diff options
author | Araq <rumpf_a@web.de> | 2011-04-12 01:13:42 +0200 |
---|---|---|
committer | Araq <rumpf_a@web.de> | 2011-04-12 01:13:42 +0200 |
commit | cd292568d775d55d9abb51e962882ecda12c03a9 (patch) | |
tree | 85451f0e1f17dc0463350915f12bdd0a82a73455 /nimlib/system/gc.nim | |
parent | 46c41e43690cba9bc1caff6a994bb6915df8a1b7 (diff) | |
download | Nim-cd292568d775d55d9abb51e962882ecda12c03a9.tar.gz |
big repo cleanup
Diffstat (limited to 'nimlib/system/gc.nim')
-rwxr-xr-x | nimlib/system/gc.nim | 647 |
1 files changed, 0 insertions, 647 deletions
diff --git a/nimlib/system/gc.nim b/nimlib/system/gc.nim deleted file mode 100755 index da8f75768..000000000 --- a/nimlib/system/gc.nim +++ /dev/null @@ -1,647 +0,0 @@ -# -# -# Nimrod's Runtime Library -# (c) Copyright 2009 Andreas Rumpf -# -# See the file "copying.txt", included in this -# distribution, for details about the copyright. -# - - -# Garbage Collector -# -# The basic algorithm is *Deferrent Reference Counting* with cycle detection. -# Special care has been taken to avoid recursion as far as possible to avoid -# stack overflows when traversing deep datastructures. This is comparable to -# an incremental and generational GC. It should be well-suited for soft real -# time applications (like games). -# -# Future Improvements: -# * Support for multi-threading. However, locks for the reference counting -# might turn out to be too slow. - -const - CycleIncrease = 2 # is a multiplicative increase - InitialCycleThreshold = 4*1024*1024 # X MB because cycle checking is slow - ZctThreshold = 256 # we collect garbage if the ZCT's size - # reaches this threshold - # this seems to be a good value - -const - rcIncrement = 0b1000 # so that lowest 3 bits are not touched - # NOTE: Most colors are currently unused - rcBlack = 0b000 # cell is colored black; in use or free - rcGray = 0b001 # possible member of a cycle - rcWhite = 0b010 # member of a garbage cycle - rcPurple = 0b011 # possible root of a cycle - rcZct = 0b100 # in ZCT - rcRed = 0b101 # Candidate cycle undergoing sigma-computation - rcOrange = 0b110 # Candidate cycle awaiting epoch boundary - rcShift = 3 # shift by rcShift to get the reference counter - colorMask = 0b111 -type - TWalkOp = enum - waZctDecRef, waPush, waCycleDecRef - - TFinalizer {.compilerproc.} = proc (self: pointer) - # A ref type can have a finalizer that is called before the object's - # storage is freed. - - TGcStat {.final, pure.} = object - stackScans: int # number of performed stack scans (for statistics) - cycleCollections: int # number of performed full collections - maxThreshold: int # max threshold that has been set - maxStackSize: int # max stack size - maxStackCells: int # max stack cells in ``decStack`` - cycleTableSize: int # max entries in cycle table - - TGcHeap {.final, pure.} = object # this contains the zero count and - # non-zero count table - zct: TCellSeq # the zero count table - decStack: TCellSeq # cells in the stack that are to decref again - cycleRoots: TCellSet - tempStack: TCellSeq # temporary stack for recursion elimination - stat: TGcStat - -var - stackBottom: pointer - gch: TGcHeap - cycleThreshold: int = InitialCycleThreshold - recGcLock: int = 0 - # we use a lock to prevend the garbage collector to be triggered in a - # finalizer; the collector should not call itself this way! Thus every - # object allocated by a finalizer will not trigger a garbage collection. - # This is wasteful but safe. This is a lock against recursive garbage - # collection, not a lock for threads! - -proc unsureAsgnRef(dest: ppointer, src: pointer) {.compilerproc.} - # unsureAsgnRef updates the reference counters only if dest is not on the - # stack. It is used by the code generator if it cannot decide wether a - # reference is in the stack or not (this can happen for var parameters). -#proc growObj(old: pointer, newsize: int): pointer {.compilerproc.} -proc newObj(typ: PNimType, size: int): pointer {.compilerproc.} -proc newSeq(typ: PNimType, len: int): pointer {.compilerproc.} - -proc addZCT(s: var TCellSeq, c: PCell) {.noinline.} = - if (c.refcount and rcZct) == 0: - c.refcount = c.refcount and not colorMask or rcZct - add(s, c) - -proc cellToUsr(cell: PCell): pointer {.inline.} = - # convert object (=pointer to refcount) to pointer to userdata - result = cast[pointer](cast[TAddress](cell)+%TAddress(sizeof(TCell))) - -proc usrToCell(usr: pointer): PCell {.inline.} = - # convert pointer to userdata to object (=pointer to refcount) - result = cast[PCell](cast[TAddress](usr)-%TAddress(sizeof(TCell))) - -proc canbeCycleRoot(c: PCell): bool {.inline.} = - result = ntfAcyclic notin c.typ.flags - -proc extGetCellType(c: pointer): PNimType {.compilerproc.} = - # used for code generation concerning debugging - result = usrToCell(c).typ - -proc internRefcount(p: pointer): int {.exportc: "getRefcount".} = - result = int(usrToCell(p).refcount) shr rcShift - -proc GC_disable() = inc(recGcLock) -proc GC_enable() = - if recGcLock > 0: dec(recGcLock) - -proc GC_setStrategy(strategy: TGC_Strategy) = - case strategy - of gcThroughput: nil - of gcResponsiveness: nil - of gcOptimizeSpace: nil - of gcOptimizeTime: nil - -proc GC_enableMarkAndSweep() = - cycleThreshold = InitialCycleThreshold - -proc GC_disableMarkAndSweep() = - cycleThreshold = high(cycleThreshold)-1 - # set to the max value to suppress the cycle detector - -# this that has to equals zero, otherwise we have to round up UnitsPerPage: -when BitsPerPage mod (sizeof(int)*8) != 0: - {.error: "(BitsPerPage mod BitsPerUnit) should be zero!".} - -when debugGC: - proc writeCell(msg: CString, c: PCell) = - var kind = -1 - if c.typ != nil: kind = ord(c.typ.kind) - when debugGC: - c_fprintf(c_stdout, "[GC] %s: %p %d rc=%ld from %s(%ld)\n", - msg, c, kind, c.refcount shr rcShift, c.filename, c.line) - else: - c_fprintf(c_stdout, "[GC] %s: %p %d rc=%ld\n", - msg, c, kind, c.refcount shr rcShift) - -when traceGC: - # traceGC is a special switch to enable extensive debugging - type - TCellState = enum - csAllocated, csZctFreed, csCycFreed - var - states: array[TCellState, TCellSet] - - proc traceCell(c: PCell, state: TCellState) = - case state - of csAllocated: - if c in states[csAllocated]: - writeCell("attempt to alloc an already allocated cell", c) - assert(false) - excl(states[csCycFreed], c) - excl(states[csZctFreed], c) - of csZctFreed: - if c in states[csZctFreed]: - writeCell("attempt to free zct cell twice", c) - assert(false) - if c in states[csCycFreed]: - writeCell("attempt to free with zct, but already freed with cyc", c) - assert(false) - if c notin states[csAllocated]: - writeCell("attempt to free not an allocated cell", c) - assert(false) - excl(states[csAllocated], c) - of csCycFreed: - if c notin states[csAllocated]: - writeCell("attempt to free a not allocated cell", c) - assert(false) - if c in states[csCycFreed]: - writeCell("attempt to free cyc cell twice", c) - assert(false) - if c in states[csZctFreed]: - writeCell("attempt to free with cyc, but already freed with zct", c) - assert(false) - excl(states[csAllocated], c) - incl(states[state], c) - - proc writeLeakage() = - var z = 0 - var y = 0 - var e = 0 - for c in elements(states[csAllocated]): - inc(e) - if c in states[csZctFreed]: inc(z) - elif c in states[csCycFreed]: inc(z) - else: writeCell("leak", c) - cfprintf(cstdout, "Allocations: %ld; ZCT freed: %ld; CYC freed: %ld\n", - e, z, y) - -template gcTrace(cell, state: expr): stmt = - when traceGC: traceCell(cell, state) - -# ----------------------------------------------------------------------------- - -# forward declarations: -proc collectCT(gch: var TGcHeap) -proc IsOnStack(p: pointer): bool {.noinline.} -proc forAllChildren(cell: PCell, op: TWalkOp) -proc doOperation(p: pointer, op: TWalkOp) -proc forAllChildrenAux(dest: Pointer, mt: PNimType, op: TWalkOp) -# we need the prototype here for debugging purposes - -proc prepareDealloc(cell: PCell) = - if cell.typ.finalizer != nil: - # the finalizer could invoke something that - # allocates memory; this could trigger a garbage - # collection. Since we are already collecting we - # prevend recursive entering here by a lock. - # XXX: we should set the cell's children to nil! - inc(recGcLock) - (cast[TFinalizer](cell.typ.finalizer))(cellToUsr(cell)) - dec(recGcLock) - -proc setStackBottom(theStackBottom: pointer) {.compilerproc.} = - stackBottom = theStackBottom - -proc PossibleRoot(gch: var TGcHeap, c: PCell) {.inline.} = - if canbeCycleRoot(c): incl(gch.cycleRoots, c) - -proc decRef(c: PCell) {.inline.} = - when stressGC: - if c.refcount <% rcIncrement: - writeCell("broken cell", c) - assert(c.refcount >=% rcIncrement) - c.refcount = c.refcount -% rcIncrement - if c.refcount <% rcIncrement: - addZCT(gch.zct, c) - elif canBeCycleRoot(c): - incl(gch.cycleRoots, c) - -proc incRef(c: PCell) {.inline.} = - c.refcount = c.refcount +% rcIncrement - if canBeCycleRoot(c): - incl(gch.cycleRoots, c) - -proc nimGCref(p: pointer) {.compilerproc, inline.} = incRef(usrToCell(p)) -proc nimGCunref(p: pointer) {.compilerproc, inline.} = decRef(usrToCell(p)) - -proc asgnRef(dest: ppointer, src: pointer) {.compilerproc, inline.} = - # the code generator calls this proc! - assert(not isOnStack(dest)) - # BUGFIX: first incRef then decRef! - if src != nil: incRef(usrToCell(src)) - if dest^ != nil: decRef(usrToCell(dest^)) - dest^ = src - -proc asgnRefNoCycle(dest: ppointer, src: pointer) {.compilerproc, inline.} = - # the code generator calls this proc if it is known at compile time that no - # cycle is possible. - if src != nil: - var c = usrToCell(src) - c.refcount = c.refcount +% rcIncrement - if dest^ != nil: - var c = usrToCell(dest^) - c.refcount = c.refcount -% rcIncrement - if c.refcount <% rcIncrement: - addZCT(gch.zct, c) - dest^ = src - -proc unsureAsgnRef(dest: ppointer, src: pointer) = - if not IsOnStack(dest): - if src != nil: incRef(usrToCell(src)) - if dest^ != nil: decRef(usrToCell(dest^)) - dest^ = src - -proc initGC() = - when traceGC: - for i in low(TCellState)..high(TCellState): Init(states[i]) - gch.stat.stackScans = 0 - gch.stat.cycleCollections = 0 - gch.stat.maxThreshold = 0 - gch.stat.maxStackSize = 0 - gch.stat.maxStackCells = 0 - gch.stat.cycleTableSize = 0 - # init the rt - init(gch.zct) - init(gch.tempStack) - Init(gch.cycleRoots) - Init(gch.decStack) - new(gOutOfMem) # reserve space for the EOutOfMemory exception here! - -proc forAllSlotsAux(dest: pointer, n: ptr TNimNode, op: TWalkOp) = - var d = cast[TAddress](dest) - case n.kind - of nkNone: assert(false) - of nkSlot: forAllChildrenAux(cast[pointer](d +% n.offset), n.typ, op) - of nkList: - for i in 0..n.len-1: forAllSlotsAux(dest, n.sons[i], op) - of nkCase: - var m = selectBranch(dest, n) - if m != nil: forAllSlotsAux(dest, m, op) - -proc forAllChildrenAux(dest: Pointer, mt: PNimType, op: TWalkOp) = - var d = cast[TAddress](dest) - if dest == nil: return # nothing to do - if ntfNoRefs notin mt.flags: - case mt.Kind - of tyArray, tyArrayConstr, tyOpenArray: - for i in 0..(mt.size div mt.base.size)-1: - forAllChildrenAux(cast[pointer](d +% i *% mt.base.size), mt.base, op) - of tyRef, tyString, tySequence: # leaf: - doOperation(cast[ppointer](d)^, op) - of tyObject, tyTuple, tyPureObject: - forAllSlotsAux(dest, mt.node, op) - else: nil - -proc forAllChildren(cell: PCell, op: TWalkOp) = - assert(cell != nil) - assert(cell.typ != nil) - case cell.typ.Kind - of tyRef: # common case - forAllChildrenAux(cellToUsr(cell), cell.typ.base, op) - of tySequence: - var d = cast[TAddress](cellToUsr(cell)) - var s = cast[PGenericSeq](d) - if s != nil: - for i in 0..s.len-1: - forAllChildrenAux(cast[pointer](d +% i *% cell.typ.base.size +% - GenericSeqSize), cell.typ.base, op) - of tyString: nil - else: assert(false) - -proc checkCollection {.inline.} = - # checks if a collection should be done - if recGcLock == 0: - collectCT(gch) - -proc newObj(typ: PNimType, size: int): pointer = - # generates a new object and sets its reference counter to 0 - assert(typ.kind in {tyRef, tyString, tySequence}) - checkCollection() - var res = cast[PCell](rawAlloc(allocator, size + sizeof(TCell))) - zeroMem(res, size+sizeof(TCell)) - assert((cast[TAddress](res) and (MemAlign-1)) == 0) - # now it is buffered in the ZCT - res.typ = typ - when debugGC: - if framePtr != nil and framePtr.prev != nil: - res.filename = framePtr.prev.filename - res.line = framePtr.prev.line - res.refcount = rcZct # refcount is zero, but mark it to be in the ZCT - assert(isAllocatedPtr(allocator, res)) - # its refcount is zero, so add it to the ZCT: - block addToZCT: - # we check the last 8 entries (cache line) for a slot - # that could be reused - var L = gch.zct.len - var d = gch.zct.d - for i in countdown(L-1, max(0, L-8)): - var c = d[i] - if c.refcount >=% rcIncrement: - c.refcount = c.refcount and not colorMask - d[i] = res - break addToZCT - add(gch.zct, res) - when logGC: writeCell("new cell", res) - gcTrace(res, csAllocated) - result = cellToUsr(res) - -proc newSeq(typ: PNimType, len: int): pointer = - result = newObj(typ, addInt(mulInt(len, typ.base.size), GenericSeqSize)) - cast[PGenericSeq](result).len = len - cast[PGenericSeq](result).space = len - -proc growObj(old: pointer, newsize: int): pointer = - checkCollection() - var ol = usrToCell(old) - assert(ol.typ != nil) - assert(ol.typ.kind in {tyString, tySequence}) - var res = cast[PCell](rawAlloc(allocator, newsize + sizeof(TCell))) - var elemSize = 1 - if ol.typ.kind != tyString: - elemSize = ol.typ.base.size - - var oldsize = cast[PGenericSeq](old).len*elemSize + GenericSeqSize - copyMem(res, ol, oldsize + sizeof(TCell)) - zeroMem(cast[pointer](cast[TAddress](res)+% oldsize +% sizeof(TCell)), - newsize-oldsize) - assert((cast[TAddress](res) and (MemAlign-1)) == 0) - assert(res.refcount shr rcShift <=% 1) - #if res.refcount <% rcIncrement: - # add(gch.zct, res) - #else: # XXX: what to do here? - # decRef(ol) - if (ol.refcount and colorMask) == rcZct: - var j = gch.zct.len-1 - var d = gch.zct.d - while j >= 0: - if d[j] == ol: - d[j] = res - break - dec(j) - if canBeCycleRoot(ol): excl(gch.cycleRoots, ol) - when logGC: - writeCell("growObj old cell", ol) - writeCell("growObj new cell", res) - gcTrace(ol, csZctFreed) - gcTrace(res, csAllocated) - when reallyDealloc: rawDealloc(allocator, ol) - else: - assert(ol.typ != nil) - zeroMem(ol, sizeof(TCell)) - result = cellToUsr(res) - -# ---------------- cycle collector ------------------------------------------- - -proc doOperation(p: pointer, op: TWalkOp) = - if p == nil: return - var c: PCell = usrToCell(p) - assert(c != nil) - case op # faster than function pointers because of easy prediction - of waZctDecRef: - assert(c.refcount >=% rcIncrement) - c.refcount = c.refcount -% rcIncrement - when logGC: writeCell("decref (from doOperation)", c) - if c.refcount <% rcIncrement: addZCT(gch.zct, c) - of waPush: - add(gch.tempStack, c) - of waCycleDecRef: - assert(c.refcount >=% rcIncrement) - c.refcount = c.refcount -% rcIncrement - -# we now use a much simpler and non-recursive algorithm for cycle removal -proc collectCycles(gch: var TGcHeap) = - var tabSize = 0 - for c in elements(gch.cycleRoots): - inc(tabSize) - forallChildren(c, waCycleDecRef) - gch.stat.cycleTableSize = max(gch.stat.cycleTableSize, tabSize) - - # restore reference counts (a depth-first traversal is needed): - var marker: TCellSet - Init(marker) - for c in elements(gch.cycleRoots): - if c.refcount >=% rcIncrement: - if not containsOrIncl(marker, c): - gch.tempStack.len = 0 - forAllChildren(c, waPush) - while gch.tempStack.len > 0: - dec(gch.tempStack.len) - var d = gch.tempStack.d[gch.tempStack.len] - d.refcount = d.refcount +% rcIncrement - if d in gch.cycleRoots and not containsOrIncl(marker, d): - forAllChildren(d, waPush) - # remove cycles: - for c in elements(gch.cycleRoots): - if c.refcount <% rcIncrement: - gch.tempStack.len = 0 - forAllChildren(c, waPush) - while gch.tempStack.len > 0: - dec(gch.tempStack.len) - var d = gch.tempStack.d[gch.tempStack.len] - if d.refcount <% rcIncrement: - if d notin gch.cycleRoots: # d is leaf of c and not part of cycle - addZCT(gch.zct, d) - when logGC: writeCell("add to ZCT (from cycle collector)", d) - prepareDealloc(c) - gcTrace(c, csCycFreed) - when logGC: writeCell("cycle collector dealloc cell", c) - when reallyDealloc: rawDealloc(allocator, c) - else: - assert(c.typ != nil) - zeroMem(c, sizeof(TCell)) - Deinit(gch.cycleRoots) - Init(gch.cycleRoots) - -proc gcMark(p: pointer) {.inline.} = - # the addresses are not as cells on the stack, so turn them to cells: - var cell = usrToCell(p) - var c = cast[TAddress](cell) - if c >% PageSize and (c and (MemAlign-1)) == 0: - # fast check: does it look like a cell? - if isAllocatedPtr(allocator, cell): - # mark the cell: - cell.refcount = cell.refcount +% rcIncrement - add(gch.decStack, cell) - -# ----------------- stack management -------------------------------------- -# inspired from Smart Eiffel - -proc stackSize(): int {.noinline.} = - var stackTop: array[0..1, pointer] - result = abs(cast[int](addr(stackTop[0])) - cast[int](stackBottom)) - -when defined(sparc): # For SPARC architecture. - proc isOnStack(p: pointer): bool = - var stackTop: array [0..1, pointer] - var b = cast[TAddress](stackBottom) - var a = cast[TAddress](addr(stackTop[0])) - var x = cast[TAddress](p) - result = x >=% a and x <=% b - - proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} = - when defined(sparcv9): - asm """"flushw \n" """ - else: - asm """"ta 0x3 ! ST_FLUSH_WINDOWS\n" """ - - var - max = stackBottom - sp: PPointer - stackTop: array[0..1, pointer] - sp = addr(stackTop[0]) - # Addresses decrease as the stack grows. - while sp <= max: - gcMark(sp^) - sp = cast[ppointer](cast[TAddress](sp) +% sizeof(pointer)) - -elif defined(ELATE): - {.error: "stack marking code is to be written for this architecture".} - -elif defined(hppa) or defined(hp9000) or defined(hp9000s300) or - defined(hp9000s700) or defined(hp9000s800) or defined(hp9000s820): - # --------------------------------------------------------------------------- - # Generic code for architectures where addresses increase as the stack grows. - # --------------------------------------------------------------------------- - proc isOnStack(p: pointer): bool = - var stackTop: array [0..1, pointer] - var a = cast[TAddress](stackBottom) - var b = cast[TAddress](addr(stackTop[0])) - var x = cast[TAddress](p) - result = x >=% a and x <=% b - - var - jmpbufSize {.importc: "sizeof(jmp_buf)", nodecl.}: int - # a little hack to get the size of a TJmpBuf in the generated C code - # in a platform independant way - - proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} = - var registers: C_JmpBuf - if c_setjmp(registers) == 0'i32: # To fill the C stack with registers. - var max = cast[TAddress](stackBottom) - var sp = cast[TAddress](addr(registers)) +% jmpbufSize -% sizeof(pointer) - # sp will traverse the JMP_BUF as well (jmp_buf size is added, - # otherwise sp would be below the registers structure). - while sp >=% max: - gcMark(cast[ppointer](sp)^) - sp = sp -% sizeof(pointer) - -else: - # --------------------------------------------------------------------------- - # Generic code for architectures where addresses decrease as the stack grows. - # --------------------------------------------------------------------------- - proc isOnStack(p: pointer): bool = - var stackTop: array [0..1, pointer] - var b = cast[TAddress](stackBottom) - var a = cast[TAddress](addr(stackTop[0])) - var x = cast[TAddress](p) - result = x >=% a and x <=% b - - proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} = - # We use a jmp_buf buffer that is in the C stack. - # Used to traverse the stack and registers assuming - # that 'setjmp' will save registers in the C stack. - var registers: C_JmpBuf - if c_setjmp(registers) == 0'i32: # To fill the C stack with registers. - var max = cast[TAddress](stackBottom) - var sp = cast[TAddress](addr(registers)) - while sp <=% max: - gcMark(cast[ppointer](sp)^) - sp = sp +% sizeof(pointer) - -# ---------------------------------------------------------------------------- -# end of non-portable code -# ---------------------------------------------------------------------------- - -proc CollectZCT(gch: var TGcHeap) = - # Note: Freeing may add child objects to the ZCT! So essentially we do - # deep freeing, which is bad for incremental operation. In order to - # avoid a deep stack, we move objects to keep the ZCT small. - # This is performance critical! - var L = addr(gch.zct.len) - while L^ > 0: - var c = gch.zct.d[0] - # remove from ZCT: - assert((c.refcount and colorMask) == rcZct) - c.refcount = c.refcount and not colorMask - gch.zct.d[0] = gch.zct.d[L^ - 1] - dec(L^) - if c.refcount <% rcIncrement: - # It may have a RC > 0, if it is in the hardware stack or - # it has not been removed yet from the ZCT. This is because - # ``incref`` does not bother to remove the cell from the ZCT - # as this might be too slow. - # In any case, it should be removed from the ZCT. But not - # freed. **KEEP THIS IN MIND WHEN MAKING THIS INCREMENTAL!** - if canBeCycleRoot(c): excl(gch.cycleRoots, c) - when logGC: writeCell("zct dealloc cell", c) - gcTrace(c, csZctFreed) - # We are about to free the object, call the finalizer BEFORE its - # children are deleted as well, because otherwise the finalizer may - # access invalid memory. This is done by prepareDealloc(): - prepareDealloc(c) - forAllChildren(c, waZctDecRef) - when reallyDealloc: rawDealloc(allocator, c) - else: - assert(c.typ != nil) - zeroMem(c, sizeof(TCell)) - -proc unmarkStackAndRegisters(gch: var TGcHeap) = - var d = gch.decStack.d - for i in 0..gch.decStack.len-1: - assert isAllocatedPtr(allocator, d[i]) - decRef(d[i]) # OPT: cannot create a cycle! - gch.decStack.len = 0 - -proc collectCT(gch: var TGcHeap) = - if gch.zct.len >= ZctThreshold or (cycleGC and - getOccupiedMem() >= cycleThreshold) or stressGC: - gch.stat.maxStackSize = max(gch.stat.maxStackSize, stackSize()) - assert(gch.decStack.len == 0) - markStackAndRegisters(gch) - gch.stat.maxStackCells = max(gch.stat.maxStackCells, gch.decStack.len) - inc(gch.stat.stackScans) - collectZCT(gch) - when cycleGC: - if getOccupiedMem() >= cycleThreshold or stressGC: - collectCycles(gch) - collectZCT(gch) - inc(gch.stat.cycleCollections) - cycleThreshold = max(InitialCycleThreshold, getOccupiedMem() * - cycleIncrease) - gch.stat.maxThreshold = max(gch.stat.maxThreshold, cycleThreshold) - unmarkStackAndRegisters(gch) - -proc GC_fullCollect() = - var oldThreshold = cycleThreshold - cycleThreshold = 0 # forces cycle collection - collectCT(gch) - cycleThreshold = oldThreshold - -proc GC_getStatistics(): string = - GC_disable() - result = "[GC] total memory: " & $(getTotalMem()) & "\n" & - "[GC] occupied memory: " & $(getOccupiedMem()) & "\n" & - "[GC] stack scans: " & $gch.stat.stackScans & "\n" & - "[GC] stack cells: " & $gch.stat.maxStackCells & "\n" & - "[GC] cycle collections: " & $gch.stat.cycleCollections & "\n" & - "[GC] max threshold: " & $gch.stat.maxThreshold & "\n" & - "[GC] zct capacity: " & $gch.zct.cap & "\n" & - "[GC] max cycle table size: " & $gch.stat.cycleTableSize & "\n" & - "[GC] max stack size: " & $gch.stat.maxStackSize - when traceGC: writeLeakage() - GC_enable() |