summary refs log tree commit diff stats
path: root/tinyc/tests/tests2/00_assignment.c
diff options
context:
space:
mode:
authorAndreas Rumpf <rumpf_a@web.de>2018-04-28 18:37:45 +0200
committerAndreas Rumpf <rumpf_a@web.de>2018-04-28 18:37:45 +0200
commit6408646b02a8a7bc7a7182277499978cd16fcd70 (patch)
tree97c6f1ce6f78e3b7e3afe1262462b33a1eb1dd78 /tinyc/tests/tests2/00_assignment.c
parent4adc31ee3d5d56e1566da746b464ec11a6865863 (diff)
downloadNim-6408646b02a8a7bc7a7182277499978cd16fcd70.tar.gz
minor speedup: concept tests still green
Diffstat (limited to 'tinyc/tests/tests2/00_assignment.c')
0 files changed, 0 insertions, 0 deletions
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
#
#
#            Nim's Runtime Library
#        (c) Copyright 2012 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

#            Garbage Collector
#
# The basic algorithm is *Deferrent Reference Counting* with cycle detection.
# This is achieved by combining a Deutsch-Bobrow garbage collector
# together with Christoper's partial mark-sweep garbage collector.
#
# Special care has been taken to avoid recursion as far as possible to avoid
# stack overflows when traversing deep datastructures. It is well-suited
# for soft real time applications (like games).
{.push profiler:off.}

const
  CycleIncrease = 2 # is a multiplicative increase
  InitialCycleThreshold = 4*1024*1024 # X MB because cycle checking is slow
  ZctThreshold = 500  # we collect garbage if the ZCT's size
                      # reaches this threshold
                      # this seems to be a good value
  withRealTime = defined(useRealtimeGC)

when withRealTime and not declared(getTicks):
  include "system/timers"
when defined(memProfiler):
  proc nimProfile(requestedSize: int)

const
  rcShift = 6 # the reference count is shifted so we can use
              # the least significat bits for additinal flags:

  rcAlive = 0b00000           # object is reachable.
                              # color *black* in the original paper
                              
  rcCycleCandidate = 0b00001  # possible root of a cycle. *purple*

  rcDecRefApplied = 0b00010   # the first dec-ref phase of the
                              # collector was already applied to this
                              # object. *gray*
                              
  rcMaybeDead = 0b00011       # this object is a candidate for deletion
                              # during the collect cycles algorithm.
                              # *white*.
                              
  rcReallyDead = 0b00100      # this is proved to be garbage
  
  rcRetiredBuffer = 0b00101   # this is a seq or string buffer that
                              # was replaced by a resize operation.
                              # see growObj for details

  rcColorMask = TRefCount(0b00111)

  rcZct = 0b01000             # already added to ZCT
  rcInCycleRoots = 0b10000    # already buffered as cycle candidate
  rcHasStackRef = 0b100000    # the object had a stack ref in the last
                              # cycle collection

  rcMarkBit = rcHasStackRef   # this is currently used for leak detection
                              # when traceGC is on

  rcBufferedAnywhere = rcZct or rcInCycleRoots

  rcIncrement = 1 shl rcShift # don't touch the color bits

const
  NewObjectsAreCycleRoots = true
    # the alternative is to use the old strategy of adding cycle roots
    # in incRef (in the compiler itself, this doesn't change much)

  IncRefRemovesCandidates = false
    # this is safe only if we can reliably track the fact that the object
    # has stack references. This could be easily done by adding another bit
    # to the refcount field and setting it up in unmarkStackAndRegisters.
    # The bit must also be set for new objects that are not rc1 and it must be
    # examined in the decref loop in collectCycles.
    # XXX: not implemented yet as tests didn't show any improvement from this
   
  MarkingSkipsAcyclicObjects = true
    # Acyclic objects can be safely ignored in the mark and scan phases, 
    # because they cannot contribute to the internal count.
    # XXX: if we generate specialized `markCyclic` and `markAcyclic`
    # procs we can further optimize this as there won't be need for any
    # checks in the code
  
  MinimumStackMarking = false
    # Try to scan only the user stack and ignore the part of the stack
    # belonging to the GC itself. see setStackTop for further info.
    # XXX: still has problems in release mode in the compiler itself.
    # investigate how it affects growObj

  CollectCyclesStats = false

type
  TWalkOp = enum
    waPush

  TFinalizer {.compilerproc.} = proc (self: pointer) {.nimcall.}
    # A ref type can have a finalizer that is called before the object's
    # storage is freed.

  TGcStat {.final, pure.} = object
    stackScans: int          # number of performed stack scans (for statistics)
    cycleCollections: int    # number of performed full collections
    maxThreshold: int        # max threshold that has been set
    maxStackSize: int        # max stack size
    maxStackCells: int       # max stack cells in ``decStack``
    cycleTableSize: int      # max entries in cycle table  
    maxPause: int64          # max measured GC pause in nanoseconds
  
  TGcHeap {.final, pure.} = object # this contains the zero count and
                                   # non-zero count table
    stackBottom: pointer
    stackTop: pointer
    cycleThreshold: int
    zct: TCellSeq            # the zero count table
    decStack: TCellSeq       # cells in the stack that are to decref again
    cycleRoots: TCellSeq
    tempStack: TCellSeq      # temporary stack for recursion elimination
    freeStack: TCellSeq      # objects ready to be freed
    recGcLock: int           # prevent recursion via finalizers; no thread lock
    cycleRootsTrimIdx: int   # Trimming is a light-weight collection of the 
                             # cycle roots table that uses a cheap linear scan
                             # to find only possitively dead objects.
                             # One strategy is to perform it only for new objects
                             # allocated between the invocations of CollectZCT.
                             # This index indicates the start of the range of
                             # such new objects within the table.
    when withRealTime:
      maxPause: TNanos       # max allowed pause in nanoseconds; active if > 0
    region: TMemRegion       # garbage collected region
    stat: TGcStat

var
  gch* {.rtlThreadVar.}: TGcHeap

when not defined(useNimRtl):
  InstantiateForRegion(gch.region)

template acquire(gch: TGcHeap) = 
  when hasThreadSupport and hasSharedHeap:
    AcquireSys(HeapLock)

template release(gch: TGcHeap) = 
  when hasThreadSupport and hasSharedHeap:
    releaseSys(HeapLock)

template setColor(c: PCell, color) =
  c.refcount = (c.refcount and not rcColorMask) or color

template color(c: PCell): expr =
  c.refcount and rcColorMask

template isBitDown(c: PCell, bit): expr =
  (c.refcount and bit) == 0

template isBitUp(c: PCell, bit): expr =
  (c.refcount and bit) != 0

template setBit(c: PCell, bit): expr =
  c.refcount = c.refcount or bit

template isDead(c: Pcell): expr =
  c.isBitUp(rcReallyDead) # also covers rcRetiredBuffer

template clearBit(c: PCell, bit): expr =
  c.refcount = c.refcount and (not TRefCount(bit))

when debugGC:
  var gcCollectionIdx = 0

  proc colorStr(c: PCell): cstring =
    let color = c.color
    case color
    of rcAlive: return "alive"
    of rcMaybeDead: return "maybedead"
    of rcCycleCandidate: return "candidate"
    of rcDecRefApplied: return "marked"
    of rcRetiredBuffer: return "retired"
    of rcReallyDead: return "dead"
    else: return "unknown?"
  
  proc inCycleRootsStr(c: PCell): cstring =
    if c.isBitUp(rcInCycleRoots): result = "cycleroot"
    else: result = ""

  proc inZctStr(c: PCell): cstring =
    if c.isBitUp(rcZct): result = "zct"
    else: result = ""

  proc writeCell*(msg: CString, c: PCell, force = false) =
    var kind = -1
    if c.typ != nil: kind = ord(c.typ.kind)
    when trackAllocationSource:
      c_fprintf(c_stdout, "[GC %d] %s: %p %d rc=%ld %s %s %s from %s(%ld)\n",
                gcCollectionIdx,
                msg, c, kind, c.refcount shr rcShift,
                c.colorStr, c.inCycleRootsStr, c.inZctStr,
                c.filename, c.line)
    else:
      c_fprintf(c_stdout, "[GC] %s: %p %d rc=%ld\n",
                msg, c, kind, c.refcount shr rcShift)

proc addZCT(zct: var TCellSeq, c: PCell) {.noinline.} =
  if c.isBitDown(rcZct):
    c.setBit rcZct
    zct.add c

template setStackTop(gch) =
  # This must be called immediately after we enter the GC code
  # to minimize the size of the scanned stack. The stack consumed
  # by the GC procs may amount to 200-400 bytes depending on the
  # build settings and this contributes to false-positives
  # in the conservative stack marking
  when MinimumStackMarking:
    var stackTop {.volatile.}: pointer
    gch.stackTop = addr(stackTop)

template addCycleRoot(cycleRoots: var TCellSeq, c: PCell) =
  if c.color != rcCycleCandidate:
    c.setColor rcCycleCandidate
    
    # the object may be buffered already. for example, consider:
    # decref; incref; decref
    if c.isBitDown(rcInCycleRoots):
      c.setBit rcInCycleRoots
      cycleRoots.add c

proc cellToUsr(cell: PCell): pointer {.inline.} =
  # convert object (=pointer to refcount) to pointer to userdata
  result = cast[pointer](cast[TAddress](cell)+%TAddress(sizeof(TCell)))

proc usrToCell*(usr: pointer): PCell {.inline.} =
  # convert pointer to userdata to object (=pointer to refcount)
  result = cast[PCell](cast[TAddress](usr)-%TAddress(sizeof(TCell)))

proc canbeCycleRoot(c: PCell): bool {.inline.} =
  result = ntfAcyclic notin c.typ.flags

proc extGetCellType(c: pointer): PNimType {.compilerproc.} =
  # used for code generation concerning debugging
  result = usrToCell(c).typ

proc internRefcount(p: pointer): int {.exportc: "getRefcount".} =
  result = int(usrToCell(p).refcount) shr rcShift

# this that has to equals zero, otherwise we have to round up UnitsPerPage:
when BitsPerPage mod (sizeof(int)*8) != 0:
  {.error: "(BitsPerPage mod BitsPerUnit) should be zero!".}

# forward declarations:
proc collectCT(gch: var TGcHeap)
proc IsOnStack*(p: pointer): bool {.noinline.}
proc forAllChildren(cell: PCell, op: TWalkOp)
proc doOperation(p: pointer, op: TWalkOp)
proc forAllChildrenAux(dest: Pointer, mt: PNimType, op: TWalkOp)
# we need the prototype here for debugging purposes

proc prepareDealloc(cell: PCell) =
  if cell.typ.finalizer != nil:
    # the finalizer could invoke something that
    # allocates memory; this could trigger a garbage
    # collection. Since we are already collecting we
    # prevend recursive entering here by a lock.
    # XXX: we should set the cell's children to nil!
    inc(gch.recGcLock)
    (cast[TFinalizer](cell.typ.finalizer))(cellToUsr(cell))
    dec(gch.recGcLock)

when traceGC:
  # traceGC is a special switch to enable extensive debugging
  type
    TCellState = enum
      csAllocated, csFreed
  var
    states: array[TCellState, TCellSet]

  proc traceCell(c: PCell, state: TCellState) =
    case state
    of csAllocated:
      if c in states[csAllocated]:
        writeCell("attempt to alloc an already allocated cell", c)
        sysAssert(false, "traceCell 1")
      excl(states[csFreed], c)
      # writecell("allocated", c)
    of csFreed:
      if c in states[csFreed]:
        writeCell("attempt to free a cell twice", c)
        sysAssert(false, "traceCell 2")
      if c notin states[csAllocated]:
        writeCell("attempt to free not an allocated cell", c)
        sysAssert(false, "traceCell 3")
      excl(states[csAllocated], c)
      # writecell("freed", c)
    incl(states[state], c)

  proc computeCellWeight(c: PCell): int =
    var x: TCellSet
    x.init

    let startLen = gch.tempStack.len
    c.forAllChildren waPush
    
    while startLen != gch.tempStack.len:
      dec gch.tempStack.len
      var c = gch.tempStack.d[gch.tempStack.len]
      if c in states[csFreed]: continue
      inc result
      if c notin x:
        x.incl c
        c.forAllChildren waPush

  template markChildrenRec(cell) =
    let startLen = gch.tempStack.len
    cell.forAllChildren waPush
    let isMarked = cell.isBitUp(rcMarkBit)
    while startLen != gch.tempStack.len:
      dec gch.tempStack.len
      var c = gch.tempStack.d[gch.tempStack.len]
      if c in states[csFreed]: continue
      if c.isBitDown(rcMarkBit):
        c.setBit rcMarkBit
        c.forAllChildren waPush
    if c.isBitUp(rcMarkBit) and not isMarked:
      writecell("cyclic cell", cell)
      cprintf "Weight %d\n", cell.computeCellWeight
      
  proc writeLeakage(onlyRoots: bool) =
    if onlyRoots:
      for c in elements(states[csAllocated]):
        if c notin states[csFreed]:
          markChildrenRec(c)
    var f = 0
    var a = 0
    for c in elements(states[csAllocated]):
      inc a
      if c in states[csFreed]: inc f
      elif c.isBitDown(rcMarkBit):
        writeCell("leak", c)
        cprintf "Weight %d\n", c.computeCellWeight
    cfprintf(cstdout, "Allocations: %ld; freed: %ld\n", a, f)

template gcTrace(cell, state: expr): stmt {.immediate.} =
  when logGC: writeCell($state, cell)
  when traceGC: traceCell(cell, state)

template WithHeapLock(blk: stmt): stmt =
  when hasThreadSupport and hasSharedHeap: AcquireSys(HeapLock)
  blk
  when hasThreadSupport and hasSharedHeap: ReleaseSys(HeapLock)

proc rtlAddCycleRoot(c: PCell) {.rtl, inl.} = 
  # we MUST access gch as a global here, because this crosses DLL boundaries!
  WithHeapLock: addCycleRoot(gch.cycleRoots, c)

proc rtlAddZCT(c: PCell) {.rtl, inl.} =
  # we MUST access gch as a global here, because this crosses DLL boundaries!
  WithHeapLock: addZCT(gch.zct, c)

type
  TCyclicMode = enum
    Cyclic,
    Acyclic,
    MaybeCyclic

  TReleaseType = enum
    AddToZTC
    FreeImmediately

  THeapType = enum
    LocalHeap
    SharedHeap

template `++` (rc: TRefCount, heapType: THeapType): stmt =
  when heapType == SharedHeap:
    discard atomicInc(rc, rcIncrement)
  else:
    inc rc, rcIncrement

template `--`(rc: TRefCount): expr =
  dec rc, rcIncrement
  rc <% rcIncrement

template `--` (rc: TRefCount, heapType: THeapType): expr =
  (when heapType == SharedHeap: atomicDec(rc, rcIncrement) <% rcIncrement else: --rc)

template doDecRef(cc: PCell,
                  heapType = LocalHeap,
                  cycleFlag = MaybeCyclic): stmt =
  var c = cc
  sysAssert(isAllocatedPtr(gch.region, c), "decRef: interiorPtr")
  # XXX: move this elesewhere

  sysAssert(c.refcount >=% rcIncrement, "decRef")
  if c.refcount--(heapType):
    # this is the last reference from the heap
    # add to a zero-count-table that will be matched against stack pointers
    rtlAddZCT(c)
  else:
    when cycleFlag != Acyclic:
      if cycleFlag == Cyclic or canBeCycleRoot(c):
        # a cycle may have been broken
        rtlAddCycleRoot(c)

template doIncRef(cc: PCell,
                 heapType = LocalHeap,
                 cycleFlag = MaybeCyclic): stmt =
  var c = cc
  c.refcount++(heapType)
  when cycleFlag != Acyclic:
    when NewObjectsAreCycleRoots:
      if canbeCycleRoot(c):
        addCycleRoot(gch.cycleRoots, c)
    elif IncRefRemovesCandidates:
      c.setColor rcAlive
  # XXX: this is not really atomic enough!
  
proc nimGCref(p: pointer) {.compilerProc, inline.} = doIncRef(usrToCell(p))
proc nimGCunref(p: pointer) {.compilerProc, inline.} = doDecRef(usrToCell(p))

proc nimGCunrefNoCycle(p: pointer) {.compilerProc, inline.} =
  sysAssert(allocInv(gch.region), "begin nimGCunrefNoCycle")
  var c = usrToCell(p)
  sysAssert(isAllocatedPtr(gch.region, c), "nimGCunrefNoCycle: isAllocatedPtr")
  if c.refcount--(LocalHeap):
    rtlAddZCT(c)
    sysAssert(allocInv(gch.region), "end nimGCunrefNoCycle 2")
  sysAssert(allocInv(gch.region), "end nimGCunrefNoCycle 5")

template doAsgnRef(dest: ppointer, src: pointer,
                  heapType = LocalHeap, cycleFlag = MaybeCyclic): stmt =
  sysAssert(not isOnStack(dest), "asgnRef")
  # BUGFIX: first incRef then decRef!
  if src != nil: doIncRef(usrToCell(src), heapType, cycleFlag)
  if dest[] != nil: doDecRef(usrToCell(dest[]), heapType, cycleFlag)
  dest[] = src

proc asgnRef(dest: ppointer, src: pointer) {.compilerProc, inline.} =
  # the code generator calls this proc!
  doAsgnRef(dest, src, LocalHeap, MaybeCyclic)

proc asgnRefNoCycle(dest: ppointer, src: pointer) {.compilerProc, inline.} =
  # the code generator calls this proc if it is known at compile time that no 
  # cycle is possible.
  doAsgnRef(dest, src, LocalHeap, Acyclic)

proc unsureAsgnRef(dest: ppointer, src: pointer) {.compilerProc.} =
  # unsureAsgnRef updates the reference counters only if dest is not on the
  # stack. It is used by the code generator if it cannot decide wether a
  # reference is in the stack or not (this can happen for var parameters).
  if not IsOnStack(dest):
    if src != nil: doIncRef(usrToCell(src))
    # XXX we must detect a shared heap here
    # better idea may be to just eliminate the need for unsureAsgnRef
    #
    # XXX finally use assembler for the stack checking instead!
    # the test for '!= nil' is correct, but I got tired of the segfaults
    # resulting from the crappy stack checking:
    if cast[int](dest[]) >=% PageSize: doDecRef(usrToCell(dest[]))
  else:
    # can't be an interior pointer if it's a stack location!
    sysAssert(interiorAllocatedPtr(gch.region, dest)==nil,
              "stack loc AND interior pointer")
  dest[] = src

when hasThreadSupport and hasSharedHeap:
  # shared heap version of the above procs
  proc asgnRefSh(dest: ppointer, src: pointer) {.compilerProc, inline.} =
    doAsgnRef(dest, src, SharedHeap, MaybeCyclic)

  proc asgnRefNoCycleSh(dest: ppointer, src: pointer) {.compilerProc, inline.} =
    doAsgnRef(dest, src, SharedHeap, Acyclic)

proc initGC() =
  when not defined(useNimRtl):
    when traceGC:
      for i in low(TCellState)..high(TCellState): Init(states[i])
    gch.cycleThreshold = InitialCycleThreshold
    gch.stat.stackScans = 0
    gch.stat.cycleCollections = 0
    gch.stat.maxThreshold = 0
    gch.stat.maxStackSize = 0
    gch.stat.maxStackCells = 0
    gch.stat.cycleTableSize = 0
    # init the rt
    init(gch.zct)
    init(gch.tempStack)
    init(gch.freeStack)
    Init(gch.cycleRoots)
    Init(gch.decStack)

proc forAllSlotsAux(dest: pointer, n: ptr TNimNode, op: TWalkOp) =
  var d = cast[TAddress](dest)
  case n.kind
  of nkSlot: forAllChildrenAux(cast[pointer](d +% n.offset), n.typ, op)
  of nkList:
    for i in 0..n.len-1:
      # inlined for speed
      if n.sons[i].kind == nkSlot:
        if n.sons[i].typ.kind in {tyRef, tyString, tySequence}:
          doOperation(cast[ppointer](d +% n.sons[i].offset)[], op)
        else:
          forAllChildrenAux(cast[pointer](d +% n.sons[i].offset), 
                            n.sons[i].typ, op)
      else:
        forAllSlotsAux(dest, n.sons[i], op)
  of nkCase:
    var m = selectBranch(dest, n)
    if m != nil: forAllSlotsAux(dest, m, op)
  of nkNone: sysAssert(false, "forAllSlotsAux")

proc forAllChildrenAux(dest: Pointer, mt: PNimType, op: TWalkOp) =
  var d = cast[TAddress](dest)
  if dest == nil: return # nothing to do
  if ntfNoRefs notin mt.flags:
    case mt.Kind
    of tyRef, tyString, tySequence: # leaf:
      doOperation(cast[ppointer](d)[], op)
    of tyObject, tyTuple:
      forAllSlotsAux(dest, mt.node, op)
    of tyArray, tyArrayConstr, tyOpenArray:
      for i in 0..(mt.size div mt.base.size)-1:
        forAllChildrenAux(cast[pointer](d +% i *% mt.base.size), mt.base, op)
    else: nil

proc forAllChildren(cell: PCell, op: TWalkOp) =
  sysAssert(cell != nil, "forAllChildren: 1")
  sysAssert(cell.typ != nil, "forAllChildren: 2")
  sysAssert cell.typ.kind in {tyRef, tySequence, tyString}, "forAllChildren: 3"
  let marker = cell.typ.marker
  if marker != nil:
    marker(cellToUsr(cell), op.int)
  else:
    case cell.typ.Kind
    of tyRef: # common case
      forAllChildrenAux(cellToUsr(cell), cell.typ.base, op)
    of tySequence:
      var d = cast[TAddress](cellToUsr(cell))
      var s = cast[PGenericSeq](d)
      if s != nil:
        let baseAddr = d +% GenericSeqSize
        for i in 0..s.len-1:
          forAllChildrenAux(cast[pointer](baseAddr +% i *% cell.typ.base.size),
                            cell.typ.base, op)
    else: nil

proc addNewObjToZCT(res: PCell, gch: var TGcHeap) {.inline.} =
  # we check the last 8 entries (cache line) for a slot that could be reused.
  # In 63% of all cases we succeed here! But we have to optimize the heck
  # out of this small linear search so that ``newObj`` is not slowed down.
  # 
  # Slots to try          cache hit
  # 1                     32%
  # 4                     59%
  # 8                     63%
  # 16                    66%
  # all slots             68%
  var L = gch.zct.len
  var d = gch.zct.d
  when true:
    # loop unrolled for performance:
    template replaceZctEntry(i: expr) =
      c = d[i]
      if c.refcount >=% rcIncrement:
        c.clearBit(rcZct)
        d[i] = res
        return
    if L > 8:
      var c: PCell
      replaceZctEntry(L-1)
      replaceZctEntry(L-2)
      replaceZctEntry(L-3)
      replaceZctEntry(L-4)
      replaceZctEntry(L-5)
      replaceZctEntry(L-6)
      replaceZctEntry(L-7)
      replaceZctEntry(L-8)
      add(gch.zct, res)
    else:
      d[L] = res
      inc(gch.zct.len)
  else:
    for i in countdown(L-1, max(0, L-8)):
      var c = d[i]
      if c.refcount >=% rcIncrement:
        c.clearBit(rcZct)
        d[i] = res
        return
    add(gch.zct, res)

proc rawNewObj(typ: PNimType, size: int, gch: var TGcHeap, rc1: bool): pointer =
  # generates a new object and sets its reference counter to 0
  acquire(gch)
  sysAssert(allocInv(gch.region), "rawNewObj begin")
  sysAssert(typ.kind in {tyRef, tyString, tySequence}, "newObj: 1")
  
  collectCT(gch)
  sysAssert(allocInv(gch.region), "rawNewObj after collect")

  var res = cast[PCell](rawAlloc(gch.region, size + sizeof(TCell)))
  sysAssert(allocInv(gch.region), "rawNewObj after rawAlloc")

  sysAssert((cast[TAddress](res) and (MemAlign-1)) == 0, "newObj: 2")
  
  res.typ = typ
  
  when trackAllocationSource and not hasThreadSupport:
    if framePtr != nil and framePtr.prev != nil and framePtr.prev.prev != nil:
      res.filename = framePtr.prev.prev.filename
      res.line = framePtr.prev.prev.line
    else:
      res.filename = "nofile"
  
  if rc1:
    res.refcount = rcIncrement # refcount is 1
  else:
    # its refcount is zero, so add it to the ZCT:
    res.refcount = rcZct
    addNewObjToZCT(res, gch)

    if NewObjectsAreCycleRoots and canBeCycleRoot(res):
      res.setBit(rcInCycleRoots)
      res.setColor rcCycleCandidate
      gch.cycleRoots.add res
    
  sysAssert(isAllocatedPtr(gch.region, res), "newObj: 3")
  
  when logGC: writeCell("new cell", res)
  gcTrace(res, csAllocated)
  release(gch)
  result = cellToUsr(res)
  zeroMem(result, size)
  when defined(memProfiler): nimProfile(size)
  sysAssert(allocInv(gch.region), "rawNewObj end")

{.pop.}

proc freeCell(gch: var TGcHeap, c: PCell) =
  # prepareDealloc(c)
  gcTrace(c, csFreed)

  when reallyDealloc: rawDealloc(gch.region, c)
  else:
    sysAssert(c.typ != nil, "collectCycles")
    zeroMem(c, sizeof(TCell))

template eraseAt(cells: var TCellSeq, at: int): stmt =
  cells.d[at] = cells.d[cells.len - 1]
  dec cells.len

template trimAt(roots: var TCellSeq, at: int): stmt =
  # This will remove a cycle root candidate during trimming.
  # a candidate is removed either because it received a refup and
  # it's no longer a candidate or because it received further refdowns
  # and now it's dead for sure.
  let c = roots.d[at]
  c.clearBit(rcInCycleRoots)
  roots.eraseAt(at)
  if c.isBitUp(rcReallyDead) and c.refcount <% rcIncrement:
    # This case covers both dead objects and retired buffers
    # That's why we must also check the refcount (it may be
    # kept possitive by stack references).
    freeCell(gch, c)

proc newObj(typ: PNimType, size: int): pointer {.compilerRtl.} =
  setStackTop(gch)
  result = rawNewObj(typ, size, gch, false)
  
proc newSeq(typ: PNimType, len: int): pointer {.compilerRtl.} =
  setStackTop(gch)
  # `rawNewObj` already uses locks, so no need for them here.
  let size = addInt(mulInt(len, typ.base.size), GenericSeqSize)
  result = rawNewObj(typ, size, gch, false)
  cast[PGenericSeq](result).len = len
  cast[PGenericSeq](result).reserved = len

proc newObjRC1(typ: PNimType, size: int): pointer {.compilerRtl.} =
  setStackTop(gch)
  result = rawNewObj(typ, size, gch, true)

proc newSeqRC1(typ: PNimType, len: int): pointer {.compilerRtl.} =
  setStackTop(gch)
  let size = addInt(mulInt(len, typ.base.size), GenericSeqSize)
  result = rawNewObj(typ, size, gch, true)
  cast[PGenericSeq](result).len = len
  cast[PGenericSeq](result).reserved = len

proc growObj(old: pointer, newsize: int, gch: var TGcHeap): pointer =
  acquire(gch)
  collectCT(gch)
  var ol = usrToCell(old)
  sysAssert(ol.typ != nil, "growObj: 1")
  sysAssert(ol.typ.kind in {tyString, tySequence}, "growObj: 2")
  sysAssert(allocInv(gch.region), "growObj begin")

  var res = cast[PCell](rawAlloc(gch.region, newsize + sizeof(TCell)))
  var elemSize = if ol.typ.kind != tyString: ol.typ.base.size
                 else: 1
  
  var oldsize = cast[PGenericSeq](old).len*elemSize + GenericSeqSize
  
  # XXX: This should happen outside
  # call user-defined move code
  # call user-defined default constructor
  copyMem(res, ol, oldsize + sizeof(TCell))
  zeroMem(cast[pointer](cast[TAddress](res)+% oldsize +% sizeof(TCell)),
          newsize-oldsize)

  sysAssert((cast[TAddress](res) and (MemAlign-1)) == 0, "growObj: 3")
  sysAssert(res.refcount shr rcShift <=% 1, "growObj: 4")
  
  when false:
    if ol.isBitUp(rcZct):
      var j = gch.zct.len-1
      var d = gch.zct.d
      while j >= 0: 
        if d[j] == ol:
          d[j] = res
          break
        dec(j)
    
    if ol.isBitUp(rcInCycleRoots):
      for i in 0 .. <gch.cycleRoots.len:
        if gch.cycleRoots.d[i] == ol:
          eraseAt(gch.cycleRoots, i)

    freeCell(gch, ol)
  
  else:
    # the new buffer inherits the GC state of the old one
    if res.isBitUp(rcZct): gch.zct.add res
    if res.isBitUp(rcInCycleRoots): gch.cycleRoots.add res

    # Pay attention to what's going on here! We're not releasing the old memory.
    # This is because at this point there may be an interior pointer pointing
    # into this buffer somewhere on the stack (due to `var` parameters now and
    # and `let` and `var:var` stack locations in the future).
    # We'll release the memory in the next GC cycle. If we release it here,
    # we cannot guarantee that no memory will be corrupted when only safe
    # language features are used. Accessing the memory after the seq/string
    # has been invalidated may still result in logic errors in the user code.
    # We may improve on that by protecting the page in debug builds or
    # by providing a warning when we detect a stack pointer into it.
    let bufferFlags = ol.refcount and rcBufferedAnywhere
    if bufferFlags == 0:
      # we need this in order to collect it safely later
      ol.refcount = rcRetiredBuffer or rcZct
      gch.zct.add ol
    else:
      ol.refcount = rcRetiredBuffer or bufferFlags

    when logGC:
      writeCell("growObj old cell", ol)
      writeCell("growObj new cell", res)

  gcTrace(res, csAllocated)
  release(gch)
  result = cellToUsr(res)
  sysAssert(allocInv(gch.region), "growObj end")
  when defined(memProfiler): nimProfile(newsize-oldsize)

proc growObj(old: pointer, newsize: int): pointer {.rtl.} =
  setStackTop(gch)
  result = growObj(old, newsize, gch)

{.push profiler:off.}

# ---------------- cycle collector -------------------------------------------

proc doOperation(p: pointer, op: TWalkOp) =
  if p == nil: return
  var c: PCell = usrToCell(p)
  sysAssert(c != nil, "doOperation: 1")
  gch.tempStack.add c
  
proc nimGCvisit(d: pointer, op: int) {.compilerRtl.} =
  doOperation(d, TWalkOp(op))

type
  TRecursionType = enum 
    FromChildren,
    FromRoot

proc CollectZCT(gch: var TGcHeap): bool

template pseudoRecursion(typ: TRecursionType, body: stmt): stmt =
  #

proc trimCycleRoots(gch: var TGcHeap, startIdx = gch.cycleRootsTrimIdx) =
  var i = startIdx
  while i < gch.cycleRoots.len:
    if gch.cycleRoots.d[i].color != rcCycleCandidate:
      gch.cycleRoots.trimAt i
    else:
      inc i

  gch.cycleRootsTrimIdx = gch.cycleRoots.len

# we now use a much simpler and non-recursive algorithm for cycle removal
proc collectCycles(gch: var TGcHeap) =
  if gch.cycleRoots.len == 0: return
  gch.stat.cycleTableSize = max(gch.stat.cycleTableSize, gch.cycleRoots.len)

  when CollectCyclesStats:
    let l0 = gch.cycleRoots.len
    let tStart = getTicks()

  var
    decrefs = 0
    increfs = 0
    collected = 0
    maybedeads = 0

  template ignoreObject(c: PCell): expr =
    # This controls which objects will be ignored in the mark and scan stages
    (when MarkingSkipsAcyclicObjects: not canbeCycleRoot(c) else: false)
    # not canbeCycleRoot(c)
    # false
    # c.isBitUp(rcHasStackRef)

  template earlyMarkAliveRec(cell) =
    let startLen = gch.tempStack.len
    cell.setColor rcAlive
    cell.forAllChildren waPush
    
    while startLen != gch.tempStack.len:
      dec gch.tempStack.len
      var c = gch.tempStack.d[gch.tempStack.len]
      if c.color != rcAlive:
        c.setColor rcAlive
        c.forAllChildren waPush
  
  template earlyMarkAlive(stackRoots) =
    # This marks all objects reachable from the stack as alive before any
    # of the other stages is executed. Such objects cannot be garbage and
    # they don't need to participate in the recursive decref/incref.
    for i in 0 .. <stackRoots.len:
      var c = stackRoots.d[i]
      # c.setBit rcHasStackRef
      earlyMarkAliveRec(c)

  earlyMarkAlive(gch.decStack)
  
  when CollectCyclesStats:
    let tAfterEarlyMarkAlive = getTicks()

  template recursiveDecRef(cell) =
    let startLen = gch.tempStack.len
    cell.setColor rcDecRefApplied
    cell.forAllChildren waPush
    
    while startLen != gch.tempStack.len:
      dec gch.tempStack.len
      var c = gch.tempStack.d[gch.tempStack.len]
      if ignoreObject(c): continue

      sysAssert(c.refcount >=% rcIncrement, "recursive dec ref")
      dec c.refcount, rcIncrement
      inc decrefs
      if c.color != rcDecRefApplied:
        c.setColor rcDecRefApplied
        c.forAllChildren waPush
 
  template markRoots(roots) =
    var i = 0
    while i < roots.len:
      if roots.d[i].color == rcCycleCandidate:
        recursiveDecRef(roots.d[i])
        inc i
      else:
        roots.trimAt i
  
  markRoots(gch.cycleRoots)
  
  when CollectCyclesStats:
    let tAfterMark = getTicks()
    c_printf "COLLECT CYCLES %d: %d/%d\n", gcCollectionIdx, gch.cycleRoots.len, l0
  
  template recursiveMarkAlive(cell) =
    let startLen = gch.tempStack.len
    cell.setColor rcAlive
    cell.forAllChildren waPush
    
    while startLen != gch.tempStack.len:
      dec gch.tempStack.len
      var c = gch.tempStack.d[gch.tempStack.len]
      if ignoreObject(c): continue
      inc c.refcount, rcIncrement
      inc increfs
      
      if c.color != rcAlive:
        c.setColor rcAlive
        c.forAllChildren waPush
 
  template scanRoots(roots) =
    for i in 0 .. <roots.len:
      let startLen = gch.tempStack.len
      gch.tempStack.add roots.d[i]
      
      while startLen != gch.tempStack.len:
        dec gch.tempStack.len
        var c = gch.tempStack.d[gch.tempStack.len]
        if ignoreObject(c): continue
        if c.color == rcDecRefApplied:
          if c.refcount >=% rcIncrement:
            recursiveMarkAlive(c)
          else:
            # note that this is not necessarily the ultimate
            # destiny of the object. we may still mark it alive
            # later if we encounter another node from where it's
            # reachable.
            c.setColor rcMaybeDead
            inc maybedeads
            c.forAllChildren waPush
  
  scanRoots(gch.cycleRoots)
  
  when CollectCyclesStats:
    let tAfterScan = getTicks()

  template collectDead(roots) =
    for i in 0 .. <roots.len:
      var c = roots.d[i]
      c.clearBit(rcInCycleRoots)

      let startLen = gch.tempStack.len
      gch.tempStack.add c
      
      while startLen != gch.tempStack.len:
        dec gch.tempStack.len
        var c = gch.tempStack.d[gch.tempStack.len]
        when MarkingSkipsAcyclicObjects:
          if not canbeCycleRoot(c):
            # This is an acyclic object reachable from a dead cyclic object
            # We must do a normal decref here that may add the acyclic object
            # to the ZCT
            doDecRef(c, LocalHeap, Cyclic)
            continue
        if c.color == rcMaybeDead and not c.isBitUp(rcInCycleRoots):
          c.setColor(rcReallyDead)
          inc collected
          c.forAllChildren waPush
          # we need to postpone the actual deallocation in order to allow
          # the finalizers to run while the data structures are still intact
          gch.freeStack.add c
          prepareDealloc(c)

    for i in 0 .. <gch.freeStack.len:
      freeCell(gch, gch.freeStack.d[i])

  collectDead(gch.cycleRoots)
  
  when CollectCyclesStats:
    let tFinal = getTicks()
    cprintf "times:\n  early mark alive: %d ms\n  mark: %d ms\n  scan: %d ms\n  collect: %d ms\n  decrefs: %d\n  increfs: %d\n  marked dead: %d\n  collected: %d\n",
      (tAfterEarlyMarkAlive - tStart)  div 1_000_000,
      (tAfterMark - tAfterEarlyMarkAlive) div 1_000_000,
      (tAfterScan - tAfterMark) div 1_000_000,
      (tFinal - tAfterScan) div 1_000_000,
      decrefs,
      increfs,
      maybedeads,
      collected

  Deinit(gch.cycleRoots)
  Init(gch.cycleRoots)

  Deinit(gch.freeStack)
  Init(gch.freeStack)

  when MarkingSkipsAcyclicObjects:
    # Collect the acyclic objects that became unreachable due to collected
    # cyclic objects. 
    discard CollectZCT(gch)
    # CollectZCT may add new cycle candidates and we may decide to loop here
    # if gch.cycleRoots.len > 0: repeat

var gcDebugging* = false

var seqdbg* : proc (s: PGenericSeq) {.cdecl.}

proc gcMark(gch: var TGcHeap, p: pointer) {.inline.} =
  # the addresses are not as cells on the stack, so turn them to cells:
  sysAssert(allocInv(gch.region), "gcMark begin")
  var cell = usrToCell(p)
  var c = cast[TAddress](cell)
  if c >% PageSize:
    # fast check: does it look like a cell?
    var objStart = cast[PCell](interiorAllocatedPtr(gch.region, cell))
    if objStart != nil:
      # mark the cell:
      if objStart.color != rcReallyDead:
        if gcDebugging:
          # writeCell("marking ", objStart)
        else:
          inc objStart.refcount, rcIncrement
          gch.decStack.add objStart
      else:
        # With incremental clean-up, objects spend some time
        # in various lists before being deallocated.
        # We just found a reference on the stack to an object,
        # which we have previously labeled as unreachable.
        # This is either a bug in the GC or a pure accidental
        # coincidence due to the conservative stack marking.
        when debugGC:
          # writeCell("marking dead object", objStart)
    when false:
      if isAllocatedPtr(gch.region, cell):
        sysAssert false, "allocated pointer but not interior?"
        # mark the cell:
        inc cell.refcount, rcIncrement
        add(gch.decStack, cell)
  sysAssert(allocInv(gch.region), "gcMark end")

proc markThreadStacks(gch: var TGcHeap) = 
  when hasThreadSupport and hasSharedHeap:
    {.error: "not fully implemented".}
    var it = threadList
    while it != nil:
      # mark registers: 
      for i in 0 .. high(it.registers): gcMark(gch, it.registers[i])
      var sp = cast[TAddress](it.stackBottom)
      var max = cast[TAddress](it.stackTop)
      # XXX stack direction?
      # XXX unroll this loop:
      while sp <=% max:
        gcMark(gch, cast[ppointer](sp)[])
        sp = sp +% sizeof(pointer)
      it = it.next

# ----------------- stack management --------------------------------------
#  inspired from Smart Eiffel

when defined(sparc):
  const stackIncreases = false
elif defined(hppa) or defined(hp9000) or defined(hp9000s300) or
     defined(hp9000s700) or defined(hp9000s800) or defined(hp9000s820):
  const stackIncreases = true
else:
  const stackIncreases = false

when not defined(useNimRtl):
  {.push stack_trace: off.}
  proc setStackBottom(theStackBottom: pointer) =
    #c_fprintf(c_stdout, "stack bottom: %p;\n", theStackBottom)
    # the first init must be the one that defines the stack bottom:
    if gch.stackBottom == nil: gch.stackBottom = theStackBottom
    else:
      var a = cast[TAddress](theStackBottom) # and not PageMask - PageSize*2
      var b = cast[TAddress](gch.stackBottom)
      #c_fprintf(c_stdout, "old: %p new: %p;\n",gch.stackBottom,theStackBottom)
      when stackIncreases:
        gch.stackBottom = cast[pointer](min(a, b))
      else:
        gch.stackBottom = cast[pointer](max(a, b))
  {.pop.}

proc stackSize(): int {.noinline.} =
  var stackTop {.volatile.}: pointer
  result = abs(cast[int](addr(stackTop)) - cast[int](gch.stackBottom))

var
  jmpbufSize {.importc: "sizeof(jmp_buf)", nodecl.}: int
    # a little hack to get the size of a TJmpBuf in the generated C code
    # in a platform independant way

when defined(sparc): # For SPARC architecture.
  proc isOnStack(p: pointer): bool =
    var stackTop {.volatile.}: pointer
    stackTop = addr(stackTop)
    var b = cast[TAddress](gch.stackBottom)
    var a = cast[TAddress](stackTop)
    var x = cast[TAddress](p)
    result = a <=% x and x <=% b

  proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} =
    when defined(sparcv9):
      asm  """"flushw \n" """
    else:
      asm  """"ta      0x3   ! ST_FLUSH_WINDOWS\n" """

    var
      max = gch.stackBottom
      sp: PPointer
      stackTop: array[0..1, pointer]
    sp = addr(stackTop[0])
    # Addresses decrease as the stack grows.
    while sp <= max:
      gcMark(gch, sp[])
      sp = cast[ppointer](cast[TAddress](sp) +% sizeof(pointer))

elif defined(ELATE):
  {.error: "stack marking code is to be written for this architecture".}

elif stackIncreases:
  # ---------------------------------------------------------------------------
  # Generic code for architectures where addresses increase as the stack grows.
  # ---------------------------------------------------------------------------
  proc isOnStack(p: pointer): bool =
    var stackTop {.volatile.}: pointer
    stackTop = addr(stackTop)
    var a = cast[TAddress](gch.stackBottom)
    var b = cast[TAddress](stackTop)
    var x = cast[TAddress](p)
    result = a <=% x and x <=% b
  
  proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} =
    var registers: C_JmpBuf
    if c_setjmp(registers) == 0'i32: # To fill the C stack with registers.
      var max = cast[TAddress](gch.stackBottom)
      var sp = cast[TAddress](addr(registers)) +% jmpbufSize -% sizeof(pointer)
      # sp will traverse the JMP_BUF as well (jmp_buf size is added,
      # otherwise sp would be below the registers structure).
      while sp >=% max:
        gcMark(gch, cast[ppointer](sp)[])
        sp = sp -% sizeof(pointer)

else:
  # ---------------------------------------------------------------------------
  # Generic code for architectures where addresses decrease as the stack grows.
  # ---------------------------------------------------------------------------
  proc isOnStack(p: pointer): bool =
    var stackTop {.volatile.}: pointer
    stackTop = addr(stackTop)
    var b = cast[TAddress](gch.stackBottom)
    var a = cast[TAddress](stackTop)
    var x = cast[TAddress](p)
    result = a <=% x and x <=% b

  proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} =
    # We use a jmp_buf buffer that is in the C stack.
    # Used to traverse the stack and registers assuming
    # that 'setjmp' will save registers in the C stack.
    type PStackSlice = ptr array [0..7, pointer]
    var registers: C_JmpBuf
    if c_setjmp(registers) == 0'i32: # To fill the C stack with registers.
      when MinimumStackMarking:
        # mark the registers
        var jmpbufPtr = cast[TAddress](addr(registers))
        var jmpbufEnd = jmpbufPtr +% jmpbufSize
      
        while jmpbufPtr <=% jmpbufEnd:
          gcMark(gch, cast[ppointer](jmpbufPtr)[])
          jmpbufPtr = jmpbufPtr +% sizeof(pointer)

        var sp = cast[TAddress](gch.stackTop)
      else:
        var sp = cast[TAddress](addr(registers))
      # mark the user stack
      var max = cast[TAddress](gch.stackBottom)
      # loop unrolled:
      while sp <% max - 8*sizeof(pointer):
        gcMark(gch, cast[PStackSlice](sp)[0])
        gcMark(gch, cast[PStackSlice](sp)[1])
        gcMark(gch, cast[PStackSlice](sp)[2])
        gcMark(gch, cast[PStackSlice](sp)[3])
        gcMark(gch, cast[PStackSlice](sp)[4])
        gcMark(gch, cast[PStackSlice](sp)[5])
        gcMark(gch, cast[PStackSlice](sp)[6])
        gcMark(gch, cast[PStackSlice](sp)[7])
        sp = sp +% sizeof(pointer)*8
      # last few entries:
      while sp <=% max:
        gcMark(gch, cast[ppointer](sp)[])
        sp = sp +% sizeof(pointer)

# ----------------------------------------------------------------------------
# end of non-portable code
# ----------------------------------------------------------------------------

proc releaseCell(gch: var TGcHeap, cell: PCell) =
  if cell.color != rcReallyDead:
    prepareDealloc(cell)
    cell.setColor rcReallyDead

    let l1 = gch.tempStack.len
    cell.forAllChildren waPush
    let l2 = gch.tempStack.len
    for i in l1 .. <l2:
      var cc = gch.tempStack.d[i]
      if cc.refcount--(LocalHeap):
        releaseCell(gch, cc)
      else:
        if canbeCycleRoot(cc):
          addCycleRoot(gch.cycleRoots, cc)

    gch.tempStack.len = l1

  if cell.isBitDown(rcBufferedAnywhere):
    freeCell(gch, cell)
  # else:
  # This object is either buffered in the cycleRoots list and we'll leave
  # it there to be collected in the next collectCycles or it's pending in
  # the ZCT:
  # (e.g. we are now cleaning the 15th object, but this one is 18th in the
  #  list. Note that this can happen only if we reached this point by the
  #  recursion).
  # We can ignore it now as the ZCT cleaner will reach it soon.

proc CollectZCT(gch: var TGcHeap): bool =
  const workPackage = 100
  var L = addr(gch.zct.len)
  
  when withRealtime:
    var steps = workPackage
    var t0: TTicks
    if gch.maxPause > 0: t0 = getticks()
  
  while L[] > 0:
    var c = gch.zct.d[0]
    sysAssert c.isBitUp(rcZct), "CollectZCT: rcZct missing!"
    sysAssert(isAllocatedPtr(gch.region, c), "CollectZCT: isAllocatedPtr")
    
    # remove from ZCT:    
    c.clearBit(rcZct)
    gch.zct.d[0] = gch.zct.d[L[] - 1]
    dec(L[])
    when withRealtime: dec steps
    if c.refcount <% rcIncrement:
      # It may have a RC > 0, if it is in the hardware stack or
      # it has not been removed yet from the ZCT. This is because
      # ``incref`` does not bother to remove the cell from the ZCT 
      # as this might be too slow.
      # In any case, it should be removed from the ZCT. But not
      # freed. **KEEP THIS IN MIND WHEN MAKING THIS INCREMENTAL!**
      if c.color == rcRetiredBuffer:
        if c.isBitDown(rcInCycleRoots):
          freeCell(gch, c)
      else:
        # if c.color == rcReallyDead: writeCell("ReallyDead in ZCT?", c)
        releaseCell(gch, c)
    when withRealtime:
      if steps == 0:
        steps = workPackage
        if gch.maxPause > 0:
          let duration = getticks() - t0
          # the GC's measuring is not accurate and needs some cleanup actions 
          # (stack unmarking), so subtract some short amount of time in to
          # order to miss deadlines less often:
          if duration >= gch.maxPause - 50_000:
            return false
  result = true
  gch.trimCycleRoots
  #deInit(gch.zct)
  #init(gch.zct)

proc unmarkStackAndRegisters(gch: var TGcHeap) =
  var d = gch.decStack.d
  for i in 0 .. <gch.decStack.len:
    sysAssert isAllocatedPtr(gch.region, d[i]), "unmarkStackAndRegisters"
    # XXX: just call doDecRef?
    var c = d[i]
    sysAssert c.typ != nil, "unmarkStackAndRegisters 2"
    
    if c.color == rcRetiredBuffer:
      continue

    # XXX no need for an atomic dec here:
    if c.refcount--(LocalHeap):
      # the object survived only because of a stack reference
      # it still doesn't have heap refernces
      addZCT(gch.zct, c)
    
    if canbeCycleRoot(c):
      # any cyclic object reachable from the stack can be turned into
      # a leak if it's orphaned through the stack reference
      # that's because the write-barrier won't be executed for stack
      # locations
      addCycleRoot(gch.cycleRoots, c)

  gch.decStack.len = 0

proc collectCTBody(gch: var TGcHeap) =
  when withRealtime:
    let t0 = getticks()
  when debugGC: inc gcCollectionIdx
  sysAssert(allocInv(gch.region), "collectCT: begin")
  
  gch.stat.maxStackSize = max(gch.stat.maxStackSize, stackSize())
  sysAssert(gch.decStack.len == 0, "collectCT")
  prepareForInteriorPointerChecking(gch.region)
  markStackAndRegisters(gch)
  markThreadStacks(gch)
  gch.stat.maxStackCells = max(gch.stat.maxStackCells, gch.decStack.len)
  inc(gch.stat.stackScans)
  if collectZCT(gch):
    when cycleGC:
      if getOccupiedMem(gch.region) >= gch.cycleThreshold or alwaysCycleGC:
        collectCycles(gch)
        sysAssert gch.zct.len == 0, "zct is not null after collect cycles"
        inc(gch.stat.cycleCollections)
        gch.cycleThreshold = max(InitialCycleThreshold, getOccupiedMem() *
                                 cycleIncrease)
        gch.stat.maxThreshold = max(gch.stat.maxThreshold, gch.cycleThreshold)
  unmarkStackAndRegisters(gch)
  sysAssert(allocInv(gch.region), "collectCT: end")
  
  when withRealtime:
    let duration = getticks() - t0
    gch.stat.maxPause = max(gch.stat.maxPause, duration)
    when defined(reportMissedDeadlines):
      if gch.maxPause > 0 and duration > gch.maxPause:
        c_fprintf(c_stdout, "[GC] missed deadline: %ld\n", duration)

proc collectCT(gch: var TGcHeap) =
  if (gch.zct.len >= ZctThreshold or (cycleGC and
      getOccupiedMem(gch.region)>=gch.cycleThreshold) or alwaysGC) and 
      gch.recGcLock == 0:
    collectCTBody(gch)

when withRealtime:
  proc toNano(x: int): TNanos {.inline.} =
    result = x * 1000

  proc GC_setMaxPause*(MaxPauseInUs: int) =
    gch.maxPause = MaxPauseInUs.toNano

  proc GC_step(gch: var TGcHeap, us: int, strongAdvice: bool) =
    acquire(gch)
    gch.maxPause = us.toNano
    if (gch.zct.len >= ZctThreshold or (cycleGC and
        getOccupiedMem(gch.region)>=gch.cycleThreshold) or alwaysGC) or 
        strongAdvice:
      collectCTBody(gch)
    release(gch)

  proc GC_step*(us: int, strongAdvice = false) = GC_step(gch, us, strongAdvice)

when not defined(useNimRtl):
  proc GC_disable() = 
    when hasThreadSupport and hasSharedHeap:
      discard atomicInc(gch.recGcLock, 1)
    else:
      inc(gch.recGcLock)
  proc GC_enable() =
    if gch.recGcLock > 0: 
      when hasThreadSupport and hasSharedHeap:
        discard atomicDec(gch.recGcLock, 1)
      else:
        dec(gch.recGcLock)

  proc GC_setStrategy(strategy: GC_Strategy) =
    case strategy
    of gcThroughput: nil
    of gcResponsiveness: nil
    of gcOptimizeSpace: nil
    of gcOptimizeTime: nil

  proc GC_enableMarkAndSweep() =
    gch.cycleThreshold = InitialCycleThreshold

  proc GC_disableMarkAndSweep() =
    gch.cycleThreshold = high(gch.cycleThreshold)-1
    # set to the max value to suppress the cycle detector

  proc GC_fullCollect() =
    setStackTop(gch)
    acquire(gch)
    var oldThreshold = gch.cycleThreshold
    gch.cycleThreshold = 0 # forces cycle collection
    collectCT(gch)
    gch.cycleThreshold = oldThreshold
    release(gch)

  proc GC_getStatistics(): string =
    GC_disable()
    result = "[GC] total memory: " & $(getTotalMem()) & "\n" &
             "[GC] occupied memory: " & $(getOccupiedMem()) & "\n" &
             "[GC] stack scans: " & $gch.stat.stackScans & "\n" &
             "[GC] stack cells: " & $gch.stat.maxStackCells & "\n" &
             "[GC] cycle collections: " & $gch.stat.cycleCollections & "\n" &
             "[GC] max threshold: " & $gch.stat.maxThreshold & "\n" &
             "[GC] zct capacity: " & $gch.zct.cap & "\n" &
             "[GC] max cycle table size: " & $gch.stat.cycleTableSize & "\n" &
             "[GC] max stack size: " & $gch.stat.maxStackSize & "\n" &
             "[GC] max pause time [ms]: " & $(gch.stat.maxPause div 1000_000)
    when traceGC: writeLeakage(true)
    GC_enable()

{.pop.}