diff options
-rw-r--r-- | lib/pure/bitops.nim | 259 | ||||
-rw-r--r-- | tests/stdlib/tbitops.nim | 509 |
2 files changed, 304 insertions, 464 deletions
diff --git a/lib/pure/bitops.nim b/lib/pure/bitops.nim index 9a4a49e9a..2f1fc1814 100644 --- a/lib/pure/bitops.nim +++ b/lib/pure/bitops.nim @@ -8,27 +8,27 @@ # ## This module implements a series of low level methods for bit manipulation. - -## By default, this module use compiler intrinsics where possible to improve performance -## on supported compilers: ``GCC``, ``LLVM_GCC``, ``CLANG``, ``VCC``, ``ICC``. ## -## The module will fallback to pure nim procs incase the backend is not supported. +## By default, compiler intrinsics are used where possible to improve performance +## on supported compilers: `GCC`, `LLVM_GCC`, `CLANG`, `VCC`, `ICC`. +## +## The module will fallback to pure nim procs in case the backend is not supported. ## You can also use the flag `noIntrinsicsBitOpts` to disable compiler intrinsics. ## -## This module is also compatible with other backends: ``Javascript``, ``Nimscript`` -## as well as the ``compiletime VM``. +## This module is also compatible with other backends: `JavaScript`, `NimScript` +## as well as the `compiletime VM`. ## -## As a result of using optimized function/intrinsics some functions can return +## As a result of using optimized functions/intrinsics, some functions can return ## undefined results if the input is invalid. You can use the flag `noUndefinedBitOpts` ## to force predictable behaviour for all input, causing a small performance hit. ## -## At this time only `fastLog2`, `firstSetBit, `countLeadingZeroBits`, `countTrailingZeroBits` -## may return undefined and/or platform dependent value if given invalid input. +## At this time only `fastLog2`, `firstSetBit`, `countLeadingZeroBits` and `countTrailingZeroBits` +## may return undefined and/or platform dependent values if given invalid input. import macros import std/private/since -proc bitnot*[T: SomeInteger](x: T): T {.magic: "BitnotI", noSideEffect.} +func bitnot*[T: SomeInteger](x: T): T {.magic: "BitnotI".} ## Computes the `bitwise complement` of the integer `x`. func internalBitand[T: SomeInteger](x, y: T): T {.magic: "BitandI".} @@ -89,10 +89,10 @@ template forwardImpl(impl, arg) {.dirty.} = when defined(nimHasalignOf): type BitsRange*[T] = range[0..sizeof(T)*8-1] - ## A range with all bit positions for type ``T`` + ## A range with all bit positions for type `T`. func bitsliced*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} = - ## Returns an extracted (and shifted) slice of bits from ``v``. + ## Returns an extracted (and shifted) slice of bits from `v`. runnableExamples: doAssert 0b10111.bitsliced(2 .. 4) == 0b101 doAssert 0b11100.bitsliced(0 .. 2) == 0b100 @@ -104,7 +104,7 @@ when defined(nimHasalignOf): (uv shl (upmost - slice.b) shr (upmost - slice.b + slice.a)).T proc bitslice*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} = - ## Mutates ``v`` into an extracted (and shifted) slice of bits from ``v``. + ## Mutates `v` into an extracted (and shifted) slice of bits from `v`. runnableExamples: var x = 0b101110 x.bitslice(2 .. 4) @@ -130,32 +130,32 @@ when defined(nimHasalignOf): (bitmask shl (upmost - slice.b + slice.a) shr (upmost - slice.b)).T proc masked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} = - ## Returns ``v``, with only the ``1`` bits from ``mask`` matching those of - ## ``v`` set to 1. + ## Returns `v`, with only the `1` bits from `mask` matching those of + ## `v` set to 1. ## - ## Effectively maps to a `bitand` operation. + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation. runnableExamples: - var v = 0b0000_0011'u8 + let v = 0b0000_0011'u8 doAssert v.masked(0b0000_1010'u8) == 0b0000_0010'u8 bitand(v, mask) func masked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} = - ## Mutates ``v``, with only the ``1`` bits in the range of ``slice`` - ## matching those of ``v`` set to 1. + ## Returns `v`, with only the `1` bits in the range of `slice` + ## matching those of `v` set to 1. ## - ## Effectively maps to a `bitand` operation. + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation. runnableExamples: - var v = 0b0000_1011'u8 + let v = 0b0000_1011'u8 doAssert v.masked(1 .. 3) == 0b0000_1010'u8 bitand(v, toMask[T](slice)) proc mask*[T: SomeInteger](v: var T; mask: T) {.inline, since: (1, 3).} = - ## Mutates ``v``, with only the ``1`` bits from ``mask`` matching those of - ## ``v`` set to 1. + ## Mutates `v`, with only the `1` bits from `mask` matching those of + ## `v` set to 1. ## - ## Effectively maps to a `bitand` operation. + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation. runnableExamples: var v = 0b0000_0011'u8 v.mask(0b0000_1010'u8) @@ -164,10 +164,10 @@ when defined(nimHasalignOf): v = bitand(v, mask) proc mask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} = - ## Mutates ``v``, with only the ``1`` bits in the range of ``slice`` - ## matching those of ``v`` set to 1. + ## Mutates `v`, with only the `1` bits in the range of `slice` + ## matching those of `v` set to 1. ## - ## Effectively maps to a `bitand` operation. + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation. runnableExamples: var v = 0b0000_1011'u8 v.mask(1 .. 3) @@ -176,29 +176,29 @@ when defined(nimHasalignOf): v = bitand(v, toMask[T](slice)) func setMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} = - ## Returns ``v``, with all the ``1`` bits from ``mask`` set to 1. + ## Returns `v`, with all the `1` bits from `mask` set to 1. ## - ## Effectively maps to a `bitor` operation. + ## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation. runnableExamples: - var v = 0b0000_0011'u8 + let v = 0b0000_0011'u8 doAssert v.setMasked(0b0000_1010'u8) == 0b0000_1011'u8 bitor(v, mask) func setMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} = - ## Returns ``v``, with all the ``1`` bits in the range of ``slice`` set to 1. + ## Returns `v`, with all the `1` bits in the range of `slice` set to 1. ## - ## Effectively maps to a `bitor` operation. + ## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation. runnableExamples: - var v = 0b0000_0011'u8 + let v = 0b0000_0011'u8 doAssert v.setMasked(2 .. 3) == 0b0000_1111'u8 bitor(v, toMask[T](slice)) proc setMask*[T: SomeInteger](v: var T; mask: T) {.inline.} = - ## Mutates ``v``, with all the ``1`` bits from ``mask`` set to 1. + ## Mutates `v`, with all the `1` bits from `mask` set to 1. ## - ## Effectively maps to a `bitor` operation. + ## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation. runnableExamples: var v = 0b0000_0011'u8 v.setMask(0b0000_1010'u8) @@ -207,9 +207,9 @@ when defined(nimHasalignOf): v = bitor(v, mask) proc setMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} = - ## Mutates ``v``, with all the ``1`` bits in the range of ``slice`` set to 1. + ## Mutates `v`, with all the `1` bits in the range of `slice` set to 1. ## - ## Effectively maps to a `bitor` operation. + ## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation. runnableExamples: var v = 0b0000_0011'u8 v.setMask(2 .. 3) @@ -218,29 +218,32 @@ when defined(nimHasalignOf): v = bitor(v, toMask[T](slice)) func clearMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} = - ## Returns ``v``, with all the ``1`` bits from ``mask`` set to 0. + ## Returns `v`, with all the `1` bits from `mask` set to 0. ## - ## Effectively maps to a `bitand` operation with an *inverted mask.* + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation + ## with an *inverted mask*. runnableExamples: - var v = 0b0000_0011'u8 + let v = 0b0000_0011'u8 doAssert v.clearMasked(0b0000_1010'u8) == 0b0000_0001'u8 bitand(v, bitnot(mask)) func clearMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} = - ## Returns ``v``, with all the ``1`` bits in the range of ``slice`` set to 0. + ## Returns `v`, with all the `1` bits in the range of `slice` set to 0. ## - ## Effectively maps to a `bitand` operation with an *inverted mask.* + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation + ## with an *inverted mask*. runnableExamples: - var v = 0b0000_0011'u8 + let v = 0b0000_0011'u8 doAssert v.clearMasked(1 .. 3) == 0b0000_0001'u8 bitand(v, bitnot(toMask[T](slice))) proc clearMask*[T: SomeInteger](v: var T; mask: T) {.inline.} = - ## Mutates ``v``, with all the ``1`` bits from ``mask`` set to 0. + ## Mutates `v`, with all the `1` bits from `mask` set to 0. ## - ## Effectively maps to a `bitand` operation with an *inverted mask.* + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation + ## with an *inverted mask*. runnableExamples: var v = 0b0000_0011'u8 v.clearMask(0b0000_1010'u8) @@ -249,9 +252,10 @@ when defined(nimHasalignOf): v = bitand(v, bitnot(mask)) proc clearMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} = - ## Mutates ``v``, with all the ``1`` bits in the range of ``slice`` set to 0. + ## Mutates `v`, with all the `1` bits in the range of `slice` set to 0. ## - ## Effectively maps to a `bitand` operation with an *inverted mask.* + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation + ## with an *inverted mask*. runnableExamples: var v = 0b0000_0011'u8 v.clearMask(1 .. 3) @@ -260,29 +264,29 @@ when defined(nimHasalignOf): v = bitand(v, bitnot(toMask[T](slice))) func flipMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} = - ## Returns ``v``, with all the ``1`` bits from ``mask`` flipped. + ## Returns `v`, with all the `1` bits from `mask` flipped. ## - ## Effectively maps to a `bitxor` operation. + ## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation. runnableExamples: - var v = 0b0000_0011'u8 + let v = 0b0000_0011'u8 doAssert v.flipMasked(0b0000_1010'u8) == 0b0000_1001'u8 bitxor(v, mask) func flipMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} = - ## Returns ``v``, with all the ``1`` bits in the range of ``slice`` flipped. + ## Returns `v`, with all the `1` bits in the range of `slice` flipped. ## - ## Effectively maps to a `bitxor` operation. + ## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation. runnableExamples: - var v = 0b0000_0011'u8 + let v = 0b0000_0011'u8 doAssert v.flipMasked(1 .. 3) == 0b0000_1101'u8 bitxor(v, toMask[T](slice)) proc flipMask*[T: SomeInteger](v: var T; mask: T) {.inline.} = - ## Mutates ``v``, with all the ``1`` bits from ``mask`` flipped. + ## Mutates `v`, with all the `1` bits from `mask` flipped. ## - ## Effectively maps to a `bitxor` operation. + ## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation. runnableExamples: var v = 0b0000_0011'u8 v.flipMask(0b0000_1010'u8) @@ -291,9 +295,9 @@ when defined(nimHasalignOf): v = bitxor(v, mask) proc flipMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} = - ## Mutates ``v``, with all the ``1`` bits in the range of ``slice`` flipped. + ## Mutates `v`, with all the `1` bits in the range of `slice` flipped. ## - ## Effectively maps to a `bitxor` operation. + ## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation. runnableExamples: var v = 0b0000_0011'u8 v.flipMask(1 .. 3) @@ -302,7 +306,7 @@ when defined(nimHasalignOf): v = bitxor(v, toMask[T](slice)) proc setBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} = - ## Mutates ``v``, with the bit at position ``bit`` set to 1 + ## Mutates `v`, with the bit at position `bit` set to 1. runnableExamples: var v = 0b0000_0011'u8 v.setBit(5'u8) @@ -311,7 +315,7 @@ when defined(nimHasalignOf): v.setMask(1.T shl bit) proc clearBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} = - ## Mutates ``v``, with the bit at position ``bit`` set to 0 + ## Mutates `v`, with the bit at position `bit` set to 0. runnableExamples: var v = 0b0000_0011'u8 v.clearBit(1'u8) @@ -320,7 +324,7 @@ when defined(nimHasalignOf): v.clearMask(1.T shl bit) proc flipBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} = - ## Mutates ``v``, with the bit at position ``bit`` flipped + ## Mutates `v`, with the bit at position `bit` flipped. runnableExamples: var v = 0b0000_0011'u8 v.flipBit(1'u8) @@ -333,7 +337,7 @@ when defined(nimHasalignOf): v.flipMask(1.T shl bit) macro setBits*(v: typed; bits: varargs[typed]): untyped = - ## Mutates ``v``, with the bits at positions ``bits`` set to 1 + ## Mutates `v`, with the bits at positions `bits` set to 1. runnableExamples: var v = 0b0000_0011'u8 v.setBits(3, 5, 7) @@ -345,7 +349,7 @@ when defined(nimHasalignOf): result.add newCall("setBit", v, bit) macro clearBits*(v: typed; bits: varargs[typed]): untyped = - ## Mutates ``v``, with the bits at positions ``bits`` set to 0 + ## Mutates `v`, with the bits at positions `bits` set to 0. runnableExamples: var v = 0b1111_1111'u8 v.clearBits(1, 3, 5, 7) @@ -357,7 +361,7 @@ when defined(nimHasalignOf): result.add newCall("clearBit", v, bit) macro flipBits*(v: typed; bits: varargs[typed]): untyped = - ## Mutates ``v``, with the bits at positions ``bits`` set to 0 + ## Mutates `v`, with the bits at positions `bits` set to 0. runnableExamples: var v = 0b0000_1111'u8 v.flipBits(1, 3, 5, 7) @@ -370,9 +374,9 @@ when defined(nimHasalignOf): proc testBit*[T: SomeInteger](v: T; bit: BitsRange[T]): bool {.inline.} = - ## Returns true if the bit in ``v`` at positions ``bit`` is set to 1 + ## Returns true if the bit in `v` at positions `bit` is set to 1. runnableExamples: - var v = 0b0000_1111'u8 + let v = 0b0000_1111'u8 doAssert v.testBit(0) doAssert not v.testBit(7) @@ -381,19 +385,19 @@ when defined(nimHasalignOf): # #### Pure Nim version #### -proc firstSetBitNim(x: uint32): int {.inline, noSideEffect.} = +func firstSetBitNim(x: uint32): int {.inline.} = ## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero. # https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup const lookup: array[32, uint8] = [0'u8, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9] - var v = x.uint32 - var k = not v + 1 # get two's complement # cast[uint32](-cast[int32](v)) + let v = x.uint32 + let k = not v + 1 # get two's complement # cast[uint32](-cast[int32](v)) result = 1 + lookup[uint32((v and k) * 0x077CB531'u32) shr 27].int -proc firstSetBitNim(x: uint64): int {.inline, noSideEffect.} = +func firstSetBitNim(x: uint64): int {.inline.} = ## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero. # https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup - var v = uint64(x) + let v = uint64(x) var k = uint32(v and 0xFFFFFFFF'u32) if k == 0: k = uint32(v shr 32'u32) and 0xFFFFFFFF'u32 @@ -402,7 +406,7 @@ proc firstSetBitNim(x: uint64): int {.inline, noSideEffect.} = result = 0 result += firstSetBitNim(k) -proc fastlog2Nim(x: uint32): int {.inline, noSideEffect.} = +func fastlog2Nim(x: uint32): int {.inline.} = ## Quickly find the log base 2 of a 32-bit or less integer. # https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn # https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers @@ -416,7 +420,7 @@ proc fastlog2Nim(x: uint32): int {.inline, noSideEffect.} = v = v or v shr 16 result = lookup[uint32(v * 0x07C4ACDD'u32) shr 27].int -proc fastlog2Nim(x: uint64): int {.inline, noSideEffect.} = +func fastlog2Nim(x: uint64): int {.inline.} = ## Quickly find the log base 2 of a 64-bit integer. # https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn # https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers @@ -479,24 +483,24 @@ when useGCC_builtins: elif useVCC_builtins: # Counts the number of one bits (population count) in a 16-, 32-, or 64-byte unsigned integer. - proc builtin_popcnt16(a2: uint16): uint16 {. - importc: "__popcnt16", header: "<intrin.h>", noSideEffect.} - proc builtin_popcnt32(a2: uint32): uint32 {. - importc: "__popcnt", header: "<intrin.h>", noSideEffect.} - proc builtin_popcnt64(a2: uint64): uint64 {. - importc: "__popcnt64", header: "<intrin.h>", noSideEffect.} + func builtin_popcnt16(a2: uint16): uint16 {. + importc: "__popcnt16", header: "<intrin.h>".} + func builtin_popcnt32(a2: uint32): uint32 {. + importc: "__popcnt", header: "<intrin.h>".} + func builtin_popcnt64(a2: uint64): uint64 {. + importc: "__popcnt64", header: "<intrin.h>".} # Search the mask data from most significant bit (MSB) to least significant bit (LSB) for a set bit (1). - proc bitScanReverse(index: ptr culong, mask: culong): cuchar {. - importc: "_BitScanReverse", header: "<intrin.h>", noSideEffect.} - proc bitScanReverse64(index: ptr culong, mask: uint64): cuchar {. - importc: "_BitScanReverse64", header: "<intrin.h>", noSideEffect.} + func bitScanReverse(index: ptr culong, mask: culong): cuchar {. + importc: "_BitScanReverse", header: "<intrin.h>".} + func bitScanReverse64(index: ptr culong, mask: uint64): cuchar {. + importc: "_BitScanReverse64", header: "<intrin.h>".} # Search the mask data from least significant bit (LSB) to the most significant bit (MSB) for a set bit (1). - proc bitScanForward(index: ptr culong, mask: culong): cuchar {. - importc: "_BitScanForward", header: "<intrin.h>", noSideEffect.} - proc bitScanForward64(index: ptr culong, mask: uint64): cuchar {. - importc: "_BitScanForward64", header: "<intrin.h>", noSideEffect.} + func bitScanForward(index: ptr culong, mask: culong): cuchar {. + importc: "_BitScanForward", header: "<intrin.h>".} + func bitScanForward64(index: ptr culong, mask: uint64): cuchar {. + importc: "_BitScanForward64", header: "<intrin.h>".} template vcc_scan_impl(fnc: untyped; v: untyped): int = var index: culong @@ -508,22 +512,22 @@ elif useICC_builtins: # Intel compiler intrinsics: http://fulla.fnal.gov/intel/compiler_c/main_cls/intref_cls/common/intref_allia_misc.htm # see also: https://software.intel.com/en-us/node/523362 # Count the number of bits set to 1 in an integer a, and return that count in dst. - proc builtin_popcnt32(a: cint): cint {. - importc: "_popcnt", header: "<immintrin.h>", noSideEffect.} - proc builtin_popcnt64(a: uint64): cint {. - importc: "_popcnt64", header: "<immintrin.h>", noSideEffect.} + func builtin_popcnt32(a: cint): cint {. + importc: "_popcnt", header: "<immintrin.h>".} + func builtin_popcnt64(a: uint64): cint {. + importc: "_popcnt64", header: "<immintrin.h>".} # Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined. - proc bitScanForward(p: ptr uint32, b: uint32): cuchar {. - importc: "_BitScanForward", header: "<immintrin.h>", noSideEffect.} - proc bitScanForward64(p: ptr uint32, b: uint64): cuchar {. - importc: "_BitScanForward64", header: "<immintrin.h>", noSideEffect.} + func bitScanForward(p: ptr uint32, b: uint32): cuchar {. + importc: "_BitScanForward", header: "<immintrin.h>".} + func bitScanForward64(p: ptr uint32, b: uint64): cuchar {. + importc: "_BitScanForward64", header: "<immintrin.h>".} # Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined. - proc bitScanReverse(p: ptr uint32, b: uint32): cuchar {. - importc: "_BitScanReverse", header: "<immintrin.h>", noSideEffect.} - proc bitScanReverse64(p: ptr uint32, b: uint64): cuchar {. - importc: "_BitScanReverse64", header: "<immintrin.h>", noSideEffect.} + func bitScanReverse(p: ptr uint32, b: uint32): cuchar {. + importc: "_BitScanReverse", header: "<immintrin.h>".} + func bitScanReverse64(p: ptr uint32, b: uint64): cuchar {. + importc: "_BitScanReverse64", header: "<immintrin.h>".} template icc_scan_impl(fnc: untyped; v: untyped): int = var index: uint32 @@ -531,8 +535,8 @@ elif useICC_builtins: index.int -proc countSetBits*(x: SomeInteger): int {.inline, noSideEffect.} = - ## Counts the set bits in integer. (also called `Hamming weight`:idx:.) +func countSetBits*(x: SomeInteger): int {.inline.} = + ## Counts the set bits in an integer (also called `Hamming weight`:idx:). runnableExamples: doAssert countSetBits(0b0000_0011'u8) == 2 doAssert countSetBits(0b1010_1010'u8) == 4 @@ -562,13 +566,13 @@ proc countSetBits*(x: SomeInteger): int {.inline, noSideEffect.} = when sizeof(x) <= 4: result = countSetBitsNim(x.uint32) else: result = countSetBitsNim(x.uint64) -proc popcount*(x: SomeInteger): int {.inline, noSideEffect.} = - ## Alias for for `countSetBits <#countSetBits,SomeInteger>`_. (Hamming weight.) +func popcount*(x: SomeInteger): int {.inline.} = + ## Alias for `countSetBits <#countSetBits,SomeInteger>`_ (Hamming weight). result = countSetBits(x) -proc parityBits*(x: SomeInteger): int {.inline, noSideEffect.} = - ## Calculate the bit parity in integer. If number of 1-bit - ## is odd parity is 1, otherwise 0. +func parityBits*(x: SomeInteger): int {.inline.} = + ## Calculate the bit parity in an integer. If the number of 1-bits + ## is odd, the parity is 1, otherwise 0. runnableExamples: doAssert parityBits(0b0000_0000'u8) == 0 doAssert parityBits(0b0101_0001'u8) == 1 @@ -589,10 +593,10 @@ proc parityBits*(x: SomeInteger): int {.inline, noSideEffect.} = when sizeof(x) <= 4: result = parityImpl(x.uint32) else: result = parityImpl(x.uint64) -proc firstSetBit*(x: SomeInteger): int {.inline, noSideEffect.} = - ## Returns the 1-based index of the least significant set bit of x. - ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is 0, - ## otherwise result is undefined. +func firstSetBit*(x: SomeInteger): int {.inline.} = + ## Returns the 1-based index of the least significant set bit of `x`. + ## If `x` is zero, when `noUndefinedBitOpts` is set, the result is 0, + ## otherwise the result is undefined. runnableExamples: doAssert firstSetBit(0b0000_0001'u8) == 1 doAssert firstSetBit(0b0000_0010'u8) == 2 @@ -633,10 +637,10 @@ proc firstSetBit*(x: SomeInteger): int {.inline, noSideEffect.} = when sizeof(x) <= 4: result = firstSetBitNim(x.uint32) else: result = firstSetBitNim(x.uint64) -proc fastLog2*(x: SomeInteger): int {.inline, noSideEffect.} = +func fastLog2*(x: SomeInteger): int {.inline.} = ## Quickly find the log base 2 of an integer. - ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is -1, - ## otherwise result is undefined. + ## If `x` is zero, when `noUndefinedBitOpts` is set, the result is -1, + ## otherwise the result is undefined. runnableExamples: doAssert fastLog2(0b0000_0001'u8) == 0 doAssert fastLog2(0b0000_0010'u8) == 1 @@ -673,12 +677,12 @@ proc fastLog2*(x: SomeInteger): int {.inline, noSideEffect.} = when sizeof(x) <= 4: result = fastlog2Nim(x.uint32) else: result = fastlog2Nim(x.uint64) -proc countLeadingZeroBits*(x: SomeInteger): int {.inline, noSideEffect.} = - ## Returns the number of leading zero bits in integer. - ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is 0, - ## otherwise result is undefined. +func countLeadingZeroBits*(x: SomeInteger): int {.inline.} = + ## Returns the number of leading zero bits in an integer. + ## If `x` is zero, when `noUndefinedBitOpts` is set, the result is 0, + ## otherwise the result is undefined. ## - ## See also: + ## **See also:** ## * `countTrailingZeroBits proc <#countTrailingZeroBits,SomeInteger>`_ runnableExamples: doAssert countLeadingZeroBits(0b0000_0001'u8) == 7 @@ -702,12 +706,12 @@ proc countLeadingZeroBits*(x: SomeInteger): int {.inline, noSideEffect.} = when sizeof(x) <= 4: result = sizeof(x)*8 - 1 - fastlog2Nim(x.uint32) else: result = sizeof(x)*8 - 1 - fastlog2Nim(x.uint64) -proc countTrailingZeroBits*(x: SomeInteger): int {.inline, noSideEffect.} = - ## Returns the number of trailing zeros in integer. - ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is 0, - ## otherwise result is undefined. +func countTrailingZeroBits*(x: SomeInteger): int {.inline.} = + ## Returns the number of trailing zeros in an integer. + ## If `x` is zero, when `noUndefinedBitOpts` is set, the result is 0, + ## otherwise the result is undefined. ## - ## See also: + ## **See also:** ## * `countLeadingZeroBits proc <#countLeadingZeroBits,SomeInteger>`_ runnableExamples: doAssert countTrailingZeroBits(0b0000_0001'u8) == 0 @@ -769,7 +773,7 @@ when useBuiltinsRotate: when defined(amd64): func builtin_rotl64(value: culonglong, shift: culonglong): culonglong {.importc: "__builtin_rotateleft64", nodecl.} - + func builtin_rotr8(value: cuchar, shift: cuchar): cuchar {.importc: "__builtin_rotateright8", nodecl.} func builtin_rotr16(value: cushort, shift: cushort): cushort @@ -863,7 +867,7 @@ func rotateLeftBits*(value: uint8, shift: range[0..8]): uint8 {.inline.} = ## Left-rotate bits in a 8-bits value. runnableExamples: doAssert rotateLeftBits(0b0110_1001'u8, 4) == 0b1001_0110'u8 - + when nimvm: rotl(value, shift.int32) else: @@ -891,7 +895,7 @@ func rotateLeftBits*(value: uint32, shift: range[0..32]): uint32 {.inline.} = runnableExamples: doAssert rotateLeftBits(0b0000111111110000_1111000000001111'u32, 16) == 0b1111000000001111_0000111111110000'u32 - + when nimvm: rotl(value, shift.int32) else: @@ -969,15 +973,14 @@ func rotateRightBits*(value: uint64, shift: range[0..64]): uint64 {.inline.} = else: rotr(value, shift.int32) -proc repeatBits[T: SomeUnsignedInt](x: SomeUnsignedInt; retType: type[T]): T {. - noSideEffect.} = +func repeatBits[T: SomeUnsignedInt](x: SomeUnsignedInt; retType: type[T]): T = result = x var i = 1 while i != (sizeof(T) div sizeof(x)): result = (result shl (sizeof(x)*8*i)) or result i *= 2 -proc reverseBits*[T: SomeUnsignedInt](x: T): T {.noSideEffect.} = +func reverseBits*[T: SomeUnsignedInt](x: T): T = ## Return the bit reversal of x. runnableExamples: doAssert reverseBits(0b10100100'u8) == 0b00100101'u8 diff --git a/tests/stdlib/tbitops.nim b/tests/stdlib/tbitops.nim index 2baa1c718..6b5e0aeb9 100644 --- a/tests/stdlib/tbitops.nim +++ b/tests/stdlib/tbitops.nim @@ -2,12 +2,11 @@ discard """ nimout: "OK" output: ''' OK -OK ''' """ import bitops -proc main1() = +proc main() = const U8 = 0b0011_0010'u8 const I8 = 0b0011_0010'i8 const U16 = 0b00100111_00101000'u16 @@ -21,120 +20,120 @@ proc main1() = const U64C = 0b00101010_11110101_10001111_00101000_00000100_00000000_00000100_00000000'u64 const I64C = 0b00101010_11110101_10001111_00101000_00000100_00000000_00000100_00000000'i64 - doAssert( (U8 and U8) == bitand(U8,U8) ) - doAssert( (I8 and I8) == bitand(I8,I8) ) - doAssert( (U16 and U16) == bitand(U16,U16) ) - doAssert( (I16 and I16) == bitand(I16,I16) ) - doAssert( (U32 and U32) == bitand(U32,U32) ) - doAssert( (I32 and I32) == bitand(I32,I32) ) - doAssert( (U64A and U64B) == bitand(U64A,U64B) ) - doAssert( (I64A and I64B) == bitand(I64A,I64B) ) - doAssert( (U64A and U64B and U64C) == bitand(U64A,U64B,U64C) ) - doAssert( (I64A and I64B and I64C) == bitand(I64A,I64B,I64C) ) - - doAssert( (U8 or U8) == bitor(U8,U8) ) - doAssert( (I8 or I8) == bitor(I8,I8) ) - doAssert( (U16 or U16) == bitor(U16,U16) ) - doAssert( (I16 or I16) == bitor(I16,I16) ) - doAssert( (U32 or U32) == bitor(U32,U32) ) - doAssert( (I32 or I32) == bitor(I32,I32) ) - doAssert( (U64A or U64B) == bitor(U64A,U64B) ) - doAssert( (I64A or I64B) == bitor(I64A,I64B) ) - doAssert( (U64A or U64B or U64C) == bitor(U64A,U64B,U64C) ) - doAssert( (I64A or I64B or I64C) == bitor(I64A,I64B,I64C) ) - - doAssert( (U8 xor U8) == bitxor(U8,U8) ) - doAssert( (I8 xor I8) == bitxor(I8,I8) ) - doAssert( (U16 xor U16) == bitxor(U16,U16) ) - doAssert( (I16 xor I16) == bitxor(I16,I16) ) - doAssert( (U32 xor U32) == bitxor(U32,U32) ) - doAssert( (I32 xor I32) == bitxor(I32,I32) ) - doAssert( (U64A xor U64B) == bitxor(U64A,U64B) ) - doAssert( (I64A xor I64B) == bitxor(I64A,I64B) ) - doAssert( (U64A xor U64B xor U64C) == bitxor(U64A,U64B,U64C) ) - doAssert( (I64A xor I64B xor I64C) == bitxor(I64A,I64B,I64C) ) - - doAssert( not(U8) == bitnot(U8) ) - doAssert( not(I8) == bitnot(I8) ) - doAssert( not(U16) == bitnot(U16) ) - doAssert( not(I16) == bitnot(I16) ) - doAssert( not(U32) == bitnot(U32) ) - doAssert( not(I32) == bitnot(I32) ) - doAssert( not(U64A) == bitnot(U64A) ) - doAssert( not(I64A) == bitnot(I64A) ) - - doAssert( U64A.fastLog2 == 62) - doAssert( I64A.fastLog2 == 62) - doAssert( U64A.countLeadingZeroBits == 1) - doAssert( I64A.countLeadingZeroBits == 1) - doAssert( U64A.countTrailingZeroBits == 0) - doAssert( I64A.countTrailingZeroBits == 0) - doAssert( U64A.firstSetBit == 1) - doAssert( I64A.firstSetBit == 1) - doAssert( U64A.parityBits == 1) - doAssert( I64A.parityBits == 1) - doAssert( U64A.countSetBits == 29) - doAssert( I64A.countSetBits == 29) - doAssert( U64A.rotateLeftBits(37) == 0b00101001_00001111_01000010_00101000_10000111_11101111_10010001_01010011'u64) - doAssert( U64A.rotateRightBits(37) == 0b01010100_11001010_01000011_11010000_10001010_00100001_11111011_11100100'u64) - - doAssert( U64B.firstSetBit == 36) - doAssert( I64B.firstSetBit == 36) - - doAssert( U32.fastLog2 == 31) - doAssert( I32.fastLog2 == 31) - doAssert( U32.countLeadingZeroBits == 0) - doAssert( I32.countLeadingZeroBits == 0) - doAssert( U32.countTrailingZeroBits == 4) - doAssert( I32.countTrailingZeroBits == 4) - doAssert( U32.firstSetBit == 5) - doAssert( I32.firstSetBit == 5) - doAssert( U32.parityBits == 0) - doAssert( I32.parityBits == 0) - doAssert( U32.countSetBits == 16) - doAssert( I32.countSetBits == 16) - doAssert( U32.rotateLeftBits(21) == 0b01001010_00011010_10110011_10011011'u32) - doAssert( U32.rotateRightBits(21) == 0b11100110_11010010_10000110_10101100'u32) - - doAssert( U16.fastLog2 == 13) - doAssert( I16.fastLog2 == 13) - doAssert( U16.countLeadingZeroBits == 2) - doAssert( I16.countLeadingZeroBits == 2) - doAssert( U16.countTrailingZeroBits == 3) - doAssert( I16.countTrailingZeroBits == 3) - doAssert( U16.firstSetBit == 4) - doAssert( I16.firstSetBit == 4) - doAssert( U16.parityBits == 0) - doAssert( I16.parityBits == 0) - doAssert( U16.countSetBits == 6) - doAssert( I16.countSetBits == 6) - doAssert( U16.rotateLeftBits(12) == 0b10000010_01110010'u16) - doAssert( U16.rotateRightBits(12) == 0b01110010_10000010'u16) - - doAssert( U8.fastLog2 == 5) - doAssert( I8.fastLog2 == 5) - doAssert( U8.countLeadingZeroBits == 2) - doAssert( I8.countLeadingZeroBits == 2) - doAssert( U8.countTrailingZeroBits == 1) - doAssert( I8.countTrailingZeroBits == 1) - doAssert( U8.firstSetBit == 2) - doAssert( I8.firstSetBit == 2) - doAssert( U8.parityBits == 1) - doAssert( I8.parityBits == 1) - doAssert( U8.countSetBits == 3) - doAssert( I8.countSetBits == 3) - doAssert( U8.rotateLeftBits(3) == 0b10010001'u8) - doAssert( U8.rotateRightBits(3) == 0b0100_0110'u8) + doAssert (U8 and U8) == bitand(U8,U8) + doAssert (I8 and I8) == bitand(I8,I8) + doAssert (U16 and U16) == bitand(U16,U16) + doAssert (I16 and I16) == bitand(I16,I16) + doAssert (U32 and U32) == bitand(U32,U32) + doAssert (I32 and I32) == bitand(I32,I32) + doAssert (U64A and U64B) == bitand(U64A,U64B) + doAssert (I64A and I64B) == bitand(I64A,I64B) + doAssert (U64A and U64B and U64C) == bitand(U64A,U64B,U64C) + doAssert (I64A and I64B and I64C) == bitand(I64A,I64B,I64C) + + doAssert (U8 or U8) == bitor(U8,U8) + doAssert (I8 or I8) == bitor(I8,I8) + doAssert (U16 or U16) == bitor(U16,U16) + doAssert (I16 or I16) == bitor(I16,I16) + doAssert (U32 or U32) == bitor(U32,U32) + doAssert (I32 or I32) == bitor(I32,I32) + doAssert (U64A or U64B) == bitor(U64A,U64B) + doAssert (I64A or I64B) == bitor(I64A,I64B) + doAssert (U64A or U64B or U64C) == bitor(U64A,U64B,U64C) + doAssert (I64A or I64B or I64C) == bitor(I64A,I64B,I64C) + + doAssert (U8 xor U8) == bitxor(U8,U8) + doAssert (I8 xor I8) == bitxor(I8,I8) + doAssert (U16 xor U16) == bitxor(U16,U16) + doAssert (I16 xor I16) == bitxor(I16,I16) + doAssert (U32 xor U32) == bitxor(U32,U32) + doAssert (I32 xor I32) == bitxor(I32,I32) + doAssert (U64A xor U64B) == bitxor(U64A,U64B) + doAssert (I64A xor I64B) == bitxor(I64A,I64B) + doAssert (U64A xor U64B xor U64C) == bitxor(U64A,U64B,U64C) + doAssert (I64A xor I64B xor I64C) == bitxor(I64A,I64B,I64C) + + doAssert not(U8) == bitnot(U8) + doAssert not(I8) == bitnot(I8) + doAssert not(U16) == bitnot(U16) + doAssert not(I16) == bitnot(I16) + doAssert not(U32) == bitnot(U32) + doAssert not(I32) == bitnot(I32) + doAssert not(U64A) == bitnot(U64A) + doAssert not(I64A) == bitnot(I64A) + + doAssert U64A.fastLog2 == 62 + doAssert I64A.fastLog2 == 62 + doAssert U64A.countLeadingZeroBits == 1 + doAssert I64A.countLeadingZeroBits == 1 + doAssert U64A.countTrailingZeroBits == 0 + doAssert I64A.countTrailingZeroBits == 0 + doAssert U64A.firstSetBit == 1 + doAssert I64A.firstSetBit == 1 + doAssert U64A.parityBits == 1 + doAssert I64A.parityBits == 1 + doAssert U64A.countSetBits == 29 + doAssert I64A.countSetBits == 29 + doAssert U64A.rotateLeftBits(37) == 0b00101001_00001111_01000010_00101000_10000111_11101111_10010001_01010011'u64 + doAssert U64A.rotateRightBits(37) == 0b01010100_11001010_01000011_11010000_10001010_00100001_11111011_11100100'u64 + + doAssert U64B.firstSetBit == 36 + doAssert I64B.firstSetBit == 36 + + doAssert U32.fastLog2 == 31 + doAssert I32.fastLog2 == 31 + doAssert U32.countLeadingZeroBits == 0 + doAssert I32.countLeadingZeroBits == 0 + doAssert U32.countTrailingZeroBits == 4 + doAssert I32.countTrailingZeroBits == 4 + doAssert U32.firstSetBit == 5 + doAssert I32.firstSetBit == 5 + doAssert U32.parityBits == 0 + doAssert I32.parityBits == 0 + doAssert U32.countSetBits == 16 + doAssert I32.countSetBits == 16 + doAssert U32.rotateLeftBits(21) == 0b01001010_00011010_10110011_10011011'u32 + doAssert U32.rotateRightBits(21) == 0b11100110_11010010_10000110_10101100'u32 + + doAssert U16.fastLog2 == 13 + doAssert I16.fastLog2 == 13 + doAssert U16.countLeadingZeroBits == 2 + doAssert I16.countLeadingZeroBits == 2 + doAssert U16.countTrailingZeroBits == 3 + doAssert I16.countTrailingZeroBits == 3 + doAssert U16.firstSetBit == 4 + doAssert I16.firstSetBit == 4 + doAssert U16.parityBits == 0 + doAssert I16.parityBits == 0 + doAssert U16.countSetBits == 6 + doAssert I16.countSetBits == 6 + doAssert U16.rotateLeftBits(12) == 0b10000010_01110010'u16 + doAssert U16.rotateRightBits(12) == 0b01110010_10000010'u16 + + doAssert U8.fastLog2 == 5 + doAssert I8.fastLog2 == 5 + doAssert U8.countLeadingZeroBits == 2 + doAssert I8.countLeadingZeroBits == 2 + doAssert U8.countTrailingZeroBits == 1 + doAssert I8.countTrailingZeroBits == 1 + doAssert U8.firstSetBit == 2 + doAssert I8.firstSetBit == 2 + doAssert U8.parityBits == 1 + doAssert I8.parityBits == 1 + doAssert U8.countSetBits == 3 + doAssert I8.countSetBits == 3 + doAssert U8.rotateLeftBits(3) == 0b10010001'u8 + doAssert U8.rotateRightBits(3) == 0b0100_0110'u8 template test_undefined_impl(ffunc: untyped; expected: int; is_static: bool) = - doAssert( ffunc(0'u8) == expected) - doAssert( ffunc(0'i8) == expected) - doAssert( ffunc(0'u16) == expected) - doAssert( ffunc(0'i16) == expected) - doAssert( ffunc(0'u32) == expected) - doAssert( ffunc(0'i32) == expected) - doAssert( ffunc(0'u64) == expected) - doAssert( ffunc(0'i64) == expected) + doAssert ffunc(0'u8) == expected + doAssert ffunc(0'i8) == expected + doAssert ffunc(0'u16) == expected + doAssert ffunc(0'i16) == expected + doAssert ffunc(0'u32) == expected + doAssert ffunc(0'i32) == expected + doAssert ffunc(0'u64) == expected + doAssert ffunc(0'i64) == expected template test_undefined(ffunc: untyped; expected: int) = test_undefined_impl(ffunc, expected, false) @@ -151,106 +150,106 @@ proc main1() = test_undefined(fastLog2, -1) # check for undefined behavior with rotate by zero. - doAssert( U8.rotateLeftBits(0) == U8) - doAssert( U8.rotateRightBits(0) == U8) - doAssert( U16.rotateLeftBits(0) == U16) - doAssert( U16.rotateRightBits(0) == U16) - doAssert( U32.rotateLeftBits(0) == U32) - doAssert( U32.rotateRightBits(0) == U32) - doAssert( U64A.rotateLeftBits(0) == U64A) - doAssert( U64A.rotateRightBits(0) == U64A) + doAssert U8.rotateLeftBits(0) == U8 + doAssert U8.rotateRightBits(0) == U8 + doAssert U16.rotateLeftBits(0) == U16 + doAssert U16.rotateRightBits(0) == U16 + doAssert U32.rotateLeftBits(0) == U32 + doAssert U32.rotateRightBits(0) == U32 + doAssert U64A.rotateLeftBits(0) == U64A + doAssert U64A.rotateRightBits(0) == U64A # check for undefined behavior with rotate by integer width. - doAssert( U8.rotateLeftBits(8) == U8) - doAssert( U8.rotateRightBits(8) == U8) - doAssert( U16.rotateLeftBits(16) == U16) - doAssert( U16.rotateRightBits(16) == U16) - doAssert( U32.rotateLeftBits(32) == U32) - doAssert( U32.rotateRightBits(32) == U32) - doAssert( U64A.rotateLeftBits(64) == U64A) - doAssert( U64A.rotateRightBits(64) == U64A) + doAssert U8.rotateLeftBits(8) == U8 + doAssert U8.rotateRightBits(8) == U8 + doAssert U16.rotateLeftBits(16) == U16 + doAssert U16.rotateRightBits(16) == U16 + doAssert U32.rotateLeftBits(32) == U32 + doAssert U32.rotateRightBits(32) == U32 + doAssert U64A.rotateLeftBits(64) == U64A + doAssert U64A.rotateRightBits(64) == U64A block: # basic mask operations (mutating) var v: uint8 v.setMask(0b1100_0000) v.setMask(0b0000_1100) - doAssert(v == 0b1100_1100) + doAssert v == 0b1100_1100 v.flipMask(0b0101_0101) - doAssert(v == 0b1001_1001) + doAssert v == 0b1001_1001 v.clearMask(0b1000_1000) - doAssert(v == 0b0001_0001) + doAssert v == 0b0001_0001 v.clearMask(0b0001_0001) - doAssert(v == 0b0000_0000) + doAssert v == 0b0000_0000 v.setMask(0b0001_1110) - doAssert(v == 0b0001_1110) + doAssert v == 0b0001_1110 v.mask(0b0101_0100) - doAssert(v == 0b0001_0100) + doAssert v == 0b0001_0100 block: # basic mask operations (non-mutating) let v = 0b1100_0000'u8 - doAssert(v.masked(0b0000_1100) == 0b0000_0000) - doAssert(v.masked(0b1000_1100) == 0b1000_0000) - doAssert(v.setMasked(0b0000_1100) == 0b1100_1100) - doAssert(v.setMasked(0b1000_1110) == 0b1100_1110) - doAssert(v.flipMasked(0b1100_1000) == 0b0000_1000) - doAssert(v.flipMasked(0b0000_1100) == 0b1100_1100) + doAssert v.masked(0b0000_1100) == 0b0000_0000 + doAssert v.masked(0b1000_1100) == 0b1000_0000 + doAssert v.setMasked(0b0000_1100) == 0b1100_1100 + doAssert v.setMasked(0b1000_1110) == 0b1100_1110 + doAssert v.flipMasked(0b1100_1000) == 0b0000_1000 + doAssert v.flipMasked(0b0000_1100) == 0b1100_1100 let t = 0b1100_0110'u8 - doAssert(t.clearMasked(0b0100_1100) == 0b1000_0010) - doAssert(t.clearMasked(0b1100_0000) == 0b0000_0110) + doAssert t.clearMasked(0b0100_1100) == 0b1000_0010 + doAssert t.clearMasked(0b1100_0000) == 0b0000_0110 block: # basic bitslice opeartions let a = 0b1111_1011'u8 - doAssert(a.bitsliced(0 .. 3) == 0b1011) - doAssert(a.bitsliced(2 .. 3) == 0b10) - doAssert(a.bitsliced(4 .. 7) == 0b1111) + doAssert a.bitsliced(0 .. 3) == 0b1011 + doAssert a.bitsliced(2 .. 3) == 0b10 + doAssert a.bitsliced(4 .. 7) == 0b1111 # same thing, but with exclusive ranges. - doAssert(a.bitsliced(0 ..< 4) == 0b1011) - doAssert(a.bitsliced(2 ..< 4) == 0b10) - doAssert(a.bitsliced(4 ..< 8) == 0b1111) + doAssert a.bitsliced(0 ..< 4) == 0b1011 + doAssert a.bitsliced(2 ..< 4) == 0b10 + doAssert a.bitsliced(4 ..< 8) == 0b1111 # mutating var b = 0b1111_1011'u8 b.bitslice(1 .. 3) - doAssert(b == 0b101) + doAssert b == 0b101 # loop test: let c = 0b1111_1111'u8 for i in 0 .. 7: - doAssert(c.bitsliced(i .. 7) == c shr i) + doAssert c.bitsliced(i .. 7) == c shr i block: # bitslice versions of mask operations (mutating) var a = 0b1100_1100'u8 let b = toMask[uint8](2 .. 3) a.mask(b) - doAssert(a == 0b0000_1100) + doAssert a == 0b0000_1100 a.setMask(4 .. 7) - doAssert(a == 0b1111_1100) + doAssert a == 0b1111_1100 a.flipMask(1 .. 3) - doAssert(a == 0b1111_0010) + doAssert a == 0b1111_0010 a.flipMask(2 .. 4) - doAssert(a == 0b1110_1110) + doAssert a == 0b1110_1110 a.clearMask(2 .. 4) - doAssert(a == 0b1110_0010) + doAssert a == 0b1110_0010 a.mask(0 .. 3) - doAssert(a == 0b0000_0010) + doAssert a == 0b0000_0010 # composition of mask from slices: let c = bitor(toMask[uint8](2 .. 3), toMask[uint8](5 .. 7)) - doAssert(c == 0b1110_1100'u8) + doAssert c == 0b1110_1100'u8 block: # bitslice versions of mask operations (non-mutating) let a = 0b1100_1100'u8 - doAssert(a.masked(toMask[uint8](2 .. 3)) == 0b0000_1100) - doAssert(a.masked(2 .. 3) == 0b0000_1100) - doAssert(a.setMasked(0 .. 3) == 0b1100_1111) - doAssert(a.setMasked(3 .. 4) == 0b1101_1100) - doAssert(a.flipMasked(0 .. 3) == 0b1100_0011) - doAssert(a.flipMasked(0 .. 7) == 0b0011_0011) - doAssert(a.flipMasked(2 .. 3) == 0b1100_0000) - doAssert(a.clearMasked(2 .. 3) == 0b1100_0000) - doAssert(a.clearMasked(3 .. 6) == 0b1000_0100) + doAssert a.masked(toMask[uint8](2 .. 3)) == 0b0000_1100 + doAssert a.masked(2 .. 3) == 0b0000_1100 + doAssert a.setMasked(0 .. 3) == 0b1100_1111 + doAssert a.setMasked(3 .. 4) == 0b1101_1100 + doAssert a.flipMasked(0 .. 3) == 0b1100_0011 + doAssert a.flipMasked(0 .. 7) == 0b0011_0011 + doAssert a.flipMasked(2 .. 3) == 0b1100_0000 + doAssert a.clearMasked(2 .. 3) == 0b1100_0000 + doAssert a.clearMasked(3 .. 6) == 0b1000_0100 block: # single bit operations var v: uint8 @@ -287,7 +286,7 @@ proc main1() = block: proc testReverseBitsInvo(x: SomeUnsignedInt) = - doAssert(reverseBits(reverseBits(x)) == x) + doAssert reverseBits(reverseBits(x)) == x proc testReverseBitsPerType(x, reversed: uint64) = doAssert reverseBits(x) == reversed @@ -329,6 +328,9 @@ proc main1() = echo "OK" + # bug #7587 + doAssert popcount(0b11111111'i8) == 8 + block: # not ready for vm because exception is compile error try: var v: uint32 @@ -341,172 +343,7 @@ block: # not ready for vm because exception is compile error doAssert false -main1() +main() static: # test everything on vm as well - main1() - - - -proc main2() = - const U8 = 0b0011_0010'u8 - const I8 = 0b0011_0010'i8 - const U16 = 0b00100111_00101000'u16 - const I16 = 0b00100111_00101000'i16 - const U32 = 0b11010101_10011100_11011010_01010000'u32 - const I32 = 0b11010101_10011100_11011010_01010000'i32 - const U64A = 0b01000100_00111111_01111100_10001010_10011001_01001000_01111010_00010001'u64 - const I64A = 0b01000100_00111111_01111100_10001010_10011001_01001000_01111010_00010001'i64 - const U64B = 0b00110010_11011101_10001111_00101000_00000000_00000000_00000000_00000000'u64 - const I64B = 0b00110010_11011101_10001111_00101000_00000000_00000000_00000000_00000000'i64 - - doAssert( U64A.fastLog2 == 62) - doAssert( I64A.fastLog2 == 62) - doAssert( U64A.countLeadingZeroBits == 1) - doAssert( I64A.countLeadingZeroBits == 1) - doAssert( U64A.countTrailingZeroBits == 0) - doAssert( I64A.countTrailingZeroBits == 0) - doAssert( U64A.firstSetBit == 1) - doAssert( I64A.firstSetBit == 1) - doAssert( U64A.parityBits == 1) - doAssert( I64A.parityBits == 1) - doAssert( U64A.countSetBits == 29) - doAssert( I64A.countSetBits == 29) - doAssert( U64A.rotateLeftBits(37) == 0b00101001_00001111_01000010_00101000_10000111_11101111_10010001_01010011'u64) - doAssert( U64A.rotateRightBits(37) == 0b01010100_11001010_01000011_11010000_10001010_00100001_11111011_11100100'u64) - - doAssert( U64B.firstSetBit == 36) - doAssert( I64B.firstSetBit == 36) - - doAssert( U32.fastLog2 == 31) - doAssert( I32.fastLog2 == 31) - doAssert( U32.countLeadingZeroBits == 0) - doAssert( I32.countLeadingZeroBits == 0) - doAssert( U32.countTrailingZeroBits == 4) - doAssert( I32.countTrailingZeroBits == 4) - doAssert( U32.firstSetBit == 5) - doAssert( I32.firstSetBit == 5) - doAssert( U32.parityBits == 0) - doAssert( I32.parityBits == 0) - doAssert( U32.countSetBits == 16) - doAssert( I32.countSetBits == 16) - doAssert( U32.rotateLeftBits(21) == 0b01001010_00011010_10110011_10011011'u32) - doAssert( U32.rotateRightBits(21) == 0b11100110_11010010_10000110_10101100'u32) - - doAssert( U16.fastLog2 == 13) - doAssert( I16.fastLog2 == 13) - doAssert( U16.countLeadingZeroBits == 2) - doAssert( I16.countLeadingZeroBits == 2) - doAssert( U16.countTrailingZeroBits == 3) - doAssert( I16.countTrailingZeroBits == 3) - doAssert( U16.firstSetBit == 4) - doAssert( I16.firstSetBit == 4) - doAssert( U16.parityBits == 0) - doAssert( I16.parityBits == 0) - doAssert( U16.countSetBits == 6) - doAssert( I16.countSetBits == 6) - doAssert( U16.rotateLeftBits(12) == 0b10000010_01110010'u16) - doAssert( U16.rotateRightBits(12) == 0b01110010_10000010'u16) - - doAssert( U8.fastLog2 == 5) - doAssert( I8.fastLog2 == 5) - doAssert( U8.countLeadingZeroBits == 2) - doAssert( I8.countLeadingZeroBits == 2) - doAssert( U8.countTrailingZeroBits == 1) - doAssert( I8.countTrailingZeroBits == 1) - doAssert( U8.firstSetBit == 2) - doAssert( I8.firstSetBit == 2) - doAssert( U8.parityBits == 1) - doAssert( I8.parityBits == 1) - doAssert( U8.countSetBits == 3) - doAssert( I8.countSetBits == 3) - doAssert( U8.rotateLeftBits(3) == 0b10010001'u8) - doAssert( U8.rotateRightBits(3) == 0b0100_0110'u8) - - static : - # test bitopts at compile time with vm - doAssert( U8.fastLog2 == 5) - doAssert( I8.fastLog2 == 5) - doAssert( U8.countLeadingZeroBits == 2) - doAssert( I8.countLeadingZeroBits == 2) - doAssert( U8.countTrailingZeroBits == 1) - doAssert( I8.countTrailingZeroBits == 1) - doAssert( U8.firstSetBit == 2) - doAssert( I8.firstSetBit == 2) - doAssert( U8.parityBits == 1) - doAssert( I8.parityBits == 1) - doAssert( U8.countSetBits == 3) - doAssert( I8.countSetBits == 3) - doAssert( U8.rotateLeftBits(3) == 0b10010001'u8) - doAssert( U8.rotateRightBits(3) == 0b0100_0110'u8) - - - - template test_undefined_impl(ffunc: untyped; expected: int; is_static: bool) = - doAssert( ffunc(0'u8) == expected) - doAssert( ffunc(0'i8) == expected) - doAssert( ffunc(0'u16) == expected) - doAssert( ffunc(0'i16) == expected) - doAssert( ffunc(0'u32) == expected) - doAssert( ffunc(0'i32) == expected) - doAssert( ffunc(0'u64) == expected) - doAssert( ffunc(0'i64) == expected) - - template test_undefined(ffunc: untyped; expected: int) = - test_undefined_impl(ffunc, expected, false) - static: - test_undefined_impl(ffunc, expected, true) - - when defined(noUndefinedBitOpts): - # check for undefined behavior with zero. - test_undefined(countSetBits, 0) - test_undefined(parityBits, 0) - test_undefined(firstSetBit, 0) - test_undefined(countLeadingZeroBits, 0) - test_undefined(countTrailingZeroBits, 0) - test_undefined(fastLog2, -1) - - # check for undefined behavior with rotate by zero. - doAssert( U8.rotateLeftBits(0) == U8) - doAssert( U8.rotateRightBits(0) == U8) - doAssert( U16.rotateLeftBits(0) == U16) - doAssert( U16.rotateRightBits(0) == U16) - doAssert( U32.rotateLeftBits(0) == U32) - doAssert( U32.rotateRightBits(0) == U32) - doAssert( U64A.rotateLeftBits(0) == U64A) - doAssert( U64A.rotateRightBits(0) == U64A) - - # check for undefined behavior with rotate by integer width. - doAssert( U8.rotateLeftBits(8) == U8) - doAssert( U8.rotateRightBits(8) == U8) - doAssert( U16.rotateLeftBits(16) == U16) - doAssert( U16.rotateRightBits(16) == U16) - doAssert( U32.rotateLeftBits(32) == U32) - doAssert( U32.rotateRightBits(32) == U32) - doAssert( U64A.rotateLeftBits(64) == U64A) - doAssert( U64A.rotateRightBits(64) == U64A) - - static: # check for undefined behavior with rotate by zero. - doAssert( U8.rotateLeftBits(0) == U8) - doAssert( U8.rotateRightBits(0) == U8) - doAssert( U16.rotateLeftBits(0) == U16) - doAssert( U16.rotateRightBits(0) == U16) - doAssert( U32.rotateLeftBits(0) == U32) - doAssert( U32.rotateRightBits(0) == U32) - doAssert( U64A.rotateLeftBits(0) == U64A) - doAssert( U64A.rotateRightBits(0) == U64A) - - # check for undefined behavior with rotate by integer width. - doAssert( U8.rotateLeftBits(8) == U8) - doAssert( U8.rotateRightBits(8) == U8) - doAssert( U16.rotateLeftBits(16) == U16) - doAssert( U16.rotateRightBits(16) == U16) - doAssert( U32.rotateLeftBits(32) == U32) - doAssert( U32.rotateRightBits(32) == U32) - doAssert( U64A.rotateLeftBits(64) == U64A) - doAssert( U64A.rotateRightBits(64) == U64A) - - echo "OK" - -main2() - + main() |