summary refs log tree commit diff stats
path: root/nimlib/system/gc.nim
diff options
context:
space:
mode:
authorAraq <rumpf_a@web.de>2011-04-12 01:13:42 +0200
committerAraq <rumpf_a@web.de>2011-04-12 01:13:42 +0200
commitcd292568d775d55d9abb51e962882ecda12c03a9 (patch)
tree85451f0e1f17dc0463350915f12bdd0a82a73455 /nimlib/system/gc.nim
parent46c41e43690cba9bc1caff6a994bb6915df8a1b7 (diff)
downloadNim-cd292568d775d55d9abb51e962882ecda12c03a9.tar.gz
big repo cleanup
Diffstat (limited to 'nimlib/system/gc.nim')
-rwxr-xr-xnimlib/system/gc.nim647
1 files changed, 0 insertions, 647 deletions
diff --git a/nimlib/system/gc.nim b/nimlib/system/gc.nim
deleted file mode 100755
index da8f75768..000000000
--- a/nimlib/system/gc.nim
+++ /dev/null
@@ -1,647 +0,0 @@
-#
-#
-#            Nimrod's Runtime Library
-#        (c) Copyright 2009 Andreas Rumpf
-#
-#    See the file "copying.txt", included in this
-#    distribution, for details about the copyright.
-#
-
-
-#            Garbage Collector
-#
-# The basic algorithm is *Deferrent Reference Counting* with cycle detection.
-# Special care has been taken to avoid recursion as far as possible to avoid
-# stack overflows when traversing deep datastructures. This is comparable to
-# an incremental and generational GC. It should be well-suited for soft real
-# time applications (like games).
-#
-# Future Improvements:
-# * Support for multi-threading. However, locks for the reference counting
-#   might turn out to be too slow.
-
-const
-  CycleIncrease = 2 # is a multiplicative increase
-  InitialCycleThreshold = 4*1024*1024 # X MB because cycle checking is slow
-  ZctThreshold = 256  # we collect garbage if the ZCT's size
-                      # reaches this threshold
-                      # this seems to be a good value
-
-const
-  rcIncrement = 0b1000 # so that lowest 3 bits are not touched
-  # NOTE: Most colors are currently unused
-  rcBlack = 0b000  # cell is colored black; in use or free
-  rcGray = 0b001   # possible member of a cycle
-  rcWhite = 0b010  # member of a garbage cycle
-  rcPurple = 0b011 # possible root of a cycle
-  rcZct = 0b100    # in ZCT
-  rcRed = 0b101    # Candidate cycle undergoing sigma-computation
-  rcOrange = 0b110 # Candidate cycle awaiting epoch boundary
-  rcShift = 3      # shift by rcShift to get the reference counter
-  colorMask = 0b111
-type
-  TWalkOp = enum
-    waZctDecRef, waPush, waCycleDecRef
-
-  TFinalizer {.compilerproc.} = proc (self: pointer)
-    # A ref type can have a finalizer that is called before the object's
-    # storage is freed.
-
-  TGcStat {.final, pure.} = object
-    stackScans: int          # number of performed stack scans (for statistics)
-    cycleCollections: int    # number of performed full collections
-    maxThreshold: int        # max threshold that has been set
-    maxStackSize: int        # max stack size
-    maxStackCells: int       # max stack cells in ``decStack``
-    cycleTableSize: int      # max entries in cycle table  
-  
-  TGcHeap {.final, pure.} = object # this contains the zero count and
-                                   # non-zero count table
-    zct: TCellSeq            # the zero count table
-    decStack: TCellSeq       # cells in the stack that are to decref again
-    cycleRoots: TCellSet
-    tempStack: TCellSeq      # temporary stack for recursion elimination
-    stat: TGcStat
-
-var
-  stackBottom: pointer
-  gch: TGcHeap
-  cycleThreshold: int = InitialCycleThreshold
-  recGcLock: int = 0
-    # we use a lock to prevend the garbage collector to be triggered in a
-    # finalizer; the collector should not call itself this way! Thus every
-    # object allocated by a finalizer will not trigger a garbage collection.
-    # This is wasteful but safe. This is a lock against recursive garbage
-    # collection, not a lock for threads!
-
-proc unsureAsgnRef(dest: ppointer, src: pointer) {.compilerproc.}
-  # unsureAsgnRef updates the reference counters only if dest is not on the
-  # stack. It is used by the code generator if it cannot decide wether a
-  # reference is in the stack or not (this can happen for var parameters).
-#proc growObj(old: pointer, newsize: int): pointer {.compilerproc.}
-proc newObj(typ: PNimType, size: int): pointer {.compilerproc.}
-proc newSeq(typ: PNimType, len: int): pointer {.compilerproc.}
-
-proc addZCT(s: var TCellSeq, c: PCell) {.noinline.} =
-  if (c.refcount and rcZct) == 0:
-    c.refcount = c.refcount and not colorMask or rcZct
-    add(s, c)
-
-proc cellToUsr(cell: PCell): pointer {.inline.} =
-  # convert object (=pointer to refcount) to pointer to userdata
-  result = cast[pointer](cast[TAddress](cell)+%TAddress(sizeof(TCell)))
-
-proc usrToCell(usr: pointer): PCell {.inline.} =
-  # convert pointer to userdata to object (=pointer to refcount)
-  result = cast[PCell](cast[TAddress](usr)-%TAddress(sizeof(TCell)))
-
-proc canbeCycleRoot(c: PCell): bool {.inline.} =
-  result = ntfAcyclic notin c.typ.flags
-
-proc extGetCellType(c: pointer): PNimType {.compilerproc.} =
-  # used for code generation concerning debugging
-  result = usrToCell(c).typ
-
-proc internRefcount(p: pointer): int {.exportc: "getRefcount".} =
-  result = int(usrToCell(p).refcount) shr rcShift
-
-proc GC_disable() = inc(recGcLock)
-proc GC_enable() =
-  if recGcLock > 0: dec(recGcLock)
-
-proc GC_setStrategy(strategy: TGC_Strategy) =
-  case strategy
-  of gcThroughput: nil
-  of gcResponsiveness: nil
-  of gcOptimizeSpace: nil
-  of gcOptimizeTime: nil
-
-proc GC_enableMarkAndSweep() =
-  cycleThreshold = InitialCycleThreshold
-
-proc GC_disableMarkAndSweep() =
-  cycleThreshold = high(cycleThreshold)-1
-  # set to the max value to suppress the cycle detector
-
-# this that has to equals zero, otherwise we have to round up UnitsPerPage:
-when BitsPerPage mod (sizeof(int)*8) != 0:
-  {.error: "(BitsPerPage mod BitsPerUnit) should be zero!".}
-
-when debugGC:
-  proc writeCell(msg: CString, c: PCell) =
-    var kind = -1
-    if c.typ != nil: kind = ord(c.typ.kind)
-    when debugGC:
-      c_fprintf(c_stdout, "[GC] %s: %p %d rc=%ld from %s(%ld)\n",
-                msg, c, kind, c.refcount shr rcShift, c.filename, c.line)
-    else:
-      c_fprintf(c_stdout, "[GC] %s: %p %d rc=%ld\n",
-                msg, c, kind, c.refcount shr rcShift)
-
-when traceGC:
-  # traceGC is a special switch to enable extensive debugging
-  type
-    TCellState = enum
-      csAllocated, csZctFreed, csCycFreed
-  var
-    states: array[TCellState, TCellSet]
-
-  proc traceCell(c: PCell, state: TCellState) =
-    case state
-    of csAllocated:
-      if c in states[csAllocated]:
-        writeCell("attempt to alloc an already allocated cell", c)
-        assert(false)
-      excl(states[csCycFreed], c)
-      excl(states[csZctFreed], c)
-    of csZctFreed:
-      if c in states[csZctFreed]:
-        writeCell("attempt to free zct cell twice", c)
-        assert(false)
-      if c in states[csCycFreed]:
-        writeCell("attempt to free with zct, but already freed with cyc", c)
-        assert(false)
-      if c notin states[csAllocated]:
-        writeCell("attempt to free not an allocated cell", c)
-        assert(false)
-      excl(states[csAllocated], c)
-    of csCycFreed:
-      if c notin states[csAllocated]:
-        writeCell("attempt to free a not allocated cell", c)
-        assert(false)
-      if c in states[csCycFreed]:
-        writeCell("attempt to free cyc cell twice", c)
-        assert(false)
-      if c in states[csZctFreed]:
-        writeCell("attempt to free with cyc, but already freed with zct", c)
-        assert(false)
-      excl(states[csAllocated], c)
-    incl(states[state], c)
-
-  proc writeLeakage() =
-    var z = 0
-    var y = 0
-    var e = 0
-    for c in elements(states[csAllocated]):
-      inc(e)
-      if c in states[csZctFreed]: inc(z)
-      elif c in states[csCycFreed]: inc(z)
-      else: writeCell("leak", c)
-    cfprintf(cstdout, "Allocations: %ld; ZCT freed: %ld; CYC freed: %ld\n",
-             e, z, y)
-
-template gcTrace(cell, state: expr): stmt =
-  when traceGC: traceCell(cell, state)
-
-# -----------------------------------------------------------------------------
-
-# forward declarations:
-proc collectCT(gch: var TGcHeap)
-proc IsOnStack(p: pointer): bool {.noinline.}
-proc forAllChildren(cell: PCell, op: TWalkOp)
-proc doOperation(p: pointer, op: TWalkOp)
-proc forAllChildrenAux(dest: Pointer, mt: PNimType, op: TWalkOp)
-# we need the prototype here for debugging purposes
-
-proc prepareDealloc(cell: PCell) =
-  if cell.typ.finalizer != nil:
-    # the finalizer could invoke something that
-    # allocates memory; this could trigger a garbage
-    # collection. Since we are already collecting we
-    # prevend recursive entering here by a lock.
-    # XXX: we should set the cell's children to nil!
-    inc(recGcLock)
-    (cast[TFinalizer](cell.typ.finalizer))(cellToUsr(cell))
-    dec(recGcLock)
-
-proc setStackBottom(theStackBottom: pointer) {.compilerproc.} =
-  stackBottom = theStackBottom
-
-proc PossibleRoot(gch: var TGcHeap, c: PCell) {.inline.} =
-  if canbeCycleRoot(c): incl(gch.cycleRoots, c)
-
-proc decRef(c: PCell) {.inline.} =
-  when stressGC:
-    if c.refcount <% rcIncrement:
-      writeCell("broken cell", c)
-  assert(c.refcount >=% rcIncrement)
-  c.refcount = c.refcount -% rcIncrement
-  if c.refcount <% rcIncrement:
-    addZCT(gch.zct, c)
-  elif canBeCycleRoot(c):
-    incl(gch.cycleRoots, c) 
-
-proc incRef(c: PCell) {.inline.} = 
-  c.refcount = c.refcount +% rcIncrement
-  if canBeCycleRoot(c):
-    incl(gch.cycleRoots, c)
-
-proc nimGCref(p: pointer) {.compilerproc, inline.} = incRef(usrToCell(p))
-proc nimGCunref(p: pointer) {.compilerproc, inline.} = decRef(usrToCell(p))
-
-proc asgnRef(dest: ppointer, src: pointer) {.compilerproc, inline.} =
-  # the code generator calls this proc!
-  assert(not isOnStack(dest))
-  # BUGFIX: first incRef then decRef!
-  if src != nil: incRef(usrToCell(src))
-  if dest^ != nil: decRef(usrToCell(dest^))
-  dest^ = src
-
-proc asgnRefNoCycle(dest: ppointer, src: pointer) {.compilerproc, inline.} =
-  # the code generator calls this proc if it is known at compile time that no 
-  # cycle is possible.
-  if src != nil: 
-    var c = usrToCell(src)
-    c.refcount = c.refcount +% rcIncrement
-  if dest^ != nil: 
-    var c = usrToCell(dest^)
-    c.refcount = c.refcount -% rcIncrement
-    if c.refcount <% rcIncrement:
-      addZCT(gch.zct, c)
-  dest^ = src
-
-proc unsureAsgnRef(dest: ppointer, src: pointer) =
-  if not IsOnStack(dest):
-    if src != nil: incRef(usrToCell(src))
-    if dest^ != nil: decRef(usrToCell(dest^))
-  dest^ = src
-
-proc initGC() =
-  when traceGC:
-    for i in low(TCellState)..high(TCellState): Init(states[i])
-  gch.stat.stackScans = 0
-  gch.stat.cycleCollections = 0
-  gch.stat.maxThreshold = 0
-  gch.stat.maxStackSize = 0
-  gch.stat.maxStackCells = 0
-  gch.stat.cycleTableSize = 0
-  # init the rt
-  init(gch.zct)
-  init(gch.tempStack)
-  Init(gch.cycleRoots)
-  Init(gch.decStack)
-  new(gOutOfMem) # reserve space for the EOutOfMemory exception here!
-
-proc forAllSlotsAux(dest: pointer, n: ptr TNimNode, op: TWalkOp) =
-  var d = cast[TAddress](dest)
-  case n.kind
-  of nkNone: assert(false)
-  of nkSlot: forAllChildrenAux(cast[pointer](d +% n.offset), n.typ, op)
-  of nkList:
-    for i in 0..n.len-1: forAllSlotsAux(dest, n.sons[i], op)
-  of nkCase:
-    var m = selectBranch(dest, n)
-    if m != nil: forAllSlotsAux(dest, m, op)
-
-proc forAllChildrenAux(dest: Pointer, mt: PNimType, op: TWalkOp) =
-  var d = cast[TAddress](dest)
-  if dest == nil: return # nothing to do
-  if ntfNoRefs notin mt.flags:
-    case mt.Kind
-    of tyArray, tyArrayConstr, tyOpenArray:
-      for i in 0..(mt.size div mt.base.size)-1:
-        forAllChildrenAux(cast[pointer](d +% i *% mt.base.size), mt.base, op)
-    of tyRef, tyString, tySequence: # leaf:
-      doOperation(cast[ppointer](d)^, op)
-    of tyObject, tyTuple, tyPureObject:
-      forAllSlotsAux(dest, mt.node, op)
-    else: nil
-
-proc forAllChildren(cell: PCell, op: TWalkOp) =
-  assert(cell != nil)
-  assert(cell.typ != nil)
-  case cell.typ.Kind
-  of tyRef: # common case
-    forAllChildrenAux(cellToUsr(cell), cell.typ.base, op)
-  of tySequence:
-    var d = cast[TAddress](cellToUsr(cell))
-    var s = cast[PGenericSeq](d)
-    if s != nil:
-      for i in 0..s.len-1:
-        forAllChildrenAux(cast[pointer](d +% i *% cell.typ.base.size +%
-          GenericSeqSize), cell.typ.base, op)
-  of tyString: nil
-  else: assert(false)
-
-proc checkCollection {.inline.} =
-  # checks if a collection should be done
-  if recGcLock == 0:
-    collectCT(gch)
-
-proc newObj(typ: PNimType, size: int): pointer =
-  # generates a new object and sets its reference counter to 0
-  assert(typ.kind in {tyRef, tyString, tySequence})
-  checkCollection()
-  var res = cast[PCell](rawAlloc(allocator, size + sizeof(TCell)))
-  zeroMem(res, size+sizeof(TCell))
-  assert((cast[TAddress](res) and (MemAlign-1)) == 0)
-  # now it is buffered in the ZCT
-  res.typ = typ
-  when debugGC:
-    if framePtr != nil and framePtr.prev != nil:
-      res.filename = framePtr.prev.filename
-      res.line = framePtr.prev.line
-  res.refcount = rcZct # refcount is zero, but mark it to be in the ZCT  
-  assert(isAllocatedPtr(allocator, res))
-  # its refcount is zero, so add it to the ZCT:
-  block addToZCT: 
-    # we check the last 8 entries (cache line) for a slot
-    # that could be reused
-    var L = gch.zct.len
-    var d = gch.zct.d
-    for i in countdown(L-1, max(0, L-8)):
-      var c = d[i]
-      if c.refcount >=% rcIncrement:
-        c.refcount = c.refcount and not colorMask
-        d[i] = res
-        break addToZCT
-    add(gch.zct, res)
-  when logGC: writeCell("new cell", res)
-  gcTrace(res, csAllocated)
-  result = cellToUsr(res)
-
-proc newSeq(typ: PNimType, len: int): pointer =
-  result = newObj(typ, addInt(mulInt(len, typ.base.size), GenericSeqSize))
-  cast[PGenericSeq](result).len = len
-  cast[PGenericSeq](result).space = len
-
-proc growObj(old: pointer, newsize: int): pointer =
-  checkCollection()
-  var ol = usrToCell(old)
-  assert(ol.typ != nil)
-  assert(ol.typ.kind in {tyString, tySequence})
-  var res = cast[PCell](rawAlloc(allocator, newsize + sizeof(TCell)))
-  var elemSize = 1
-  if ol.typ.kind != tyString:
-    elemSize = ol.typ.base.size
-  
-  var oldsize = cast[PGenericSeq](old).len*elemSize + GenericSeqSize
-  copyMem(res, ol, oldsize + sizeof(TCell))
-  zeroMem(cast[pointer](cast[TAddress](res)+% oldsize +% sizeof(TCell)),
-          newsize-oldsize)
-  assert((cast[TAddress](res) and (MemAlign-1)) == 0)
-  assert(res.refcount shr rcShift <=% 1)
-  #if res.refcount <% rcIncrement:
-  #  add(gch.zct, res)
-  #else: # XXX: what to do here?
-  #  decRef(ol)
-  if (ol.refcount and colorMask) == rcZct:
-    var j = gch.zct.len-1
-    var d = gch.zct.d
-    while j >= 0: 
-      if d[j] == ol:
-        d[j] = res
-        break
-      dec(j)
-  if canBeCycleRoot(ol): excl(gch.cycleRoots, ol)
-  when logGC:
-    writeCell("growObj old cell", ol)
-    writeCell("growObj new cell", res)
-  gcTrace(ol, csZctFreed)
-  gcTrace(res, csAllocated)
-  when reallyDealloc: rawDealloc(allocator, ol)
-  else:
-    assert(ol.typ != nil)
-    zeroMem(ol, sizeof(TCell))
-  result = cellToUsr(res)
-
-# ---------------- cycle collector -------------------------------------------
-
-proc doOperation(p: pointer, op: TWalkOp) =
-  if p == nil: return
-  var c: PCell = usrToCell(p)
-  assert(c != nil)
-  case op # faster than function pointers because of easy prediction
-  of waZctDecRef:
-    assert(c.refcount >=% rcIncrement)
-    c.refcount = c.refcount -% rcIncrement
-    when logGC: writeCell("decref (from doOperation)", c)
-    if c.refcount <% rcIncrement: addZCT(gch.zct, c)
-  of waPush:
-    add(gch.tempStack, c)
-  of waCycleDecRef:
-    assert(c.refcount >=% rcIncrement)
-    c.refcount = c.refcount -% rcIncrement
-
-# we now use a much simpler and non-recursive algorithm for cycle removal
-proc collectCycles(gch: var TGcHeap) =
-  var tabSize = 0
-  for c in elements(gch.cycleRoots):
-    inc(tabSize)
-    forallChildren(c, waCycleDecRef)
-  gch.stat.cycleTableSize = max(gch.stat.cycleTableSize, tabSize)
-
-  # restore reference counts (a depth-first traversal is needed):
-  var marker: TCellSet
-  Init(marker)
-  for c in elements(gch.cycleRoots):
-    if c.refcount >=% rcIncrement:
-      if not containsOrIncl(marker, c):
-        gch.tempStack.len = 0
-        forAllChildren(c, waPush)
-        while gch.tempStack.len > 0:
-          dec(gch.tempStack.len)
-          var d = gch.tempStack.d[gch.tempStack.len]
-          d.refcount = d.refcount +% rcIncrement
-          if d in gch.cycleRoots and not containsOrIncl(marker, d):
-            forAllChildren(d, waPush)
-  # remove cycles:
-  for c in elements(gch.cycleRoots):
-    if c.refcount <% rcIncrement:
-      gch.tempStack.len = 0
-      forAllChildren(c, waPush)
-      while gch.tempStack.len > 0:
-        dec(gch.tempStack.len)
-        var d = gch.tempStack.d[gch.tempStack.len]
-        if d.refcount <% rcIncrement:
-          if d notin gch.cycleRoots: # d is leaf of c and not part of cycle
-            addZCT(gch.zct, d)
-            when logGC: writeCell("add to ZCT (from cycle collector)", d)
-      prepareDealloc(c)
-      gcTrace(c, csCycFreed)
-      when logGC: writeCell("cycle collector dealloc cell", c)
-      when reallyDealloc: rawDealloc(allocator, c)
-      else:
-        assert(c.typ != nil)
-        zeroMem(c, sizeof(TCell))
-  Deinit(gch.cycleRoots)
-  Init(gch.cycleRoots)
-
-proc gcMark(p: pointer) {.inline.} =
-  # the addresses are not as cells on the stack, so turn them to cells:
-  var cell = usrToCell(p)
-  var c = cast[TAddress](cell)
-  if c >% PageSize and (c and (MemAlign-1)) == 0:
-    # fast check: does it look like a cell?
-    if isAllocatedPtr(allocator, cell): 
-      # mark the cell:
-      cell.refcount = cell.refcount +% rcIncrement
-      add(gch.decStack, cell)
-
-# ----------------- stack management --------------------------------------
-#  inspired from Smart Eiffel
-
-proc stackSize(): int {.noinline.} =
-  var stackTop: array[0..1, pointer]
-  result = abs(cast[int](addr(stackTop[0])) - cast[int](stackBottom))
-
-when defined(sparc): # For SPARC architecture.
-  proc isOnStack(p: pointer): bool =
-    var stackTop: array [0..1, pointer]
-    var b = cast[TAddress](stackBottom)
-    var a = cast[TAddress](addr(stackTop[0]))
-    var x = cast[TAddress](p)
-    result = x >=% a and x <=% b
-
-  proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} =
-    when defined(sparcv9):
-      asm  """"flushw \n" """
-    else:
-      asm  """"ta      0x3   ! ST_FLUSH_WINDOWS\n" """
-
-    var
-      max = stackBottom
-      sp: PPointer
-      stackTop: array[0..1, pointer]
-    sp = addr(stackTop[0])
-    # Addresses decrease as the stack grows.
-    while sp <= max:
-      gcMark(sp^)
-      sp = cast[ppointer](cast[TAddress](sp) +% sizeof(pointer))
-
-elif defined(ELATE):
-  {.error: "stack marking code is to be written for this architecture".}
-
-elif defined(hppa) or defined(hp9000) or defined(hp9000s300) or
-     defined(hp9000s700) or defined(hp9000s800) or defined(hp9000s820):
-  # ---------------------------------------------------------------------------
-  # Generic code for architectures where addresses increase as the stack grows.
-  # ---------------------------------------------------------------------------
-  proc isOnStack(p: pointer): bool =
-    var stackTop: array [0..1, pointer]
-    var a = cast[TAddress](stackBottom)
-    var b = cast[TAddress](addr(stackTop[0]))
-    var x = cast[TAddress](p)
-    result = x >=% a and x <=% b
-
-  var
-    jmpbufSize {.importc: "sizeof(jmp_buf)", nodecl.}: int
-      # a little hack to get the size of a TJmpBuf in the generated C code
-      # in a platform independant way
-
-  proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} =
-    var registers: C_JmpBuf
-    if c_setjmp(registers) == 0'i32: # To fill the C stack with registers.
-      var max = cast[TAddress](stackBottom)
-      var sp = cast[TAddress](addr(registers)) +% jmpbufSize -% sizeof(pointer)
-      # sp will traverse the JMP_BUF as well (jmp_buf size is added,
-      # otherwise sp would be below the registers structure).
-      while sp >=% max:
-        gcMark(cast[ppointer](sp)^)
-        sp = sp -% sizeof(pointer)
-
-else:
-  # ---------------------------------------------------------------------------
-  # Generic code for architectures where addresses decrease as the stack grows.
-  # ---------------------------------------------------------------------------
-  proc isOnStack(p: pointer): bool =
-    var stackTop: array [0..1, pointer]
-    var b = cast[TAddress](stackBottom)
-    var a = cast[TAddress](addr(stackTop[0]))
-    var x = cast[TAddress](p)
-    result = x >=% a and x <=% b
-
-  proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} =
-    # We use a jmp_buf buffer that is in the C stack.
-    # Used to traverse the stack and registers assuming
-    # that 'setjmp' will save registers in the C stack.
-    var registers: C_JmpBuf
-    if c_setjmp(registers) == 0'i32: # To fill the C stack with registers.
-      var max = cast[TAddress](stackBottom)
-      var sp = cast[TAddress](addr(registers))
-      while sp <=% max:
-        gcMark(cast[ppointer](sp)^)
-        sp = sp +% sizeof(pointer)
-
-# ----------------------------------------------------------------------------
-# end of non-portable code
-# ----------------------------------------------------------------------------
-
-proc CollectZCT(gch: var TGcHeap) =
-  # Note: Freeing may add child objects to the ZCT! So essentially we do 
-  # deep freeing, which is bad for incremental operation. In order to 
-  # avoid a deep stack, we move objects to keep the ZCT small.
-  # This is performance critical!
-  var L = addr(gch.zct.len)
-  while L^ > 0:
-    var c = gch.zct.d[0]
-    # remove from ZCT:
-    assert((c.refcount and colorMask) == rcZct)
-    c.refcount = c.refcount and not colorMask
-    gch.zct.d[0] = gch.zct.d[L^ - 1]
-    dec(L^)
-    if c.refcount <% rcIncrement: 
-      # It may have a RC > 0, if it is in the hardware stack or
-      # it has not been removed yet from the ZCT. This is because
-      # ``incref`` does not bother to remove the cell from the ZCT 
-      # as this might be too slow.
-      # In any case, it should be removed from the ZCT. But not
-      # freed. **KEEP THIS IN MIND WHEN MAKING THIS INCREMENTAL!**
-      if canBeCycleRoot(c): excl(gch.cycleRoots, c)
-      when logGC: writeCell("zct dealloc cell", c)
-      gcTrace(c, csZctFreed)
-      # We are about to free the object, call the finalizer BEFORE its
-      # children are deleted as well, because otherwise the finalizer may
-      # access invalid memory. This is done by prepareDealloc():
-      prepareDealloc(c)
-      forAllChildren(c, waZctDecRef)
-      when reallyDealloc: rawDealloc(allocator, c)
-      else:
-        assert(c.typ != nil)
-        zeroMem(c, sizeof(TCell))
-
-proc unmarkStackAndRegisters(gch: var TGcHeap) = 
-  var d = gch.decStack.d
-  for i in 0..gch.decStack.len-1:
-    assert isAllocatedPtr(allocator, d[i])
-    decRef(d[i]) # OPT: cannot create a cycle!
-  gch.decStack.len = 0
-
-proc collectCT(gch: var TGcHeap) =
-  if gch.zct.len >= ZctThreshold or (cycleGC and
-      getOccupiedMem() >= cycleThreshold) or stressGC:
-    gch.stat.maxStackSize = max(gch.stat.maxStackSize, stackSize())
-    assert(gch.decStack.len == 0)
-    markStackAndRegisters(gch)
-    gch.stat.maxStackCells = max(gch.stat.maxStackCells, gch.decStack.len)
-    inc(gch.stat.stackScans)
-    collectZCT(gch)
-    when cycleGC:
-      if getOccupiedMem() >= cycleThreshold or stressGC:
-        collectCycles(gch)
-        collectZCT(gch)
-        inc(gch.stat.cycleCollections)
-        cycleThreshold = max(InitialCycleThreshold, getOccupiedMem() *
-                             cycleIncrease)
-        gch.stat.maxThreshold = max(gch.stat.maxThreshold, cycleThreshold)
-    unmarkStackAndRegisters(gch)
-
-proc GC_fullCollect() =
-  var oldThreshold = cycleThreshold
-  cycleThreshold = 0 # forces cycle collection
-  collectCT(gch)
-  cycleThreshold = oldThreshold
-
-proc GC_getStatistics(): string =
-  GC_disable()
-  result = "[GC] total memory: " & $(getTotalMem()) & "\n" &
-           "[GC] occupied memory: " & $(getOccupiedMem()) & "\n" &
-           "[GC] stack scans: " & $gch.stat.stackScans & "\n" &
-           "[GC] stack cells: " & $gch.stat.maxStackCells & "\n" &
-           "[GC] cycle collections: " & $gch.stat.cycleCollections & "\n" &
-           "[GC] max threshold: " & $gch.stat.maxThreshold & "\n" &
-           "[GC] zct capacity: " & $gch.zct.cap & "\n" &
-           "[GC] max cycle table size: " & $gch.stat.cycleTableSize & "\n" &
-           "[GC] max stack size: " & $gch.stat.maxStackSize
-  when traceGC: writeLeakage()
-  GC_enable()