object of EArithmetic ## is the exception class for integer calculations + ## whose results are too large to fit in the + ## provided bits. + + EAccessViolation* {.compilerproc.} = + object of ESynch ## the exception class for invalid memory access errors + + EAssertionFailed* {.compilerproc.} = + object of ESynch ## is the exception class for Assert + ## procedures that is raised if the + ## assertion proves wrong + + EControlC* = object of EAsynch ## is the exception class for Ctrl+C + ## key presses in console applications. + + EInvalidValue* = object of ESynch ## is the exception class for string + ## and object conversion errors. + + EOutOfMemory* = object of ESystem ## is the exception class for + ## unsuccessful attempts to allocate + ## memory. + + EInvalidIndex* = object of ESynch ## is raised if an array index is out + ## of bounds. + EInvalidField* = object of ESynch ## is raised if a record field is not + ## accessible because its dicriminant's + ## value does not fit. + + EOutOfRange* = object of ESynch ## is raised if a range check error + ## occured. + + EStackOverflow* = object of ESystem ## is raised if the hardware stack + ## used for subroutine calls overflowed. + + ENoExceptionToReraise* = object of ESynch ## is raised if there is no + ## exception to reraise. + + EInvalidObjectAssignment* = + object of ESynch ## is raised if an object gets assigned to its + ## farther's object. + + EInvalidObjectConversion* = + object of ESynch ## is raised if an object is converted to an incompatible + ## object type. + + TResult* = enum Failure, Success + +proc sizeof*[T](x: T): natural {.magic: "SizeOf", noSideEffect.} + ## returns the size of ``x`` in bytes. Since this is a low-level proc, + ## its usage is discouraged - using ``new`` for the most cases suffices + ## that one never needs to know ``x``'s size. As a special semantic rule, + ## ``x`` may also be a type identifier (``sizeof(int)`` is valid). + +proc succ*[T](x: ordinal[T], y = 1): T {.magic: "Succ", noSideEffect.} + ## returns the ``y``-th successor of the value ``x``. ``T`` has to be + ## an ordinal type. If such a value does not exist, ``EOutOfRange`` is raised + ## or a compile time error occurs. + +proc pred*[T](x: ordinal[T], y = 1): T {.magic: "Pred", noSideEffect.} + ## returns the ``y``-th predecessor of the value ``x``. ``T`` has to be + ## an ordinal type. If such a value does not exist, ``EOutOfRange`` is raised + ## or a compile time error occurs. + +proc inc*[T](x: var ordinal[T], y = 1) {.magic: "Inc", noSideEffect.} + ## increments the ordinal ``x`` by ``y``. If such a value does not + ## exist, ``EOutOfRange`` is raised or a compile time error occurs. This is a + ## short notation for: ``x = succ(x, y)``. + +proc dec*[T](x: var ordinal[T], y = 1) {.magic: "Dec", noSideEffect.} + ## decrements the ordinal ``x`` by ``y``. If such a value does not + ## exist, ``EOutOfRange`` is raised or a compile time error occurs. This is a + ## short notation for: ``x = pred(x, y)``. + +proc newSeq*[T](s: var seq[T], len: int) {.magic: "NewSeq", noSideEffect.} + ## creates a new sequence of type ``seq[T]`` with length ``len``. + ## This is equivalent to ``s = @[]; setlen(s, len)``, but more + ## efficient since no reallocation is needed. + +proc len*[T](x: openarray[T]): int {.magic: "LengthOpenArray", noSideEffect.} +proc len*(x: string): int {.magic: "LengthStr", noSideEffect.} +proc len*(x: cstring): int {.magic: "LengthStr", noSideEffect.} +proc len*[I, T](x: array[I, T]): int {.magic: "LengthArray", noSideEffect.} +proc len*[T](x: seq[T]): int {.magic: "LengthSeq", noSideEffect.} + ## returns the length of an array, a sequence or a string. + ## This is rougly the same as ``high(T)-low(T)+1``, but its resulting type is + ## always an int. + +# set routines: +proc incl*[T](x: var set[T], y: T) {.magic: "Incl", noSideEffect.} + ## includes element ``y`` to the set ``x``. This is the same as + ## ``x = x + {y}``, but it might be more efficient. + +proc excl*[T](x: var set[T], y: T) {.magic: "Excl", noSideEffect.} + ## excludes element ``y`` to the set ``x``. This is the same as + ## ``x = x - {y}``, but it might be more efficient. + +proc card*[T](x: set[T]): int {.magic: "Card", noSideEffect.} + ## returns the cardinality of the set ``x``, i.e. the number of elements + ## in the set. + +proc ord*[T](x: T): int {.magic: "Ord", noSideEffect.} + ## returns the internal int value of an ordinal value ``x``. + +proc chr*(u: range[0..255]): char {.magic: "Chr", noSideEffect.} + ## converts an int in the range 0..255 to a character. + +# -------------------------------------------------------------------------- +# built-in operators + +proc ze*(x: int8): int {.magic: "Ze8ToI", noSideEffect.} + ## zero extends a smaller integer type to ``int``. This treats `x` as + ## unsigned. +proc ze*(x: int16): int {.magic: "Ze16ToI", noSideEffect.} + ## zero extends a smaller integer type to ``int``. This treats `x` as + ## unsigned. + +proc ze64*(x: int8): int64 {.magic: "Ze8ToI64", noSideEffect.} + ## zero extends a smaller integer type to ``int64``. This treats `x` as + ## unsigned. +proc ze64*(x: int16): int64 {.magic: "Ze16ToI64", noSideEffect.} + ## zero extends a smaller integer type to ``int64``. This treats `x` as + ## unsigned. + +proc ze64*(x: int32): int64 {.magic: "Ze32ToI64", noSideEffect.} + ## zero extends a smaller integer type to ``int64``. This treats `x` as + ## unsigned. +proc ze64*(x: int): int64 {.magic: "ZeIToI64", noDecl, noSideEffect.} + ## zero extends a smaller integer type to ``int64``. This treats `x` as + ## unsigned. Does nothing if the size of an ``int`` is the same as ``int64``. + ## (This is the case on 64 bit processors.) + +proc toU8*(x: int): int8 {.magic: "ToU8", noSideEffect.} + ## treats `x` as unsigned and converts it to a byte by taking the last 8 bits + ## from `x`. +proc toU16*(x: int): int16 {.magic: "ToU16", noSideEffect.} + ## treats `x` as unsigned and converts it to an ``int16`` by taking the last + ## 16 bits from `x`. +proc toU32*(x: int64): int32 {.magic: "ToU32", noSideEffect.} + ## treats `x` as unsigned and converts it to an ``int32`` by taking the + ## last 32 bits from `x`. + + +# integer calculations: +proc `+` *(x: int): int {.magic: "UnaryPlusI", noSideEffect.} +proc `+` *(x: int8): int8 {.magic: "UnaryPlusI", noSideEffect.} +proc `+` *(x: int16): int16 {.magic: "UnaryPlusI", noSideEffect.} +proc `+` *(x: int32): int32 {.magic: "UnaryPlusI", noSideEffect.} +proc `+` *(x: int64): int64 {.magic: "UnaryPlusI64", noSideEffect.} + ## Unary `+` operator for an integer. Has no effect. + +proc `-` *(x: int): int {.magic: "UnaryMinusI", noSideEffect.} +proc `-` *(x: int8): int8 {.magic: "UnaryMinusI", noSideEffect.} +proc `-` *(x: int16): int16 {.magic: "UnaryMinusI", noSideEffect.} +proc `-` *(x: int32): int32 {.magic: "UnaryMinusI", noSideEffect.} +proc `-` *(x: int64): int64 {.magic: "UnaryMinusI64", noSideEffect.} + ## Unary `-` operator for an integer. Negates `x`. + +proc `not` *(x: int): int {.magic: "BitnotI", noSideEffect.} +proc `not` *(x: int8): int8 {.magic: "BitnotI", noSideEffect.} +proc `not` *(x: int16): int16 {.magic: "BitnotI", noSideEffect.} +proc `not` *(x: int32): int32 {.magic: "BitnotI", noSideEffect.} +proc `not` *(x: int64): int64 {.magic: "BitnotI64", noSideEffect.} + ## computes the `bitwise complement` of the integer `x`. + +proc `+` *(x, y: int): int {.magic: "AddI", noSideEffect.} +proc `+` *(x, y: int8): int8 {.magic: "AddI", noSideEffect.} +proc `+` *(x, y: int16): int16 {.magic: "AddI", noSideEffect.} +proc `+` *(x, y: int32): int32 {.magic: "AddI", noSideEffect.} +proc `+` *(x, y: int64): int64 {.magic: "AddI64", noSideEffect.} + ## Binary `+` operator for an integer. + +proc `-` *(x, y: int): int {.magic: "SubI", noSideEffect.} +proc `-` *(x, y: int8): int8 {.magic: "SubI", noSideEffect.} +proc `-` *(x, y: int16): int16 {.magic: "SubI", noSideEffect.} +proc `-` *(x, y: int32): int32 {.magic: "SubI", noSideEffect.} +proc `-` *(x, y: int64): int64 {.magic: "SubI64", noSideEffect.} + ## Binary `-` operator for an integer. + +proc `*` *(x, y: int): int {.magic: "MulI", noSideEffect.} +proc `*` *(x, y: int8): int8 {.magic: "MulI", noSideEffect.} +proc `*` *(x, y: int16): int16 {.magic: "MulI", noSideEffect.} +proc `*` *(x, y: int32): int32 {.magic: "MulI", noSideEffect.} +proc `*` *(x, y: int64): int64 {.magic: "MulI64", noSideEffect.} + ## Binary `*` operator for an integer. + +proc `div` *(x, y: int): int {.magic: "DivI", noSideEffect.} +proc `div` *(x, y: int8): int8 {.magic: "DivI", noSideEffect.} +proc `div` *(x, y: int16): int16 {.magic: "DivI", noSideEffect.} +proc `div` *(x, y: int32): int32 {.magic: "DivI", noSideEffect.} +proc `div` *(x, y: int64): int64 {.magic: "DivI64", noSideEffect.} + ## computes the integer division. This is roughly the same as + ## ``floor(x/y)``. + +proc `mod` *(x, y: int): int {.magic: "ModI", noSideEffect.} +proc `mod` *(x, y: int8): int8 {.magic: "ModI", noSideEffect.} +proc `mod` *(x, y: int16): int16 {.magic: "ModI", noSideEffect.} +proc `mod` *(x, y: int32): int32 {.magic: "ModI", noSideEffect.} +proc `mod` *(x, y: int64): int64 {.magic: "ModI64", noSideEffect.} + ## computes the integer modulo operation. This is the same as + ## ``x - (x div y) * y``. + +proc `shr` *(x, y: int): int {.magic: "ShrI", noSideEffect.} +proc `shr` *(x, y: int8): int8 {.magic: "ShrI", noSideEffect.} +proc `shr` *(x, y: int16): int16 {.magic: "ShrI", noSideEffect.} +proc `shr` *(x, y: int32): int32 {.magic: "ShrI", noSideEffect.} +proc `shr` *(x, y: int64): int64 {.magic: "ShrI64", noSideEffect.} + ## computes the `shift right` operation of `x` and `y`. + +proc `shl` *(x, y: int): int {.magic: "ShlI", noSideEffect.} +proc `shl` *(x, y: int8): int8 {.magic: "ShlI", noSideEffect.} +proc `shl` *(x, y: int16): int16 {.magic: "ShlI", noSideEffect.} +proc `shl` *(x, y: int32): int32 {.magic: "ShlI", noSideEffect.} +proc `shl` *(x, y: int64): int64 {.magic: "ShlI64", noSideEffect.} + ## computes the `shift left` operation of `x` and `y`. + +proc `and` *(x, y: int): int {.magic: "BitandI", noSideEffect.} +proc `and` *(x, y: int8): int8 {.magic: "BitandI", noSideEffect.} +proc `and` *(x, y: int16): int16 {.magic: "BitandI", noSideEffect.} +proc `and` *(x, y: int32): int32 {.magic: "BitandI", noSideEffect.} +proc `and` *(x, y: int64): int64 {.magic: "BitandI64", noSideEffect.} + ## computes the `bitwise and` of numbers `x` and `y`. + +proc `or` *(x, y: int): int {.magic: "BitorI", noSideEffect.} +proc `or` *(x, y: int8): int8 {.magic: "BitorI", noSideEffect.} +proc `or` *(x, y: int16): int16 {.magic: "BitorI", noSideEffect.} +proc `or` *(x, y: int32): int32 {.magic: "BitorI", noSideEffect.} +proc `or` *(x, y: int64): int64 {.magic: "BitorI64", noSideEffect.} + ## computes the `bitwise or` of numbers `x` and `y`. + +proc `xor` *(x, y: int): int {.magic: "BitxorI", noSideEffect.} +proc `xor` *(x, y: int8): int8 {.magic: "BitxorI", noSideEffect.} +proc `xor` *(x, y: int16): int16 {.magic: "BitxorI", noSideEffect.} +proc `xor` *(x, y: int32): int32 {.magic: "BitxorI", noSideEffect.} +proc `xor` *(x, y: int64): int64 {.magic: "BitxorI64", noSideEffect.} + ## computes the `bitwise xor` of numbers `x` and `y`. + +proc `==` *(x, y: int): bool {.magic: "EqI", noSideEffect.} +proc `==` *(x, y: int8): bool {.magic: "EqI", noSideEffect.} +proc `==` *(x, y: int16): bool {.magic: "EqI", noSideEffect.} +proc `==` *(x, y: int32): bool {.magic: "EqI", noSideEffect.} +proc `==` *(x, y: int64): bool {.magic: "EqI64", noSideEffect.} + ## Compares two integers for equality. + +proc `<=` *(x, y: int): bool {.magic: "LeI", noSideEffect.} +proc `<=` *(x, y: int8): bool {.magic: "LeI", noSideEffect.} +proc `<=` *(x, y: int16): bool {.magic: "LeI", noSideEffect.} +proc `<=` *(x, y: int32): bool {.magic: "LeI", noSideEffect.} +proc `<=` *(x, y: int64): bool {.magic: "LeI64", noSideEffect.} + ## Returns true iff `x` is less than or equal to `y`. + +proc `<` *(x, y: int): bool {.magic: "LtI", noSideEffect.} +proc `<` *(x, y: int8): bool {.magic: "LtI", noSideEffect.} +proc `<` *(x, y: int16): bool {.magic: "LtI", noSideEffect.} +proc `<` *(x, y: int32): bool {.magic: "LtI", noSideEffect.} +proc `<` *(x, y: int64): bool {.magic: "LtI64", noSideEffect.} + ## Returns true iff `x` is less than `y`. + +proc abs*(x: int): int {.magic: "AbsI", noSideEffect.} +proc abs*(x: int8): int8 {.magic: "AbsI", noSideEffect.} +proc abs*(x: int16): int16 {.magic: "AbsI", noSideEffect.} +proc abs*(x: int32): int32 {.magic: "AbsI", noSideEffect.} +proc abs*(x: int64): int64 {.magic: "AbsI64", noSideEffect.} + ## returns the absolute value of `x`. If `x` is ``low(x)`` (that + ## is -MININT for its type), an overflow exception is thrown (if overflow + ## checking is turned on). + +proc `+%` *(x, y: int): int {.magic: "AddU", noSideEffect.} +proc `+%` *(x, y: int8): int8 {.magic: "AddU", noSideEffect.} +proc `+%` *(x, y: int16): int16 {.magic: "AddU", noSideEffect.} +proc `+%` *(x, y: int32): int32 {.magic: "AddU", noSideEffect.} +proc `+%` *(x, y: int64): int64 {.magic: "AddU64", noSideEffect.} + ## treats `x` and `y` as unsigned and adds them. The result is truncated to + ## fit into the result. This implements modulo arithmetic. No overflow + ## errors are possible. + +proc `-%` *(x, y: int): int {.magic: "SubU", noSideEffect.} +proc `-%` *(x, y: int8): int8 {.magic: "SubU", noSideEffect.} +proc `-%` *(x, y: int16): int16 {.magic: "SubU", noSideEffect.} +proc `-%` *(x, y: int32): int32 {.magic: "SubU", noSideEffect.} +proc `-%` *(x, y: int64): int64 {.magic: "SubU64", noSideEffect.} + ## treats `x` and `y` as unsigned and subtracts them. The result is + ## truncated to fit into the result. This implements modulo arithmetic. + ## No overflow errors are possible. + +proc `*%` *(x, y: int): int {.magic: "MulU", noSideEffect.} +proc `*%` *(x, y: int8): int8 {.magic: "MulU", noSideEffect.} +proc `*%` *(x, y: int16): int16 {.magic: "MulU", noSideEffect.} +proc `*%` *(x, y: int32): int32 {.magic: "MulU", noSideEffect.} +proc `*%` *(x, y: int64): int64 {.magic: "MulU64", noSideEffect.} + ## treats `x` and `y` as unsigned and multiplies them. The result is + ## truncated to fit into the result. This implements modulo arithmetic. + ## No overflow errors are possible. + +proc `/%` *(x, y: int): int {.magic: "DivU", noSideEffect.} +proc `/%` *(x, y: int8): int8 {.magic: "DivU", noSideEffect.} +proc `/%` *(x, y: int16): int16 {.magic: "DivU", noSideEffect.} +proc `/%` *(x, y: int32): int32 {.magic: "DivU", noSideEffect.} +proc `/%` *(x, y: int64): int64 {.magic: "DivU64", noSideEffect.} + ## treats `x` and `y` as unsigned and divides them. The result is + ## truncated to fit into the result. This implements modulo arithmetic. + ## No overflow errors are possible. + +proc `%%` *(x, y: int): int {.magic: "ModU", noSideEffect.} +proc `%%` *(x, y: int8): int8 {.magic: "ModU", noSideEffect.} +proc `%%` *(x, y: int16): int16 {.magic: "ModU", noSideEffect.} +proc `%%` *(x, y: int32): int32 {.magic: "ModU", noSideEffect.} +proc `%%` *(x, y: int64): int64 {.magic: "ModU64", noSideEffect.} + ## treats `x` and `y` as unsigned and compute the modulo of `x` and `y`. + ## The result is truncated to fit into the result. + ## This implements modulo arithmetic. + ## No overflow errors are possible. + +proc `<=%` *(x, y: int): bool {.magic: "LeU", noSideEffect.} +proc `<=%` *(x, y: int8): bool {.magic: "LeU", noSideEffect.} +proc `<=%` *(x, y: int16): bool {.magic: "LeU", noSideEffect.} +proc `<=%` *(x, y: int32): bool {.magic: "LeU", noSideEffect.} +proc `<=%` *(x, y: int64): bool {.magic: "LeU64", noSideEffect.} + ## treats `x` and `y` as unsigned and compares them. + ## Returns true iff ``unsigned(x) <= unsigned(y)``. + +proc `<%` *(x, y: int): bool {.magic: "LtU", noSideEffect.} +proc `<%` *(x, y: int8): bool {.magic: "LtU", noSideEffect.} +proc `<%` *(x, y: int16): bool {.magic: "LtU", noSideEffect.} +proc `<%` *(x, y: int32): bool {.magic: "LtU", noSideEffect.} +proc `<%` *(x, y: int64): bool {.magic: "LtU64", noSideEffect.} + ## treats `x` and `y` as unsigned and compares them. + ## Returns true iff ``unsigned(x) < unsigned(y)``. + + +# floating point operations: +proc `+` *(x: float): float {.magic: "UnaryPlusF64", noSideEffect.} +proc `-` *(x: float): float {.magic: "UnaryMinusF64", noSideEffect.} +proc `+` *(x, y: float): float {.magic: "AddF64", noSideEffect.} +proc `-` *(x, y: float): float {.magic: "SubF64", noSideEffect.} +proc `*` *(x, y: float): float {.magic: "MulF64", noSideEffect.} +proc `/` *(x, y: float): float {.magic: "DivF64", noSideEffect.} + ## computes the floating point division + +proc `==` *(x, y: float): bool {.magic: "EqF64", noSideEffect.} +proc `<=` *(x, y: float): bool {.magic: "LeF64", noSideEffect.} +proc `<` *(x, y: float): bool {.magic: "LtF64", noSideEffect.} +proc abs*(x: float): float {.magic: "AbsF64", noSideEffect.} +proc min*(x, y: float): float {.magic: "MinF64", noSideEffect.} +proc max*(x, y: float): float {.magic: "MaxF64", noSideEffect.} + +# set operators +proc `*` *[T](x, y: set[T]): set[T] {.magic: "MulSet", noSideEffect.} + ## This operator computes the intersection of two sets. +proc `+` *[T](x, y: set[T]): set[T] {.magic: "PlusSet", noSideEffect.} + ## This operator computes the union of two sets. +proc `-` *[T](x, y: set[T]): set[T] {.magic: "MinusSet", noSideEffect.} + ## This operator computes the difference of two sets. +proc `-+-` *[T](x, y: set[T]): set[T] {.magic: "SymDiffSet", noSideEffect.} + ## computes the symmetric set difference. This is the same as + ## ``(A - B) + (B - A)``, but more efficient. + +# comparison operators: +proc `==` *[T](x, y: ordinal[T]): bool {.magic: "EqEnum", noSideEffect.} +proc `==` *(x, y: pointer): bool {.magic: "EqRef", noSideEffect.} +proc `==` *(x, y: string): bool {.magic: "EqStr", noSideEffect.} +proc `==` *(x, y: cstring): bool {.magic: "EqCString", noSideEffect.} +proc `==` *(x, y: char): bool {.magic: "EqCh", noSideEffect.} +proc `==` *(x, y: bool): bool {.magic: "EqB", noSideEffect.} +proc `==` *[T](x, y: set[T]): bool {.magic: "EqSet", noSideEffect.} +proc `==` *[T](x, y: ref T): bool {.magic: "EqRef", noSideEffect.} +proc `==` *[T](x, y: ptr T): bool {.magic: "EqRef", noSideEffect.} + +proc `<=` *[T](x, y: ordinal[T]): bool {.magic: "LeEnum", noSideEffect.} +proc `<=` *(x, y: string): bool {.magic: "LeStr", noSideEffect.} +proc `<=` *(x, y: char): bool {.magic: "LeCh", noSideEffect.} +proc `<=` *[T](x, y: set[T]): bool {.magic: "LeSet", noSideEffect.} +proc `<=` *(x, y: bool): bool {.magic: "LeB", noSideEffect.} +proc `<=` *[T](x, y: ref T): bool {.magic: "LePtr", noSideEffect.} +proc `<=` *(x, y: pointer): bool {.magic: "LePtr", noSideEffect.} + +proc `<` *[T](x, y: ordinal[T]): bool {.magic: "LtEnum", noSideEffect.} +proc `<` *(x, y: string): bool {.magic: "LtStr", noSideEffect.} +proc `<` *(x, y: char): bool {.magic: "LtCh", noSideEffect.} +proc `<` *[T](x, y: set[T]): bool {.magic: "LtSet", noSideEffect.} +proc `<` *(x, y: bool): bool {.magic: "LtB", noSideEffect.} +proc `<` *[T](x, y: ref T): bool {.magic: "LtPtr", noSideEffect.} +proc `<` *[T](x, y: ptr T): bool {.magic: "LtPtr", noSideEffect.} +proc `<` *(x, y: pointer): bool {.magic: "LtPtr", noSideEffect.} + +template `!=` * (x, y: expr): expr = + ## unequals operator. This is a shorthand for ``not (x == y)``. + not (x == y) + +template `>=` * (x, y: expr): expr = + ## "is greater or equals" operator. This is the same as ``y <= x``. + y <= x + +template `>` * (x, y: expr): expr = + ## "is greater" operator. This is the same as ``y < x``. + y < x + +proc contains*[T](x: set[T], y: T): bool {.magic: "InSet", noSideEffect.} + ## One should overload this proc if one wants to overload the ``in`` operator. + ## The parameters are in reverse order! ``a in b`` is a template for + ## ``contains(b, a)``. + ## This is because the unification algorithm that Nimrod uses for overload + ## resolution works from left to right. + ## But for the ``in`` operator that would be the wrong direction for this + ## piece of code: + ## + ## .. code-block:: Nimrod + ## var s: set[range['a'..'z']] = {'a'..'c'} + ## writeln(stdout, 'b' in s) + ## + ## If ``in`` had been declared as ``[T](elem: T, s: set[T])`` then ``T`` would + ## have been bound to ``char``. But ``s`` is not compatible to type + ## ``set[char]``! The solution is to bind ``T`` to ``range['a'..'z']``. This + ## is achieved by reversing the parameters for ``contains``; ``in`` then + ## passes its arguments in reverse order. + +template `in` * (x, y: expr): expr = contains(y, x) +template `not_in` * (x, y: expr): expr = not contains(y, x) + +proc `is` *[T, S](x: T, y: S): bool {.magic: "Is", noSideEffect.} +template `is_not` *(x, y: expr): expr = not (x is y) + +proc cmp*[T, S: typeDesc](x: T, y: S): int = + ## Generic compare proc. Returns a value < 0 iff x < y, a value > 0 iff x > y + ## and 0 iff x == y. This is useful for writing generic algorithms without + ## performance loss. This generic implementation uses the `==` and `<` + ## operators. + if x == y: return 0 + if x < y: return -1 + return 1 + +proc cmp*(x, y: string): int {.noSideEffect.} + ## Compare proc for strings. More efficient than the generic version. + +proc `@` * [IDX, T](a: array[IDX, T]): seq[T] {. + magic: "ArrToSeq", nosideeffect.} + ## turns an array into a sequence. This most often useful for constructing + ## sequences with the array constructor: ``@[1, 2, 3]`` has the type + ## ``seq[int]``, while ``[1, 2, 3]`` has the type ``array[0..2, int]``. + +proc setLen*[T](s: var seq[T], newlen: int) {. + magic: "SetLengthSeq", noSideEffect.} + ## sets the length of `s` to `newlen`. + ## ``T`` may be any sequence type. + ## If the current length is greater than the new length, + ## ``s`` will be truncated. + +proc setLen*(s: var string, newlen: int) {. + magic: "SetLengthStr", noSideEffect.} + ## sets the length of `s` to `newlen`. + ## If the current length is greater than the new length, + ## ``s`` will be truncated. + +proc newString*(len: int): string {. + magic: "NewString", importc: "mnewString", noSideEffect.} + ## returns a new string of length ``len`` but with uninitialized + ## content. One needs to fill the string character after character + ## with the index operator ``s[i]``. This procedure exists only for + ## optimization purposes; the same effect can be achieved with the + ## ``&`` operator. + +# concat operator: +proc `&` * (x: string, y: char): string {. + magic: "ConStrStr", noSideEffect, merge.} +proc `&` * (x: char, y: char): string {. + magic: "ConStrStr", noSideEffect, merge.} +proc `&` * (x, y: string): string {. + magic: "ConStrStr", noSideEffect, merge.} +proc `&` * (x: char, y: string): string {. + magic: "ConStrStr", noSideEffect, merge.} + ## is the `concatenation operator`. It concatenates `x` and `y`. + +proc add*(x: var string, y: char) {.magic: "AppendStrCh", noSideEffect.} +proc add*(x: var string, y: string) {.magic: "AppendStrStr", noSideEffect.} + +when not defined(ECMAScript): + {.push overflow_checks:off} + proc add* (x: var string, y: cstring) = + var i = 0 + while y[i] != '\0': + add(x, y[i]) + inc(i) + {.pop.} +else: + proc add* (x: var string, y: cstring) {.pure.} = + asm """ + var len = `x`[0].length-1; + for (var i = 0; i < `y`.length; ++i) { + `x`[0][len] = `y`.charCodeAt(i); + ++len; + } + `x`[0][len] = 0 + """ + +proc add *[T](x: var seq[T], y: T) {.magic: "AppendSeqElem", noSideEffect.} +proc add *[T](x: var seq[T], y: openArray[T]) {.noSideEffect.} = + ## Generic proc for adding a data item `y` to a container `x`. + ## For containers that have an order, `add` means *append*. New generic + ## containers should also call their adding proc `add` for consistency. + ## Generic code becomes much easier to write if the Nimrod naming scheme is + ## respected. + var xl = x.len + setLen(x, xl + y.len) + for i in 0..high(y): x[xl+i] = y[i] + +proc repr*[T](x: T): string {.magic: "Repr", noSideEffect.} + ## takes any Nimrod variable and returns its string representation. It + ## works even for complex data graphs with cycles. This is a great + ## debugging tool. + +type + TAddress* = int + ## is the signed integer type that should be used for converting + ## pointers to integer addresses for readability. + +type + BiggestInt* = int64 + ## is an alias for the biggest signed integer type the Nimrod compiler + ## supports. Currently this is ``int64``, but it is platform-dependant + ## in general. + + BiggestFloat* = float64 + ## is an alias for the biggest floating point type the Nimrod + ## compiler supports. Currently this is ``float64``, but it is + ## platform-dependant in general. + +type # these work for most platforms: + cchar* {.importc: "char", nodecl.} = char + ## This is the same as the type ``char`` in *C*. + cschar* {.importc: "signed char", nodecl.} = byte + ## This is the same as the type ``signed char`` in *C*. + cshort* {.importc: "short", nodecl.} = int16 + ## This is the same as the type ``short`` in *C*. + cint* {.importc: "int", nodecl.} = int32 + ## This is the same as the type ``int`` in *C*. + clong* {.importc: "long", nodecl.} = int + ## This is the same as the type ``long`` in *C*. + clonglong* {.importc: "long long", nodecl.} = int64 + ## This is the same as the type ``long long`` in *C*. + cfloat* {.importc: "float", nodecl.} = float32 + ## This is the same as the type ``float`` in *C*. + cdouble* {.importc: "double", nodecl.} = float64 + ## This is the same as the type ``double`` in *C*. + clongdouble* {.importc: "long double", nodecl.} = BiggestFloat + ## This is the same as the type ``long double`` in *C*. + ## This C type is not supported by Nimrod's code generator + + cstringArray* {.importc: "char**", nodecl.} = ptr array [0..50_000, cstring] + ## This is binary compatible to the type ``char**`` in *C*. The array's + ## high value is large enough to disable bounds checking in practice. + + TEndian* = enum ## is a type describing the endianness of a processor. + littleEndian, bigEndian + + PFloat32* = ptr Float32 ## an alias for ``ptr float32`` + PFloat64* = ptr Float64 ## an alias for ``ptr float64`` + PInt64* = ptr Int64 ## an alias for ``ptr int64`` + PInt32* = ptr Int32 ## an alias for ``ptr int32`` + +const + isMainModule* {.magic: "IsMainModule".}: bool = false + ## is true only when accessed in the main module. This works thanks to + ## compiler magic. It is useful to embed testing code in a module. + + CompileDate* {.magic: "CompileDate"}: string = "0000-00-00" + ## is the date of compilation as a string of the form + ## ``YYYY-MM-DD``. This works thanks to compiler magic. + + CompileTime* {.magic: "CompileTime"}: string = "00:00:00" + ## is the time of compilation as a string of the form + ## ``HH:MM:SS``. This works thanks to compiler magic. + + NimrodVersion* {.magic: "NimrodVersion"}: string = "0.0.0" + ## is the version of Nimrod as a string. + ## This works thanks to compiler magic. + + NimrodMajor* {.magic: "NimrodMajor"}: int = 0 + ## is the major number of Nimrod's version. + ## This works thanks to compiler magic. + + NimrodMinor* {.magic: "NimrodMinor"}: int = 0 + ## is the minor number of Nimrod's version. + ## This works thanks to compiler magic. + + NimrodPatch* {.magic: "NimrodPatch"}: int = 0 + ## is the patch number of Nimrod's version. + ## This works thanks to compiler magic. + + cpuEndian* {.magic: "CpuEndian"}: TEndian = littleEndian + ## is the endianness of the target CPU. This is a valuable piece of + ## information for low-level code only. This works thanks to compiler magic. + + hostOS* {.magic: "HostOS"}: string = "" + ## a string that describes the host operating system. Possible values: + ## "windows", "macosx", "linux", "netbsd", "freebsd", "openbsd", "solaris", + ## "aix" + + hostCPU* {.magic: "HostCPU"}: string = "" + ## a string that describes the host CPU. Possible values: + ## "i386", "alpha", "powerpc", "sparc", "amd64", "mips", "arm" + +proc toFloat*(i: int): float {. + magic: "ToFloat", noSideEffect, importc: "toFloat".} + ## converts an integer `i` into a ``float``. If the conversion + ## fails, `EInvalidValue` is raised. However, on most platforms the + ## conversion cannot fail. + +proc toBiggestFloat*(i: biggestint): biggestfloat {. + magic: "ToBiggestFloat", noSideEffect, importc: "toBiggestFloat".} + ## converts an biggestint `i` into a ``biggestfloat``. If the conversion + ## fails, `EInvalidValue` is raised. However, on most platforms the + ## conversion cannot fail. + +proc toInt*(f: float): int {. + magic: "ToInt", noSideEffect, importc: "toInt".} + ## converts a floating point number `f` into an ``int``. Conversion + ## rounds `f` if it does not contain an integer value. If the conversion + ## fails (because `f` is infinite for example), `EInvalidValue` is raised. + +proc toBiggestInt*(f: biggestfloat): biggestint {. + magic: "ToBiggestInt", noSideEffect, importc: "toBiggestInt".} + ## converts a biggestfloat `f` into a ``biggestint``. Conversion + ## rounds `f` if it does not contain an integer value. If the conversion + ## fails (because `f` is infinite for example), `EInvalidValue` is raised. + +proc addQuitProc*(QuitProc: proc {.noconv.}) {.importc: "atexit", nodecl.} + ## adds/registers a quit procedure. Each call to ``addQuitProc`` + ## registers another quit procedure. Up to 30 procedures can be + ## registered. They are executed on a last-in, first-out basis + ## (that is, the last function registered is the first to be executed). + ## ``addQuitProc`` raises an EOutOfIndex if ``quitProc`` cannot be + ## registered. + +# Support for addQuitProc() is done by Ansi C's facilities here. +# In case of an unhandled exeption the exit handlers should +# not be called explicitly! The user may decide to do this manually though. + +proc copy*(s: string, first = 0): string {. + magic: "CopyStr", importc: "copyStr", noSideEffect.} +proc copy*(s: string, first, last: int): string {. + magic: "CopyStrLast", importc: "copyStrLast", noSideEffect.} + ## copies a slice of `s` into a new string and returns this new + ## string. The bounds `first` and `last` denote the indices of + ## the first and last characters that shall be copied. If ``last`` + ## is omitted, it is treated as ``high(s)``. + +proc zeroMem*(p: Pointer, size: int) {.importc, noDecl.} + ## overwrites the contents of the memory at ``p`` with the value 0. + ## Exactly ``size`` bytes will be overwritten. Like any procedure + ## dealing with raw memory this is *unsafe*. + +proc copyMem*(dest, source: Pointer, size: int) {.importc: "memcpy", noDecl.} + ## copies the contents from the memory at ``source`` to the memory + ## at ``dest``. Exactly ``size`` bytes will be copied. The memory + ## regions may not overlap. Like any procedure dealing with raw + ## memory this is *unsafe*. + +proc moveMem*(dest, source: Pointer, size: int) {.importc: "memmove", noDecl.} + ## copies the contents from the memory at ``source`` to the memory + ## at ``dest``. Exactly ``size`` bytes will be copied. The memory + ## regions may overlap, ``moveMem`` handles this case appropriately + ## and is thus somewhat more safe than ``copyMem``. Like any procedure + ## dealing with raw memory this is still *unsafe*, though. + +proc equalMem*(a, b: Pointer, size: int): bool {. + importc: "equalMem", noDecl, noSideEffect.} + ## compares the memory blocks ``a`` and ``b``. ``size`` bytes will + ## be compared. If the blocks are equal, true is returned, false + ## otherwise. Like any procedure dealing with raw memory this is + ## *unsafe*. + +proc alloc*(size: int): pointer {.noconv.} + ## allocates a new memory block with at least ``size`` bytes. The + ## block has to be freed with ``realloc(block, 0)`` or + ## ``dealloc(block)``. The block is not initialized, so reading + ## from it before writing to it is undefined behaviour! +proc alloc0*(size: int): pointer {.noconv.} + ## allocates a new memory block with at least ``size`` bytes. The + ## block has to be freed with ``realloc(block, 0)`` or + ## ``dealloc(block)``. The block is initialized with all bytes + ## containing zero, so it is somewhat safer than ``alloc``. +proc realloc*(p: Pointer, newsize: int): pointer {.noconv.} + ## grows or shrinks a given memory block. If p is **nil** then a new + ## memory block is returned. In either way the block has at least + ## ``newsize`` bytes. If ``newsize == 0`` and p is not **nil** + ## ``realloc`` calls ``dealloc(p)``. In other cases the block has to + ## be freed with ``dealloc``. +proc dealloc*(p: Pointer) {.noconv.} + ## frees the memory allocated with ``alloc``, ``alloc0`` or + ## ``realloc``. This procedure is dangerous! If one forgets to + ## free the memory a leak occurs; if one tries to access freed + ## memory (or just freeing it twice!) a core dump may happen + ## or other memory may be corrupted. + +proc assert*(cond: bool) {.magic: "Assert", noSideEffect.} + ## provides a means to implement `programming by contracts`:idx: in Nimrod. + ## ``assert`` evaluates expression ``cond`` and if ``cond`` is false, it + ## raises an ``EAssertionFailure`` exception. However, the compiler may + ## not generate any code at all for ``assert`` if it is advised to do so. + ## Use ``assert`` for debugging purposes only. + +proc swap*[T](a, b: var T) {.magic: "Swap", noSideEffect.} + ## swaps the values `a` and `b`. This is often more efficient than + ## ``tmp = a; a = b; b = tmp``. Particularly useful for sorting algorithms. + +template `>=%` *(x, y: expr): expr = y <=% x + ## treats `x` and `y` as unsigned and compares them. + ## Returns true iff ``unsigned(x) >= unsigned(y)``. + +template `>%` *(x, y: expr): expr = y <% x + ## treats `x` and `y` as unsigned and compares them. + ## Returns true iff ``unsigned(x) > unsigned(y)``. + +proc `$` *(x: int): string {.magic: "IntToStr", noSideEffect.} + ## The stingify operator for an integer argument. Returns `x` + ## converted to a decimal string. + +proc `$` *(x: int64): string {.magic: "Int64ToStr", noSideEffect.} + ## The stingify operator for an integer argument. Returns `x` + ## converted to a decimal string. + +proc `$` *(x: float): string {.magic: "FloatToStr", noSideEffect.} + ## The stingify operator for a float argument. Returns `x` + ## converted to a decimal string. + +proc `$` *(x: bool): string {.magic: "BoolToStr", noSideEffect.} + ## The stingify operator for a boolean argument. Returns `x` + ## converted to the string "false" or "true". + +proc `$` *(x: char): string {.magic: "CharToStr", noSideEffect.} + ## The stingify operator for a character argument. Returns `x` + ## converted to a string. + +proc `$` *(x: Cstring): string {.magic: "CStrToStr", noSideEffect.} + ## The stingify operator for a CString argument. Returns `x` + ## converted to a string. + +proc `$` *(x: string): string {.magic: "StrToStr", noSideEffect.} + ## The stingify operator for a string argument. Returns `x` + ## as it is. This operator is useful for generic code, so + ## that ``$expr`` also works if ``expr`` is already a string. + +proc `$` *[T](x: ordinal[T]): string {.magic: "EnumToStr", noSideEffect.} + ## The stingify operator for an enumeration argument. This works for + ## any enumeration type thanks to compiler magic. If a + ## a ``$`` operator for a concrete enumeration is provided, this is + ## used instead. (In other words: *Overwriting* is possible.) + +# undocumented: +proc getRefcount*[T](x: ref T): int {.importc: "getRefcount", noSideEffect.} + ## retrieves the reference count of an heap-allocated object. The + ## value is implementation-dependant. + +#proc writeStackTrace() {.export: "writeStackTrace".} + +when not defined(NimrodVM): + proc getCurrentExceptionMsg*(): string {.exportc.} + ## retrieves the error message that was attached to the current + ## exception; if there is none, "" is returned. + +# new constants: +const + inf* {.magic: "Inf".} = 1.0 / 0.0 + ## contains the IEEE floating point value of positive infinity. + neginf* {.magic: "NegInf".} = -inf + ## contains the IEEE floating point value of negative infinity. + nan* {.magic: "NaN".} = 0.0 / 0.0 + ## contains an IEEE floating point value of *Not A Number*. Note + ## that you cannot compare a floating point value to this value + ## and expect a reasonable result - use the `classify` procedure + ## in the module ``math`` for checking for NaN. + +var + dbgLineHook*: proc = nil + ## set this variable to provide a procedure that should be called before + ## each executed instruction. This should only be used by debuggers! + ## Only code compiled with the ``debugger:on`` switch calls this hook. + +# GC interface: + +proc getOccupiedMem*(): int + ## returns the number of bytes that are owned by the process and hold data. + +proc getFreeMem*(): int + ## returns the number of bytes that are owned by the process, but do not + ## hold any meaningful data. + +proc getTotalMem*(): int + ## returns the number of bytes that are owned by the process. + + +iterator countdown*[T](a, b: T, step = 1): T {.inline.} = + ## Counts from ordinal value `a` down to `b` with the given + ## step count. `T` may be any ordinal type, `step` may only + ## be positive. + var res = a + while res >= b: + yield res + dec(res, step) + +iterator countup*[T](a, b: T, step = 1): T {.inline.} = + ## Counts from ordinal value `a` up to `b` with the given + ## step count. `T` may be any ordinal type, `step` may only + ## be positive. + var res = a + while res <= b: + yield res + inc(res, step) + # we cannot use ``for x in a..b: `` here, because that is not + # known in the System module + + +proc min*(x, y: int): int {.magic: "MinI", noSideEffect.} +proc min*(x, y: int8): int8 {.magic: "MinI", noSideEffect.} +proc min*(x, y: int16): int16 {.magic: "MinI", noSideEffect.} +proc min*(x, y: int32): int32 {.magic: "MinI", noSideEffect.} +proc min*(x, y: int64): int64 {.magic: "MinI64", noSideEffect.} + ## The minimum value of two integers. + +proc min*[T](x: openarray[T]): T = + ## The minimum value of an openarray. + result = x[0] + for i in 1..high(x): result = min(result, x[i]) + +proc max*(x, y: int): int {.magic: "MaxI", noSideEffect.} +proc max*(x, y: int8): int8 {.magic: "MaxI", noSideEffect.} +proc max*(x, y: int16): int16 {.magic: "MaxI", noSideEffect.} +proc max*(x, y: int32): int32 {.magic: "MaxI", noSideEffect.} +proc max*(x, y: int64): int64 {.magic: "MaxI64", noSideEffect.} + ## The maximum value of two integers. + +proc max*[T](x: openarray[T]): T = + ## The maximum value of an openarray. + result = x[0] + for i in 1..high(x): result = max(result, x[i]) + + +iterator items*[T](a: openarray[T]): T {.inline.} = + ## iterates over each item of `a`. + var i = 0 + while i < len(a): + yield a[i] + inc(i) + +iterator items*[IX, T](a: array[IX, T]): T {.inline.} = + ## iterates over each item of `a`. + var i = low(IX) + if i <= high(IX): + while true: + yield a[i] + if i >= high(IX): break + inc(i) + +iterator items*[T](a: seq[T]): T {.inline.} = + ## iterates over each item of `a`. + var i = 0 + while i < len(a): + yield a[i] + inc(i) + +iterator items*(a: string): char {.inline.} = + ## iterates over each item of `a`. + var i = 0 + while i < len(a): + yield a[i] + inc(i) + +iterator items*[T](a: set[T]): T {.inline.} = + ## iterates over each element of `a`. `items` iterates only over the + ## elements that are really in the set (and not over the ones the set is + ## able to hold). + var i = low(T) + if i <= high(T): + while true: + if i in a: yield i + if i >= high(T): break + inc(i) + +iterator items*(a: cstring): char {.inline.} = + ## iterates over each item of `a`. + var i = 0 + while a[i] != '\0': + yield a[i] + inc(i) + +proc isNil*[T](x: seq[T]): bool {.noSideEffect, magic: "IsNil".} +proc isNil*[T](x: ref T): bool {.noSideEffect, magic: "IsNil".} +proc isNil*(x: string): bool {.noSideEffect, magic: "IsNil".} +proc isNil*[T](x: ptr T): bool {.noSideEffect, magic: "IsNil".} +proc isNil*(x: pointer): bool {.noSideEffect, magic: "IsNil".} +proc isNil*(x: cstring): bool {.noSideEffect, magic: "IsNil".} + ## Fast check whether `x` is nil. This is sometimes more efficient than + ## ``== nil``. + + +# Fixup some magic symbols here: +#{.fixup_system.} +# This is an undocumented pragma that can only be used +# once in the system module. + +proc `&` *[T](x, y: openArray[T]): seq[T] {.noSideEffect.} = + newSeq(result, x.len + y.len) + for i in 0..x.len-1: + result[i] = x[i] + for i in 0..y.len-1: + result[i+x.len] = y[i] + +proc `&` *[T](x: openArray[T], y: T): seq[T] {.noSideEffect.} = + newSeq(result, x.len + 1) + for i in 0..x.len-1: + result[i] = x[i] + result[x.len] = y + +proc `&` *[T](x: T, y: openArray[T]): seq[T] {.noSideEffect.} = + newSeq(result, y.len + 1) + for i in 0..y.len-1: + result[i] = y[i] + result[y.len] = x + +when not defined(NimrodVM): + when not defined(ECMAScript): + proc seqToPtr[T](x: seq[T]): pointer {.inline, nosideeffect.} = + result = cast[pointer](x) + else: + proc seqToPtr[T](x: seq[T]): pointer {.pure, nosideeffect.} = + asm """return `x`""" + + proc `==` *[T: typeDesc](x, y: seq[T]): bool {.noSideEffect.} = + ## Generic equals operator for sequences: relies on a equals operator for + ## the element type `T`. + if seqToPtr(x) == seqToPtr(y): + result = true + elif seqToPtr(x) == nil or seqToPtr(y) == nil: + result = false + elif x.len == y.len: + for i in 0..x.len-1: + if x[i] != y[i]: return false + result = true + +proc find*[T, S: typeDesc](a: T, item: S): int {.inline.}= + ## Returns the first index of `item` in `a` or -1 if not found. This requires + ## appropriate `items` and `==` procs to work. + for i in items(a): + if i == item: return + inc(result) + result = -1 + +proc contains*[T](a: openArray[T], item: T): bool {.inline.}= + ## Returns true if `item` is in `a` or false if not found. This is a shortcut + ## for ``find(a, item) >= 0``. + return find(a, item) >= 0 + +proc pop*[T](s: var seq[T]): T {.inline, noSideEffect.} = + ## returns the last item of `s` and decreases ``s.len`` by one. This treats + ## `s` as a stack and implements the common *pop* operation. + var L = s.len-1 + result = s[L] + setLen(s, L) + +proc each*[T, S](data: openArray[T], op: proc (x: T): S): seq[S] {. + noSideEffect.} = + ## The well-known ``map`` operation from functional programming. Applies + ## `op` to every item in `data` and returns the result as a sequence. + newSeq(result, data.len) + for i in 0..data.len-1: result[i] = op(data[i]) + + +# ----------------- FPU ------------------------------------------------------ + +#proc disableFPUExceptions*() +# disables all floating point unit exceptions + +#proc enableFPUExceptions*() +# enables all floating point unit exceptions + +# ----------------- GC interface --------------------------------------------- + +proc GC_disable*() + ## disables the GC. If called n-times, n calls to `GC_enable` are needed to + ## reactivate the GC. Note that in most circumstances one should only disable + ## the mark and sweep phase with `GC_disableMarkAndSweep`. + +proc GC_enable*() + ## enables the GC again. + +proc GC_fullCollect*() + ## forces a full garbage collection pass. + ## Ordinary code does not need to call this (and should not). + +type + TGC_Strategy* = enum ## the strategy the GC should use for the application + gcThroughput, ## optimize for throughput + gcResponsiveness, ## optimize for responsiveness (default) + gcOptimizeTime, ## optimize for speed + gcOptimizeSpace ## optimize for memory footprint + +proc GC_setStrategy*(strategy: TGC_Strategy) + ## tells the GC the desired strategy for the application. + +proc GC_enableMarkAndSweep*() +proc GC_disableMarkAndSweep*() + ## the current implementation uses a reference counting garbage collector + ## with a seldomly run mark and sweep phase to free cycles. The mark and + ## sweep phase may take a long time and is not needed if the application + ## does not create cycles. Thus the mark and sweep phase can be deactivated + ## and activated separately from the rest of the GC. + +proc GC_getStatistics*(): string + ## returns an informative string about the GC's activity. This may be useful + ## for tweaking. + +proc GC_ref*[T](x: ref T) {.magic: "GCref".} +proc GC_ref*[T](x: seq[T]) {.magic: "GCref".} +proc GC_ref*(x: string) {.magic: "GCref".} + ## marks the object `x` as referenced, so that it will not be freed until + ## it is unmarked via `GC_unref`. If called n-times for the same object `x`, + ## n calls to `GC_unref` are needed to unmark `x`. + +proc GC_unref*[T](x: ref T) {.magic: "GCunref".} +proc GC_unref*[T](x: seq[T]) {.magic: "GCunref".} +proc GC_unref*(x: string) {.magic: "GCunref".} + ## see the documentation of `GC_ref`. + +template accumulateResult*(iter: expr) = + ## helps to convert an iterator to a proc. + result = @[] + for x in iter: add(result, x) + +{.push checks: off, line_dir: off, debugger: off.} +# obviously we cannot generate checking operations here :-) +# because it would yield into an endless recursion +# however, stack-traces are available for most parts +# of the code + +proc echo*[Ty](x: openarray[Ty]) {.magic: "Echo".} + ## equivalent to ``writeln(stdout, x); flush(stdout)``. BUT: This is + ## available for the ECMAScript target too! + +template newException(exceptn, message: expr): expr = + block: # open a new scope + var + e: ref exceptn + new(e) + e.msg = message + e + +const + QuitSuccess* = 0 + ## is the value that should be passed to ``quit`` to indicate + ## success. + + QuitFailure* = 1 + ## is the value that should be passed to ``quit`` to indicate + ## failure. + +proc quit*(errorcode: int = QuitSuccess) {. + magic: "Exit", importc: "exit", noDecl, noReturn.} + ## stops the program immediately; before stopping the program the + ## "quit procedures" are called in the opposite order they were added + ## with ``addQuitProc``. ``quit`` never returns and ignores any + ## exception that may have been raised by the quit procedures. + ## It does *not* call the garbage collector to free all the memory, + ## unless a quit procedure calls ``GC_collect``. + +when not defined(EcmaScript) and not defined(NimrodVM): + proc quit*(errormsg: string) {.noReturn.} + ## a shorthand for ``echo(errormsg); quit(quitFailure)``. + +when not defined(EcmaScript) and not defined(NimrodVM): + + proc initGC() + + var + strDesc: TNimType + + strDesc.size = sizeof(string) + strDesc.kind = tyString + strDesc.flags = {ntfAcyclic} + initGC() # BUGFIX: need to be called here! + + {.push stack_trace: off.} + + include "system/ansi_c" + + proc cmp(x, y: string): int = + return int(c_strcmp(x, y)) + + const pccHack = if defined(pcc): "_" else: "" # Hack for PCC + when defined(windows): + # work-around C's sucking abstraction: + # BUGFIX: stdin and stdout should be binary files! + proc setmode(handle, mode: int) {.importc: pccHack & "setmode", + header: "<io.h>".} + proc fileno(f: C_TextFileStar): int {.importc: pccHack & "fileno", + header: "<fcntl.h>".} + var + O_BINARY {.importc: pccHack & "O_BINARY", nodecl.}: int + + # we use binary mode in Windows: + setmode(fileno(c_stdin), O_BINARY) + setmode(fileno(c_stdout), O_BINARY) + + when defined(endb): + proc endbStep() + + # ----------------- IO Part -------------------------------------------------- + + type + CFile {.importc: "FILE", nodecl, final.} = object # empty record for + # data hiding + TFile* = ptr CFile ## The type representing a file handle. + + TFileMode* = enum ## The file mode when opening a file. + fmRead, ## Open the file for read access only. + fmWrite, ## Open the file for write access only. + fmReadWrite, ## Open the file for read and write access. + ## If the file does not exist, it will be + ## created. + fmReadWriteExisting, ## Open the file for read and write access. + ## If the file does not exist, it will not be + ## created. + fmAppend ## Open the file for writing only; append data + ## at the end. + + TFileHandle* = cint ## type that represents an OS file handle; this is + ## useful for low-level file access + + # text file handling: + var + stdin* {.importc: "stdin", noDecl.}: TFile ## The standard input stream. + stdout* {.importc: "stdout", noDecl.}: TFile ## The standard output stream. + stderr* {.importc: "stderr", noDecl.}: TFile + ## The standard error stream. + ## + ## Note: In my opinion, this should not be used -- the concept of a + ## separate error stream is a design flaw of UNIX. A seperate *message + ## stream* is a good idea, but since it is named ``stderr`` there are few + ## programs out there that distinguish properly between ``stdout`` and + ## ``stderr``. So, that's what you get if you don't name your variables + ## appropriately. It also annoys people if redirection via ``>output.txt`` + ## does not work because the program writes to ``stderr``. + + proc OpenFile*(f: var TFile, filename: string, + mode: TFileMode = fmRead, + bufSize: int = -1): Bool {.deprecated.} + ## **Deprecated since version 0.8.0**: Use `open` instead. + + proc OpenFile*(f: var TFile, filehandle: TFileHandle, + mode: TFileMode = fmRead): Bool {.deprecated.} + ## **Deprecated since version 0.8.0**: Use `open` instead. + + proc Open*(f: var TFile, filename: string, + mode: TFileMode = fmRead, bufSize: int = -1): Bool + ## Opens a file named `filename` with given `mode`. + ## + ## Default mode is readonly. Returns true iff the file could be opened. + ## This throws no exception if the file could not be opened. The reason is + ## that the programmer needs to provide an appropriate error message anyway + ## (yes, even in scripts). + + proc Open*(f: var TFile, filehandle: TFileHandle, + mode: TFileMode = fmRead): Bool + ## Creates a ``TFile`` from a `filehandle` with given `mode`. + ## + ## Default mode is readonly. Returns true iff the file could be opened. + + proc CloseFile*(f: TFile) {.importc: "fclose", nodecl, deprecated.} + ## Closes the file. + ## **Deprecated since version 0.8.0**: Use `close` instead. + + proc Close*(f: TFile) {.importc: "fclose", nodecl.} + ## Closes the file. + + proc EndOfFile*(f: TFile): Bool + ## Returns true iff `f` is at the end. + proc readChar*(f: TFile): char {.importc: "fgetc", nodecl.} + ## Reads a single character from the stream `f`. If the stream + ## has no more characters, `EEndOfFile` is raised. + proc FlushFile*(f: TFile) {.importc: "fflush", noDecl.} + ## Flushes `f`'s buffer. + + proc readFile*(filename: string): string + ## Opens a file name `filename` for reading. Then reads the + ## file's content completely into a string and + ## closes the file afterwards. Returns the string. Returns nil if there was + ## an error. Does not throw an IO exception. + + proc write*(f: TFile, r: float) + proc write*(f: TFile, i: int) + proc write*(f: TFile, s: string) + proc write*(f: TFile, b: Bool) + proc write*(f: TFile, c: char) + proc write*(f: TFile, c: cstring) + proc write*(f: TFile, a: openArray[string]) + ## Writes a value to the file `f`. May throw an IO exception. + + proc readLine*(f: TFile): string + ## reads a line of text from the file `f`. May throw an IO exception. + ## Reading from an empty file buffer, does not throw an exception, but + ## returns nil. A line of text may be delimited by ``CR``, ``LF`` or + ## ``CRLF``. The newline character(s) are not part of the returned string. + + proc writeln*[Ty](f: TFile, x: Ty) {.inline.} + ## writes a value `x` to `f` and then writes "\n". + ## May throw an IO exception. + + proc writeln*[Ty](f: TFile, x: openArray[Ty]) {.inline.} + ## writes a value `x` to `f` and then writes "\n". + ## May throw an IO exception. + + proc getFileSize*(f: TFile): int64 + ## retrieves the file size (in bytes) of `f`. + + proc ReadBytes*(f: TFile, a: var openarray[byte], start, len: int): int + ## reads `len` bytes into the buffer `a` starting at ``a[start]``. Returns + ## the actual number of bytes that have been read which may be less than + ## `len` (if not as many bytes are remaining), but not greater. + + proc ReadChars*(f: TFile, a: var openarray[char], start, len: int): int + ## reads `len` bytes into the buffer `a` starting at ``a[start]``. Returns + ## the actual number of bytes that have been read which may be less than + ## `len` (if not as many bytes are remaining), but not greater. + + proc readBuffer*(f: TFile, buffer: pointer, len: int): int + ## reads `len` bytes into the buffer pointed to by `buffer`. Returns + ## the actual number of bytes that have been read which may be less than + ## `len` (if not as many bytes are remaining), but not greater. + + proc writeBytes*(f: TFile, a: openarray[byte], start, len: int): int + ## writes the bytes of ``a[start..start+len-1]`` to the file `f`. Returns + ## the number of actual written bytes, which may be less than `len` in case + ## of an error. + + proc writeChars*(f: tFile, a: openarray[char], start, len: int): int + ## writes the bytes of ``a[start..start+len-1]`` to the file `f`. Returns + ## the number of actual written bytes, which may be less than `len` in case + ## of an error. + + proc writeBuffer*(f: TFile, buffer: pointer, len: int): int + ## writes the bytes of buffer pointed to by the parameter `buffer` to the + ## file `f`. Returns the number of actual written bytes, which may be less + ## than `len` in case of an error. + + proc setFilePos*(f: TFile, pos: int64) + ## sets the position of the file pointer that is used for read/write + ## operations. The file's first byte has the index zero. + + proc getFilePos*(f: TFile): int64 + ## retrieves the current position of the file pointer that is used to + ## read from the file `f`. The file's first byte has the index zero. + + include "system/sysio" + + iterator lines*(filename: string): string = + ## Iterate over any line in the file named `filename`. + ## If the file does not exist `EIO` is raised. + var + f: TFile + if not open(f, filename): + raise newException(EIO, "cannot open: " & filename) + var res = "" + while not endOfFile(f): + rawReadLine(f, res) + yield res + Close(f) + + proc fileHandle*(f: TFile): TFileHandle {.importc: "fileno", + header: "<stdio.h>"} + ## returns the OS file handle of the file ``f``. This is only useful for + ## platform specific programming. + + proc quit(errormsg: string) = + echo(errormsg) + quit(quitFailure) + + # ---------------------------------------------------------------------------- + + include "system/excpt" + # we cannot compile this with stack tracing on + # as it would recurse endlessly! + include "system/arithm" + {.pop.} # stack trace + include "system/dyncalls" + include "system/sets" + + const + GenericSeqSize = (2 * sizeof(int)) + + proc reprAny(p: pointer, typ: PNimType): string {.compilerproc.} + + proc getDiscriminant(aa: Pointer, n: ptr TNimNode): int = + assert(n.kind == nkCase) + var d: int + var a = cast[TAddress](aa) + case n.typ.size + of 1: d = ze(cast[ptr int8](a +% n.offset)^) + of 2: d = ze(cast[ptr int16](a +% n.offset)^) + of 4: d = int(cast[ptr int32](a +% n.offset)^) + else: assert(false) + return d + + proc selectBranch(aa: Pointer, n: ptr TNimNode): ptr TNimNode = + var discr = getDiscriminant(aa, n) + if discr <% n.len: + result = n.sons[discr] + if result == nil: result = n.sons[n.len] + # n.sons[n.len] contains the ``else`` part (but may be nil) + else: + result = n.sons[n.len] + + include "system/mm" + include "system/sysstr" + include "system/assign" + include "system/repr" + + # we have to implement it here after gentostr for the cstrToNimStrDummy proc + proc getCurrentExceptionMsg(): string = + if excHandler == nil: return "" + return $excHandler.exc.msg + + {.push stack_trace: off.} + when defined(endb): + include "system/debugger" + + when defined(profiler): + include "system/profiler" + {.pop.} # stacktrace + +elif defined(ecmaScript): + include "system/ecmasys" +elif defined(NimrodVM): + # Stubs for the GC interface: + proc GC_disable() = nil + proc GC_enable() = nil + proc GC_fullCollect() = nil + proc GC_setStrategy(strategy: TGC_Strategy) = nil + proc GC_enableMarkAndSweep() = nil + proc GC_disableMarkAndSweep() = nil + proc GC_getStatistics(): string = return "" + + proc getOccupiedMem(): int = return -1 + proc getFreeMem(): int = return -1 + proc getTotalMem(): int = return -1 + + proc cmp(x, y: string): int = + if x == y: return 0 + if x < y: return -1 + return 1 + + proc dealloc(p: pointer) = nil + proc alloc(size: int): pointer = nil + proc alloc0(size: int): pointer = nil + proc realloc(p: Pointer, newsize: int): pointer = nil + +{.pop.} # checks +{.pop.} # hints |