diff options
author | Araq <rumpf_a@web.de> | 2016-10-16 00:35:49 +0200 |
---|---|---|
committer | Araq <rumpf_a@web.de> | 2016-10-16 00:35:49 +0200 |
commit | 10bd488daafa79f52fec0d5e7ea76ec8d5902465 (patch) | |
tree | 9e00d0aaacae3401fbc3b4ebb300b2cd57b8620a /tests/parser | |
parent | 6ade7c0e0d0a1b96b240f91ddbc4e3c44d7178fd (diff) | |
download | Nim-10bd488daafa79f52fec0d5e7ea76ec8d5902465.tar.gz |
implements #?braces syntax
Diffstat (limited to 'tests/parser')
-rw-r--r-- | tests/parser/tbraces.nim | 432 |
1 files changed, 432 insertions, 0 deletions
diff --git a/tests/parser/tbraces.nim b/tests/parser/tbraces.nim new file mode 100644 index 000000000..86c854546 --- /dev/null +++ b/tests/parser/tbraces.nim @@ -0,0 +1,432 @@ +#? braces + +# +# +# Nim's Runtime Library +# (c) Copyright 2015 Andreas Rumpf +# +# See the file "copying.txt", included in this +# distribution, for details about the copyright. +# + +## This module implements some common generic algorithms. + +type + SortOrder* = enum { ## sort order + Descending, Ascending + } + + +type( + DummyAlias = int + OtherAlias = distinct char + + SomeObject = object of RootObj { ## declaration here + fieldA, fieldB: int + case order: SortOrder { + of Descending {a: string} + of Ascending {b: seq[char]} + } + } + + MyConcept = concept x { + x is int + } +) + +{.deprecated: [TSortOrder: SortOrder].} + + +proc `*`*(x: int, order: SortOrder): int @inline { + ## flips `x` if ``order == Descending``; + ## if ``order == Ascending`` then `x` is returned. + ## `x` is supposed to be the result of a comparator, ie ``< 0`` for + ## *less than*, ``== 0`` for *equal*, ``> 0`` for *greater than*. + var y = order.ord - 1 + result = (x xor y) - y +} + +proc fill*[T](a: var openArray[T], first, last: Natural, value: T) { + ## fills the array ``a[first..last]`` with `value`. + var x = first + while x <= last { + a[x] = value + inc(x) + } +} + +proc fill*[T](a: var openArray[T], value: T) { + ## fills the array `a` with `value`. + fill(a, 0, a.high, value) +} + +proc reverse*[T](a: var openArray[T], first, last: Natural) { + ## reverses the array ``a[first..last]``. + var x = first + var y = last + while x < y { + swap(a[x], a[y]) + dec(y) + inc(x) + } +} + +proc reverse*[T](a: var openArray[T]) { + ## reverses the array `a`. + reverse(a, 0, a.high) +} + +proc reversed*[T](a: openArray[T], first: Natural, last: int): seq[T] { + ## returns the reverse of the array `a[first..last]`. + assert last >= first-1 + var i = last - first + var x = first.int + result = newSeq[T](i + 1) + while i >= 0 { + result[i] = a[x] + dec(i) + inc(x) + } +} + +proc reversed*[T](a: openArray[T]): seq[T] { + ## returns the reverse of the array `a`. + reversed(a, 0, a.high) +} + +proc binarySearch*[T](a: openArray[T], key: T): int { + ## binary search for `key` in `a`. Returns -1 if not found. + var b = len(a) + while result < b { + var mid = (result + b) div 2 + if a[mid] < key { result = mid + 1 } else { b = mid } + } + if result >= len(a) or a[result] != key { result = -1 } +} + +proc smartBinarySearch*[T](a: openArray[T], key: T): int { + ## ``a.len`` must be a power of 2 for this to work. + var step = a.len div 2 + while step > 0 { + if a[result or step] <= key { result = result or step } + step = step shr 1 + } + if a[result] != key { result = -1 } +} + +const ( + onlySafeCode = true +) + +proc lowerBound*[T](a: openArray[T], key: T, cmp: proc(x,y: T): int @closure): int { + ## same as binarySearch except that if key is not in `a` then this + ## returns the location where `key` would be if it were. In other + ## words if you have a sorted sequence and you call + ## insert(thing, elm, lowerBound(thing, elm)) + ## the sequence will still be sorted. + ## + ## `cmp` is the comparator function to use, the expected return values are + ## the same as that of system.cmp. + ## + ## example:: + ## + ## var arr = @[1,2,3,5,6,7,8,9] + ## arr.insert(4, arr.lowerBound(4)) + ## # after running the above arr is `[1,2,3,4,5,6,7,8,9]` + result = a.low + var count = a.high - a.low + 1 + var step, pos: int + while count != 0 { + step = count div 2 + pos = result + step + if cmp(a[pos], key) < 0 { + result = pos + 1 + count -= step + 1 + } else { + count = step + } + } +} + +proc lowerBound*[T](a: openArray[T], key: T): int { lowerBound(a, key, cmp[T]) } +proc merge[T](a, b: var openArray[T], lo, m, hi: int, + cmp: proc (x, y: T): int @closure, order: SortOrder) { + template `<-` (a, b) { + when false { + a = b + } elif onlySafeCode { + shallowCopy(a, b) + } else { + copyMem(addr(a), addr(b), sizeof(T)) + } + } + # optimization: If max(left) <= min(right) there is nothing to do! + # 1 2 3 4 ## 5 6 7 8 + # -> O(n) for sorted arrays. + # On random data this safes up to 40% of merge calls + if cmp(a[m], a[m+1]) * order <= 0 { return } + var j = lo + # copy a[j..m] into b: + assert j <= m + when onlySafeCode { + var bb = 0 + while j <= m { + b[bb] <- a[j] + inc(bb) + inc(j) + } + } else { + copyMem(addr(b[0]), addr(a[j]), sizeof(T)*(m-j+1)) + j = m+1 + } + var i = 0 + var k = lo + # copy proper element back: + while k < j and j <= hi { + if cmp(b[i], a[j]) * order <= 0 { + a[k] <- b[i] + inc(i) + } else { + a[k] <- a[j] + inc(j) + } + inc(k) + } + # copy rest of b: + when onlySafeCode { + while k < j { + a[k] <- b[i] + inc(k) + inc(i) + } + } else { + if k < j { copyMem(addr(a[k]), addr(b[i]), sizeof(T)*(j-k)) } + } +} + +proc sort*[T](a: var openArray[T], + cmp: proc (x, y: T): int @closure, + order = SortOrder.Ascending) { + ## Default Nim sort (an implementation of merge sort). The sorting + ## is guaranteed to be stable and the worst case is guaranteed to + ## be O(n log n). + ## The current implementation uses an iterative + ## mergesort to achieve this. It uses a temporary sequence of + ## length ``a.len div 2``. Currently Nim does not support a + ## sensible default argument for ``cmp``, so you have to provide one + ## of your own. However, the ``system.cmp`` procs can be used: + ## + ## .. code-block:: nim + ## + ## sort(myIntArray, system.cmp[int]) + ## + ## # do not use cmp[string] here as we want to use the specialized + ## # overload: + ## sort(myStrArray, system.cmp) + ## + ## You can inline adhoc comparison procs with the `do notation + ## <manual.html#procedures-do-notation>`_. Example: + ## + ## .. code-block:: nim + ## + ## people.sort do (x, y: Person) -> int: + ## result = cmp(x.surname, y.surname) + ## if result == 0: + ## result = cmp(x.name, y.name) + var n = a.len + var b: seq[T] + newSeq(b, n div 2) + var s = 1 + while s < n { + var m = n-1-s + while m >= 0 { + merge(a, b, max(m-s+1, 0), m, m+s, cmp, order) + dec(m, s*2) + } + s = s*2 + } +} + +proc sorted*[T](a: openArray[T], cmp: proc(x, y: T): int {.closure.}, + order = SortOrder.Ascending): seq[T] { + ## returns `a` sorted by `cmp` in the specified `order`. + result = newSeq[T](a.len) + for i in 0 .. a.high { result[i] = a[i] } + sort(result, cmp, order) +} + +template sortedByIt*(seq1, op: untyped): untyped { + ## Convenience template around the ``sorted`` proc to reduce typing. + ## + ## The template injects the ``it`` variable which you can use directly in an + ## expression. Example: + ## + ## .. code-block:: nim + ## + ## type Person = tuple[name: string, age: int] + ## var + ## p1: Person = (name: "p1", age: 60) + ## p2: Person = (name: "p2", age: 20) + ## p3: Person = (name: "p3", age: 30) + ## p4: Person = (name: "p4", age: 30) + ## people = @[p1,p2,p4,p3] + ## + ## echo people.sortedByIt(it.name) + ## + ## Because the underlying ``cmp()`` is defined for tuples you can do + ## a nested sort like in the following example: + ## + ## .. code-block:: nim + ## + ## echo people.sortedByIt((it.age, it.name)) + ## + var result = sorted(seq1, proc(x, y: type[seq1[0]]): int { + var it {.inject.} = x + let a = op + it = y + let b = op + result = cmp(a, b) + }) + result +} + +proc isSorted*[T](a: openarray[T], + cmp: proc(x, y: T): int {.closure.}, + order = SortOrder.Ascending): bool { + ## Checks to see whether `a` is already sorted in `order` + ## using `cmp` for the comparison. Parameters identical + ## to `sort` + result = true + for i in 0..<len(a)-1 { + case cmp(a[i],a[i+1]) * order > 0 { + of true { return false } + of false {} + } + } +} + +proc product*[T](x: openArray[seq[T]]): seq[seq[T]] { + ## produces the Cartesian product of the array. Warning: complexity + ## may explode. + result = newSeq[seq[T]]() + if x.len == 0 { return } + if x.len == 1 { + result = @x + return + } + var ( + indexes = newSeq[int](x.len) + initial = newSeq[int](x.len) + index = 0 + ) + var next = newSeq[T]() + next.setLen(x.len) + for i in 0..(x.len-1) { + if len(x[i]) == 0 { return } + initial[i] = len(x[i])-1 + } + indexes = initial + while true { + while indexes[index] == -1 { + indexes[index] = initial[index] + index += 1 + if index == x.len { return } + indexes[index] -= 1 + } + for ni, i in indexes { + next[ni] = x[ni][i] + } + var res: seq[T] + shallowCopy(res, next) + result.add(res) + index = 0 + indexes[index] -= 1 + } +} + +proc nextPermutation*[T](x: var openarray[T]): bool {.discardable.} { + ## Calculates the next lexicographic permutation, directly modifying ``x``. + ## The result is whether a permutation happened, otherwise we have reached + ## the last-ordered permutation. + ## + ## .. code-block:: nim + ## + ## var v = @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] + ## v.nextPermutation() + ## echo v # @[0, 1, 2, 3, 4, 5, 6, 7, 9, 8] + if x.len < 2 { + return false } + + var i = x.high + while i > 0 and x[i-1] >= x[i] { dec i } + if i == 0 { return false } + + var j = x.high + while j >= i and x[j] <= x[i-1] { dec j } + + swap x[j], x[i-1] + x.reverse(i, x.high) + + result = true +} + +proc prevPermutation*[T](x: var openarray[T]): bool @discardable { + ## Calculates the previous lexicographic permutation, directly modifying + ## ``x``. The result is whether a permutation happened, otherwise we have + ## reached the first-ordered permutation. + ## + ## .. code-block:: nim + ## + ## var v = @[0, 1, 2, 3, 4, 5, 6, 7, 9, 8] + ## v.prevPermutation() + ## echo v # @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] + if x.len < 2 { return false } + + var i = x.high + while i > 0 and x[i-1] <= x[i] { + dec i + } + if i == 0 { return false } + + x.reverse(i, x.high) + + var j = x.high + while j >= i and x[j-1] < x[i-1] { + dec j + } + swap x[i-1], x[j] + + result = true +} + +when isMainModule { + # Tests for lowerBound + var arr = @[1,2,3,5,6,7,8,9] + assert arr.lowerBound(0) == 0 + assert arr.lowerBound(4) == 3 + assert arr.lowerBound(5) == 3 + assert arr.lowerBound(10) == 8 + arr = @[1,5,10] + try { + assert arr.lowerBound(4) == 1 + assert arr.lowerBound(5) == 1 + assert arr.lowerBound(6) == 2 + } except ValueError {} + # Tests for isSorted + var srt1 = [1,2,3,4,4,4,4,5] + var srt2 = ["iello","hello"] + var srt3 = [1.0,1.0,1.0] + var srt4: seq[int] = @[] + assert srt1.isSorted(cmp) == true + assert srt2.isSorted(cmp) == false + assert srt3.isSorted(cmp) == true + var srtseq = newSeq[int]() + assert srtseq.isSorted(cmp) == true + # Tests for reversed + var arr1 = @[0,1,2,3,4] + assert arr1.reversed() == @[4,3,2,1,0] + for i in 0 .. high(arr1) { + assert arr1.reversed(0, i) == arr1.reversed()[high(arr1) - i .. high(arr1)] + assert arr1.reversed(i, high(arr1)) == arr1.reversed()[0 .. high(arr1) - i] + } +} |