summary refs log tree commit diff stats
diff options
context:
space:
mode:
-rw-r--r--lib/pure/actors.nim104
-rw-r--r--lib/pure/asyncdispatch.nim163
-rw-r--r--lib/pure/asyncfile.nim34
-rw-r--r--lib/pure/asyncio.nim4
-rw-r--r--lib/pure/asyncnet.nim20
-rw-r--r--lib/pure/basic2d.nim212
-rw-r--r--lib/pure/basic3d.nim202
-rw-r--r--lib/pure/collections/LockFreeHash.nim60
-rw-r--r--lib/pure/collections/intsets.nim16
-rw-r--r--lib/pure/collections/sets.nim50
-rw-r--r--lib/pure/collections/tables.nim72
-rw-r--r--lib/pure/concurrency/cpuload.nim2
-rw-r--r--lib/pure/concurrency/threadpool.nim8
13 files changed, 477 insertions, 470 deletions
diff --git a/lib/pure/actors.nim b/lib/pure/actors.nim
index 294c24741..da9037285 100644
--- a/lib/pure/actors.nim
+++ b/lib/pure/actors.nim
@@ -16,7 +16,7 @@
 ## .. code-block:: nim
 ##
 ##      var
-##        a: TActorPool[int, void]
+##        a: ActorPool[int, void]
 ##      createActorPool(a)
 ##      for i in 0 .. < 300:
 ##        a.spawn(i, proc (x: int) {.thread.} = echo x)
@@ -30,75 +30,76 @@
 from os import sleep
 
 type
-  TTask*[TIn, TOut] = object{.pure, final.} ## a task
-    when TOut isnot void:
-      receiver*: ptr TChannel[TOut] ## the receiver channel of the response
-    action*: proc (x: TIn): TOut {.thread.} ## action to execute;
+  Task*[In, Out] = object{.pure, final.} ## a task
+    when Out isnot void:
+      receiver*: ptr Channel[Out] ## the receiver channel of the response
+    action*: proc (x: In): Out {.thread.} ## action to execute;
                                             ## sometimes useful
     shutDown*: bool ## set to tell an actor to shut-down
-    data*: TIn ## the data to process
+    data*: In ## the data to process
 
-  TActor[TIn, TOut] = object{.pure, final.}
-    i: TChannel[TTask[TIn, TOut]]
-    t: TThread[ptr TActor[TIn, TOut]]
+  Actor[In, Out] = object{.pure, final.}
+    i: Channel[Task[In, Out]]
+    t: TThread[ptr Actor[In, Out]]
     
-  PActor*[TIn, TOut] = ptr TActor[TIn, TOut] ## an actor
-  
-proc spawn*[TIn, TOut](action: proc(
-    self: PActor[TIn, TOut]){.thread.}): PActor[TIn, TOut] =
+  PActor*[In, Out] = ptr Actor[In, Out] ## an actor
+{.deprecated: [TTask: Task, TActor: Actor].}
+
+proc spawn*[In, Out](action: proc(
+    self: PActor[In, Out]){.thread.}): PActor[In, Out] =
   ## creates an actor; that is a thread with an inbox. The caller MUST call
   ## ``join`` because that also frees the actor's associated resources.
-  result = cast[PActor[TIn, TOut]](allocShared0(sizeof(result[])))
+  result = cast[PActor[In, Out]](allocShared0(sizeof(result[])))
   open(result.i)
   createThread(result.t, action, result)
 
-proc inbox*[TIn, TOut](self: PActor[TIn, TOut]): ptr TChannel[TIn] =
+proc inbox*[In, Out](self: PActor[In, Out]): ptr Channel[In] =
   ## gets a pointer to the associated inbox of the actor `self`.
   result = addr(self.i)
 
-proc running*[TIn, TOut](a: PActor[TIn, TOut]): bool =
+proc running*[In, Out](a: PActor[In, Out]): bool =
   ## returns true if the actor `a` is running.
   result = running(a.t)
 
-proc ready*[TIn, TOut](a: PActor[TIn, TOut]): bool =
+proc ready*[In, Out](a: PActor[In, Out]): bool =
   ## returns true if the actor `a` is ready to process new messages.
   result = ready(a.i)
 
-proc join*[TIn, TOut](a: PActor[TIn, TOut]) =
+proc join*[In, Out](a: PActor[In, Out]) =
   ## joins an actor.
   joinThread(a.t)
   close(a.i)
   deallocShared(a)
 
-proc recv*[TIn, TOut](a: PActor[TIn, TOut]): TTask[TIn, TOut] =
+proc recv*[In, Out](a: PActor[In, Out]): Task[In, Out] =
   ## receives a task from `a`'s inbox.
   result = recv(a.i)
 
-proc send*[TIn, TOut, X, Y](receiver: PActor[TIn, TOut], msg: TIn,
+proc send*[In, Out, X, Y](receiver: PActor[In, Out], msg: In,
                             sender: PActor[X, Y]) =
   ## sends a message to `a`'s inbox.
-  var t: TTask[TIn, TOut]
+  var t: Task[In, Out]
   t.receiver = addr(sender.i)
   shallowCopy(t.data, msg)
   send(receiver.i, t)
 
-proc send*[TIn, TOut](receiver: PActor[TIn, TOut], msg: TIn, 
-                      sender: ptr TChannel[TOut] = nil) =
+proc send*[In, Out](receiver: PActor[In, Out], msg: In, 
+                      sender: ptr Channel[Out] = nil) =
   ## sends a message to `receiver`'s inbox.
-  var t: TTask[TIn, TOut]
+  var t: Task[In, Out]
   t.receiver = sender
   shallowCopy(t.data, msg)
   send(receiver.i, t)
 
-proc sendShutdown*[TIn, TOut](receiver: PActor[TIn, TOut]) =
+proc sendShutdown*[In, Out](receiver: PActor[In, Out]) =
   ## send a shutdown message to `receiver`.
-  var t: TTask[TIn, TOut]
+  var t: Task[In, Out]
   t.shutdown = true
   send(receiver.i, t)
 
-proc reply*[TIn, TOut](t: TTask[TIn, TOut], m: TOut) =
+proc reply*[In, Out](t: Task[In, Out], m: Out) =
   ## sends a message to io's output message box.
-  when TOut is void:
+  when Out is void:
     {.error: "you cannot reply to a void outbox".}
   assert t.receiver != nil
   send(t.receiver[], m)
@@ -107,34 +108,35 @@ proc reply*[TIn, TOut](t: TTask[TIn, TOut], m: TOut) =
 # ----------------- actor pools ----------------------------------------------
 
 type
-  TActorPool*[TIn, TOut] = object{.pure, final.}  ## an actor pool
-    actors: seq[PActor[TIn, TOut]]
-    when TOut isnot void:
-      outputs: TChannel[TOut]
+  ActorPool*[In, Out] = object{.pure, final.}  ## an actor pool
+    actors: seq[PActor[In, Out]]
+    when Out isnot void:
+      outputs: Channel[Out]
+{.deprecated: [TActorPool: ActorPool].}
 
-proc `^`*[T](f: ptr TChannel[T]): T =
+proc `^`*[T](f: ptr Channel[T]): T =
   ## alias for 'recv'.
   result = recv(f[])
 
-proc poolWorker[TIn, TOut](self: PActor[TIn, TOut]) {.thread.} =
+proc poolWorker[In, Out](self: PActor[In, Out]) {.thread.} =
   while true:
     var m = self.recv
     if m.shutDown: break
-    when TOut is void:
+    when Out is void:
       m.action(m.data)
     else:
       send(m.receiver[], m.action(m.data))
       #self.reply()
 
-proc createActorPool*[TIn, TOut](a: var TActorPool[TIn, TOut], poolSize = 4) =
+proc createActorPool*[In, Out](a: var ActorPool[In, Out], poolSize = 4) =
   ## creates an actor pool.
   newSeq(a.actors, poolSize)
-  when TOut isnot void:
+  when Out isnot void:
     open(a.outputs)
   for i in 0 .. < a.actors.len:
-    a.actors[i] = spawn(poolWorker[TIn, TOut])
+    a.actors[i] = spawn(poolWorker[In, Out])
 
-proc sync*[TIn, TOut](a: var TActorPool[TIn, TOut], polling=50) =
+proc sync*[In, Out](a: var ActorPool[In, Out], polling=50) =
   ## waits for every actor of `a` to finish with its work. Currently this is
   ## implemented as polling every `polling` ms and has a slight chance 
   ## of failing since we check for every actor to be in `ready` state and not
@@ -157,18 +159,18 @@ proc sync*[TIn, TOut](a: var TActorPool[TIn, TOut], polling=50) =
       if allReadyCount > 1: break
     sleep(polling)
 
-proc terminate*[TIn, TOut](a: var TActorPool[TIn, TOut]) =
+proc terminate*[In, Out](a: var ActorPool[In, Out]) =
   ## terminates each actor in the actor pool `a` and frees the
   ## resources attached to `a`.
-  var t: TTask[TIn, TOut]
+  var t: Task[In, Out]
   t.shutdown = true
   for i in 0.. <a.actors.len: send(a.actors[i].i, t)
   for i in 0.. <a.actors.len: join(a.actors[i])
-  when TOut isnot void:
+  when Out isnot void:
     close(a.outputs)
   a.actors = nil
 
-proc join*[TIn, TOut](a: var TActorPool[TIn, TOut]) =
+proc join*[In, Out](a: var ActorPool[In, Out]) =
   ## short-cut for `sync` and then `terminate`.
   sync(a)
   terminate(a)
@@ -202,28 +204,28 @@ template schedule =
   else:
     raise newException(DeadThreadError, "cannot send message; thread died")
 
-proc spawn*[TIn, TOut](p: var TActorPool[TIn, TOut], input: TIn,
-                       action: proc (input: TIn): TOut {.thread.}
-                       ): ptr TChannel[TOut] =
+proc spawn*[In, Out](p: var ActorPool[In, Out], input: In,
+                       action: proc (input: In): Out {.thread.}
+                       ): ptr Channel[Out] =
   ## uses the actor pool to run ``action(input)`` concurrently.
   ## `spawn` is guaranteed to not block.
-  var t: TTask[TIn, TOut]
+  var t: Task[In, Out]
   setupTask()
   result = addr(p.outputs)
   t.receiver = result
   schedule()
 
-proc spawn*[TIn](p: var TActorPool[TIn, void], input: TIn,
-                 action: proc (input: TIn) {.thread.}) =
+proc spawn*[In](p: var ActorPool[In, void], input: In,
+                 action: proc (input: In) {.thread.}) =
   ## uses the actor pool to run ``action(input)`` concurrently.
   ## `spawn` is guaranteed to not block.
-  var t: TTask[TIn, void]
+  var t: Task[In, void]
   setupTask()
   schedule()
   
 when not defined(testing) and isMainModule:
   var
-    a: TActorPool[int, void]
+    a: ActorPool[int, void]
   createActorPool(a)
   for i in 0 .. < 300:
     a.spawn(i, proc (x: int) {.thread.} = echo x)
diff --git a/lib/pure/asyncdispatch.nim b/lib/pure/asyncdispatch.nim
index 8010e9ebc..550b82f49 100644
--- a/lib/pure/asyncdispatch.nim
+++ b/lib/pure/asyncdispatch.nim
@@ -323,32 +323,34 @@ proc processTimers(p: PDispatcherBase) =
 when defined(windows) or defined(nimdoc):
   import winlean, sets, hashes
   type
-    TCompletionKey = Dword
+    CompletionKey = Dword
 
-    TCompletionData* = object
-      fd*: TAsyncFD # TODO: Rename this.
-      cb*: proc (fd: TAsyncFD, bytesTransferred: Dword,
+    CompletionData* = object
+      fd*: AsyncFD # TODO: Rename this.
+      cb*: proc (fd: AsyncFD, bytesTransferred: Dword,
                 errcode: OSErrorCode) {.closure,gcsafe.}
 
     PDispatcher* = ref object of PDispatcherBase
-      ioPort: THandle
-      handles: HashSet[TAsyncFD]
+      ioPort: Handle
+      handles: HashSet[AsyncFD]
 
-    TCustomOverlapped = object of TOVERLAPPED
-      data*: TCompletionData
+    CustomOverlapped = object of TOVERLAPPED
+      data*: CompletionData
 
-    PCustomOverlapped* = ref TCustomOverlapped
+    PCustomOverlapped* = ref CustomOverlapped
 
-    TAsyncFD* = distinct int
+    AsyncFD* = distinct int
+  {.deprecated: [TCompletionKey: CompletionKey, TAsyncFD: AsyncFD,
+                TCustomOverlapped: CustomOverlapped, TCompletionData: CompletionData].}
 
-  proc hash(x: TAsyncFD): THash {.borrow.}
-  proc `==`*(x: TAsyncFD, y: TAsyncFD): bool {.borrow.}
+  proc hash(x: AsyncFD): Hash {.borrow.}
+  proc `==`*(x: AsyncFD, y: AsyncFD): bool {.borrow.}
 
   proc newDispatcher*(): PDispatcher =
     ## Creates a new Dispatcher instance.
     new result
     result.ioPort = createIoCompletionPort(INVALID_HANDLE_VALUE, 0, 0, 1)
-    result.handles = initSet[TAsyncFD]()
+    result.handles = initSet[AsyncFD]()
     result.timers = @[]
 
   var gDisp{.threadvar.}: PDispatcher ## Global dispatcher
@@ -357,15 +359,15 @@ when defined(windows) or defined(nimdoc):
     if gDisp.isNil: gDisp = newDispatcher()
     result = gDisp
 
-  proc register*(fd: TAsyncFD) =
+  proc register*(fd: AsyncFD) =
     ## Registers ``fd`` with the dispatcher.
     let p = getGlobalDispatcher()
-    if createIoCompletionPort(fd.THandle, p.ioPort,
-                              cast[TCompletionKey](fd), 1) == 0:
+    if createIoCompletionPort(fd.Handle, p.ioPort,
+                              cast[CompletionKey](fd), 1) == 0:
       raiseOSError(osLastError())
     p.handles.incl(fd)
 
-  proc verifyPresence(fd: TAsyncFD) =
+  proc verifyPresence(fd: AsyncFD) =
     ## Ensures that file descriptor has been registered with the dispatcher.
     let p = getGlobalDispatcher()
     if fd notin p.handles:
@@ -394,7 +396,7 @@ when defined(windows) or defined(nimdoc):
     # TODO: http://www.serverframework.com/handling-multiple-pending-socket-read-and-write-operations.html
     if res:
       # This is useful for ensuring the reliability of the overlapped struct.
-      assert customOverlapped.data.fd == lpCompletionKey.TAsyncFD
+      assert customOverlapped.data.fd == lpCompletionKey.AsyncFD
 
       customOverlapped.data.cb(customOverlapped.data.fd,
           lpNumberOfBytesTransferred, OSErrorCode(-1))
@@ -402,7 +404,7 @@ when defined(windows) or defined(nimdoc):
     else:
       let errCode = osLastError()
       if customOverlapped != nil:
-        assert customOverlapped.data.fd == lpCompletionKey.TAsyncFD
+        assert customOverlapped.data.fd == lpCompletionKey.AsyncFD
         customOverlapped.data.cb(customOverlapped.data.fd,
             lpNumberOfBytesTransferred, errCode)
         GC_unref(customOverlapped)
@@ -480,7 +482,7 @@ when defined(windows) or defined(nimdoc):
                   dwRemoteAddressLength, LocalSockaddr, LocalSockaddrLength,
                   RemoteSockaddr, RemoteSockaddrLength)
 
-  proc connect*(socket: TAsyncFD, address: string, port: Port,
+  proc connect*(socket: AsyncFD, address: string, port: Port,
     af = AF_INET): Future[void] =
     ## Connects ``socket`` to server at ``address:port``.
     ##
@@ -506,8 +508,8 @@ when defined(windows) or defined(nimdoc):
       # http://blogs.msdn.com/b/oldnewthing/archive/2011/02/02/10123392.aspx
       var ol = PCustomOverlapped()
       GC_ref(ol)
-      ol.data = TCompletionData(fd: socket, cb:
-        proc (fd: TAsyncFD, bytesCount: Dword, errcode: OSErrorCode) =
+      ol.data = CompletionData(fd: socket, cb:
+        proc (fd: AsyncFD, bytesCount: Dword, errcode: OSErrorCode) =
           if not retFuture.finished:
             if errcode == OSErrorCode(-1):
               retFuture.complete()
@@ -542,7 +544,7 @@ when defined(windows) or defined(nimdoc):
       retFuture.fail(newException(OSError, osErrorMsg(lastError)))
     return retFuture
 
-  proc recv*(socket: TAsyncFD, size: int,
+  proc recv*(socket: AsyncFD, size: int,
              flags = {SocketFlag.SafeDisconn}): Future[string] =
     ## Reads **up to** ``size`` bytes from ``socket``. Returned future will
     ## complete once all the data requested is read, a part of the data has been
@@ -570,8 +572,8 @@ when defined(windows) or defined(nimdoc):
     var flagsio = flags.toOSFlags().Dword
     var ol = PCustomOverlapped()
     GC_ref(ol)
-    ol.data = TCompletionData(fd: socket, cb:
-      proc (fd: TAsyncFD, bytesCount: Dword, errcode: OSErrorCode) =
+    ol.data = CompletionData(fd: socket, cb:
+      proc (fd: AsyncFD, bytesCount: Dword, errcode: OSErrorCode) =
         if not retFuture.finished:
           if errcode == OSErrorCode(-1):
             if bytesCount == 0 and dataBuf.buf[0] == '\0':
@@ -634,7 +636,7 @@ when defined(windows) or defined(nimdoc):
       # free ``ol``.
     return retFuture
 
-  proc recvInto*(socket: TAsyncFD, buf: cstring, size: int,
+  proc recvInto*(socket: AsyncFD, buf: cstring, size: int,
                 flags = {SocketFlag.SafeDisconn}): Future[int] =
     ## Reads **up to** ``size`` bytes from ``socket`` into ``buf``, which must
     ## at least be of that size. Returned future will complete once all the
@@ -665,8 +667,8 @@ when defined(windows) or defined(nimdoc):
     var flagsio = flags.toOSFlags().Dword
     var ol = PCustomOverlapped()
     GC_ref(ol)
-    ol.data = TCompletionData(fd: socket, cb:
-      proc (fd: TAsyncFD, bytesCount: Dword, errcode: OSErrorCode) =
+    ol.data = CompletionData(fd: socket, cb:
+      proc (fd: AsyncFD, bytesCount: Dword, errcode: OSErrorCode) =
         if not retFuture.finished:
           if errcode == OSErrorCode(-1):
             if bytesCount == 0 and dataBuf.buf[0] == '\0':
@@ -721,7 +723,7 @@ when defined(windows) or defined(nimdoc):
       # free ``ol``.
     return retFuture
 
-  proc send*(socket: TAsyncFD, data: string,
+  proc send*(socket: AsyncFD, data: string,
              flags = {SocketFlag.SafeDisconn}): Future[void] =
     ## Sends ``data`` to ``socket``. The returned future will complete once all
     ## data has been sent.
@@ -735,8 +737,8 @@ when defined(windows) or defined(nimdoc):
     var bytesReceived, lowFlags: Dword
     var ol = PCustomOverlapped()
     GC_ref(ol)
-    ol.data = TCompletionData(fd: socket, cb:
-      proc (fd: TAsyncFD, bytesCount: Dword, errcode: OSErrorCode) =
+    ol.data = CompletionData(fd: socket, cb:
+      proc (fd: AsyncFD, bytesCount: Dword, errcode: OSErrorCode) =
         if not retFuture.finished:
           if errcode == OSErrorCode(-1):
             retFuture.complete()
@@ -764,8 +766,8 @@ when defined(windows) or defined(nimdoc):
       # free ``ol``.
     return retFuture
 
-  proc acceptAddr*(socket: TAsyncFD, flags = {SocketFlag.SafeDisconn}):
-      Future[tuple[address: string, client: TAsyncFD]] =
+  proc acceptAddr*(socket: AsyncFD, flags = {SocketFlag.SafeDisconn}):
+      Future[tuple[address: string, client: AsyncFD]] =
     ## Accepts a new connection. Returns a future containing the client socket
     ## corresponding to that connection and the remote address of the client.
     ## The future will complete when the connection is successfully accepted.
@@ -778,7 +780,7 @@ when defined(windows) or defined(nimdoc):
     ## flag is specified then this error will not be raised and instead
     ## accept will be called again.
     verifyPresence(socket)
-    var retFuture = newFuture[tuple[address: string, client: TAsyncFD]]("acceptAddr")
+    var retFuture = newFuture[tuple[address: string, client: AsyncFD]]("acceptAddr")
 
     var clientSock = newRawSocket()
     if clientSock == osInvalidSocket: raiseOSError(osLastError())
@@ -803,11 +805,11 @@ when defined(windows) or defined(nimdoc):
                            dwLocalAddressLength, dwRemoteAddressLength,
                            addr localSockaddr, addr localLen,
                            addr remoteSockaddr, addr remoteLen)
-      register(clientSock.TAsyncFD)
+      register(clientSock.AsyncFD)
       # TODO: IPv6. Check ``sa_family``. http://stackoverflow.com/a/9212542/492186
       retFuture.complete(
         (address: $inet_ntoa(cast[ptr Sockaddr_in](remoteSockAddr).sin_addr),
-         client: clientSock.TAsyncFD)
+         client: clientSock.AsyncFD)
       )
 
     template failAccept(errcode): stmt =
@@ -824,8 +826,8 @@ when defined(windows) or defined(nimdoc):
 
     var ol = PCustomOverlapped()
     GC_ref(ol)
-    ol.data = TCompletionData(fd: socket, cb:
-      proc (fd: TAsyncFD, bytesCount: Dword, errcode: OSErrorCode) =
+    ol.data = CompletionData(fd: socket, cb:
+      proc (fd: AsyncFD, bytesCount: Dword, errcode: OSErrorCode) =
         if not retFuture.finished:
           if errcode == OSErrorCode(-1):
             completeAccept()
@@ -853,26 +855,26 @@ when defined(windows) or defined(nimdoc):
 
     return retFuture
 
-  proc newAsyncRawSocket*(domain, typ, protocol: cint): TAsyncFD =
+  proc newAsyncRawSocket*(domain, typ, protocol: cint): AsyncFD =
     ## Creates a new socket and registers it with the dispatcher implicitly.
-    result = newRawSocket(domain, typ, protocol).TAsyncFD
+    result = newRawSocket(domain, typ, protocol).AsyncFD
     result.SocketHandle.setBlocking(false)
     register(result)
 
   proc newAsyncRawSocket*(domain: Domain = AF_INET,
                typ: SockType = SOCK_STREAM,
-               protocol: Protocol = IPPROTO_TCP): TAsyncFD =
+               protocol: Protocol = IPPROTO_TCP): AsyncFD =
     ## Creates a new socket and registers it with the dispatcher implicitly.
-    result = newRawSocket(domain, typ, protocol).TAsyncFD
+    result = newRawSocket(domain, typ, protocol).AsyncFD
     result.SocketHandle.setBlocking(false)
     register(result)
 
-  proc closeSocket*(socket: TAsyncFD) =
+  proc closeSocket*(socket: AsyncFD) =
     ## Closes a socket and ensures that it is unregistered.
     socket.SocketHandle.close()
     getGlobalDispatcher().handles.excl(socket)
 
-  proc unregister*(fd: TAsyncFD) =
+  proc unregister*(fd: AsyncFD) =
     ## Unregisters ``fd``.
     getGlobalDispatcher().handles.excl(fd)
 
@@ -892,18 +894,19 @@ else:
                       MSG_NOSIGNAL
 
   type
-    TAsyncFD* = distinct cint
-    TCallback = proc (fd: TAsyncFD): bool {.closure,gcsafe.}
+    AsyncFD* = distinct cint
+    Callback = proc (fd: AsyncFD): bool {.closure,gcsafe.}
 
     PData* = ref object of RootRef
-      fd: TAsyncFD
-      readCBs: seq[TCallback]
-      writeCBs: seq[TCallback]
+      fd: AsyncFD
+      readCBs: seq[Callback]
+      writeCBs: seq[Callback]
 
     PDispatcher* = ref object of PDispatcherBase
       selector: Selector
+  {.deprecated: [TAsyncFD: AsyncFD, TCallback: Callback].}
 
-  proc `==`*(x, y: TAsyncFD): bool {.borrow.}
+  proc `==`*(x, y: AsyncFD): bool {.borrow.}
 
   proc newDispatcher*(): PDispatcher =
     new result
@@ -915,18 +918,18 @@ else:
     if gDisp.isNil: gDisp = newDispatcher()
     result = gDisp
 
-  proc update(fd: TAsyncFD, events: set[Event]) =
+  proc update(fd: AsyncFD, events: set[Event]) =
     let p = getGlobalDispatcher()
     assert fd.SocketHandle in p.selector
     discard p.selector.update(fd.SocketHandle, events)
 
-  proc register*(fd: TAsyncFD) =
+  proc register*(fd: AsyncFD) =
     let p = getGlobalDispatcher()
     var data = PData(fd: fd, readCBs: @[], writeCBs: @[])
     p.selector.register(fd.SocketHandle, {}, data.RootRef)
 
-  proc newAsyncRawSocket*(domain: cint, typ: cint, protocol: cint): TAsyncFD =
-    result = newRawSocket(domain, typ, protocol).TAsyncFD
+  proc newAsyncRawSocket*(domain: cint, typ: cint, protocol: cint): AsyncFD =
+    result = newRawSocket(domain, typ, protocol).AsyncFD
     result.SocketHandle.setBlocking(false)
     when defined(macosx):
         result.SocketHandle.setSockOptInt(SOL_SOCKET, SO_NOSIGPIPE, 1)
@@ -934,29 +937,29 @@ else:
 
   proc newAsyncRawSocket*(domain: Domain = AF_INET,
                typ: SockType = SOCK_STREAM,
-               protocol: Protocol = IPPROTO_TCP): TAsyncFD =
-    result = newRawSocket(domain, typ, protocol).TAsyncFD
+               protocol: Protocol = IPPROTO_TCP): AsyncFD =
+    result = newRawSocket(domain, typ, protocol).AsyncFD
     result.SocketHandle.setBlocking(false)
     when defined(macosx):
         result.SocketHandle.setSockOptInt(SOL_SOCKET, SO_NOSIGPIPE, 1)
     register(result)
 
-  proc closeSocket*(sock: TAsyncFD) =
+  proc closeSocket*(sock: AsyncFD) =
     let disp = getGlobalDispatcher()
     sock.SocketHandle.close()
     disp.selector.unregister(sock.SocketHandle)
 
-  proc unregister*(fd: TAsyncFD) =
+  proc unregister*(fd: AsyncFD) =
     getGlobalDispatcher().selector.unregister(fd.SocketHandle)
 
-  proc addRead*(fd: TAsyncFD, cb: TCallback) =
+  proc addRead*(fd: AsyncFD, cb: Callback) =
     let p = getGlobalDispatcher()
     if fd.SocketHandle notin p.selector:
       raise newException(ValueError, "File descriptor not registered.")
     p.selector[fd.SocketHandle].data.PData.readCBs.add(cb)
     update(fd, p.selector[fd.SocketHandle].events + {EvRead})
 
-  proc addWrite*(fd: TAsyncFD, cb: TCallback) =
+  proc addWrite*(fd: AsyncFD, cb: Callback) =
     let p = getGlobalDispatcher()
     if fd.SocketHandle notin p.selector:
       raise newException(ValueError, "File descriptor not registered.")
@@ -967,7 +970,7 @@ else:
     let p = getGlobalDispatcher()
     for info in p.selector.select(timeout):
       let data = PData(info.key.data)
-      assert data.fd == info.key.fd.TAsyncFD
+      assert data.fd == info.key.fd.AsyncFD
       #echo("In poll ", data.fd.cint)
       if EvError in info.events:
         closeSocket(data.fd)
@@ -1005,11 +1008,11 @@ else:
 
     processTimers(p)
 
-  proc connect*(socket: TAsyncFD, address: string, port: Port,
+  proc connect*(socket: AsyncFD, address: string, port: Port,
     af = AF_INET): Future[void] =
     var retFuture = newFuture[void]("connect")
 
-    proc cb(fd: TAsyncFD): bool =
+    proc cb(fd: AsyncFD): bool =
       # We have connected.
       retFuture.complete()
       return true
@@ -1040,13 +1043,13 @@ else:
       retFuture.fail(newException(OSError, osErrorMsg(lastError)))
     return retFuture
 
-  proc recv*(socket: TAsyncFD, size: int,
+  proc recv*(socket: AsyncFD, size: int,
              flags = {SocketFlag.SafeDisconn}): Future[string] =
     var retFuture = newFuture[string]("recv")
 
     var readBuffer = newString(size)
 
-    proc cb(sock: TAsyncFD): bool =
+    proc cb(sock: AsyncFD): bool =
       result = true
       let res = recv(sock.SocketHandle, addr readBuffer[0], size.cint,
                      flags.toOSFlags())
@@ -1070,11 +1073,11 @@ else:
     addRead(socket, cb)
     return retFuture
 
-  proc recvInto*(socket: TAsyncFD, buf: cstring, size: int,
+  proc recvInto*(socket: AsyncFD, buf: cstring, size: int,
                   flags = {SocketFlag.SafeDisconn}): Future[int] =
     var retFuture = newFuture[int]("recvInto")
 
-    proc cb(sock: TAsyncFD): bool =
+    proc cb(sock: AsyncFD): bool =
       result = true
       let res = recv(sock.SocketHandle, buf, size.cint,
                      flags.toOSFlags())
@@ -1094,13 +1097,13 @@ else:
     addRead(socket, cb)
     return retFuture
 
-  proc send*(socket: TAsyncFD, data: string,
+  proc send*(socket: AsyncFD, data: string,
              flags = {SocketFlag.SafeDisconn}): Future[void] =
     var retFuture = newFuture[void]("send")
 
     var written = 0
 
-    proc cb(sock: TAsyncFD): bool =
+    proc cb(sock: AsyncFD): bool =
       result = true
       let netSize = data.len-written
       var d = data.cstring
@@ -1126,11 +1129,11 @@ else:
     addWrite(socket, cb)
     return retFuture
 
-  proc acceptAddr*(socket: TAsyncFD, flags = {SocketFlag.SafeDisconn}):
-      Future[tuple[address: string, client: TAsyncFD]] =
+  proc acceptAddr*(socket: AsyncFD, flags = {SocketFlag.SafeDisconn}):
+      Future[tuple[address: string, client: AsyncFD]] =
     var retFuture = newFuture[tuple[address: string,
-        client: TAsyncFD]]("acceptAddr")
-    proc cb(sock: TAsyncFD): bool =
+        client: AsyncFD]]("acceptAddr")
+    proc cb(sock: AsyncFD): bool =
       result = true
       var sockAddress: SockAddr_in
       var addrLen = sizeof(sockAddress).Socklen
@@ -1147,8 +1150,8 @@ else:
           else:
             retFuture.fail(newException(OSError, osErrorMsg(lastError)))
       else:
-        register(client.TAsyncFD)
-        retFuture.complete(($inet_ntoa(sockAddress.sin_addr), client.TAsyncFD))
+        register(client.AsyncFD)
+        retFuture.complete(($inet_ntoa(sockAddress.sin_addr), client.AsyncFD))
     addRead(socket, cb)
     return retFuture
 
@@ -1160,15 +1163,15 @@ proc sleepAsync*(ms: int): Future[void] =
   p.timers.add((epochTime() + (ms / 1000), retFuture))
   return retFuture
 
-proc accept*(socket: TAsyncFD,
-    flags = {SocketFlag.SafeDisconn}): Future[TAsyncFD] =
+proc accept*(socket: AsyncFD,
+    flags = {SocketFlag.SafeDisconn}): Future[AsyncFD] =
   ## Accepts a new connection. Returns a future containing the client socket
   ## corresponding to that connection.
   ## The future will complete when the connection is successfully accepted.
-  var retFut = newFuture[TAsyncFD]("accept")
+  var retFut = newFuture[AsyncFD]("accept")
   var fut = acceptAddr(socket, flags)
   fut.callback =
-    proc (future: Future[tuple[address: string, client: TAsyncFD]]) =
+    proc (future: Future[tuple[address: string, client: AsyncFD]]) =
       assert future.finished
       if future.failed:
         retFut.fail(future.error)
@@ -1495,7 +1498,7 @@ macro async*(prc: stmt): stmt {.immediate.} =
   #if prc[0].getName == "test":
   #  echo(toStrLit(result))
 
-proc recvLine*(socket: TAsyncFD): Future[string] {.async.} =
+proc recvLine*(socket: AsyncFD): Future[string] {.async.} =
   ## Reads a line of data from ``socket``. Returned future will complete once
   ## a full line is read or an error occurs.
   ##
diff --git a/lib/pure/asyncfile.nim b/lib/pure/asyncfile.nim
index 25e121183..ece9b4dfb 100644
--- a/lib/pure/asyncfile.nim
+++ b/lib/pure/asyncfile.nim
@@ -31,7 +31,7 @@ else:
 
 type
   AsyncFile* = ref object
-    fd: TAsyncFd
+    fd: AsyncFd
     offset: int64
 
 when defined(windows) or defined(nimdoc):
@@ -72,7 +72,7 @@ proc getFileSize(f: AsyncFile): int64 =
   ## Retrieves the specified file's size.
   when defined(windows) or defined(nimdoc):
     var high: DWord
-    let low = getFileSize(f.fd.THandle, addr high)
+    let low = getFileSize(f.fd.Handle, addr high)
     if low == INVALID_FILE_SIZE:
       raiseOSError(osLastError())
     return (high shl 32) or low
@@ -88,13 +88,13 @@ proc openAsync*(filename: string, mode = fmRead): AsyncFile =
     when useWinUnicode:
       result.fd = createFileW(newWideCString(filename), desiredAccess,
           FILE_SHARE_READ,
-          nil, creationDisposition, flags, 0).TAsyncFd
+          nil, creationDisposition, flags, 0).AsyncFd
     else:
       result.fd = createFileA(filename, desiredAccess,
           FILE_SHARE_READ,
-          nil, creationDisposition, flags, 0).TAsyncFd
+          nil, creationDisposition, flags, 0).AsyncFd
 
-    if result.fd.THandle == INVALID_HANDLE_VALUE:
+    if result.fd.Handle == INVALID_HANDLE_VALUE:
       raiseOSError(osLastError())
 
     register(result.fd)
@@ -106,7 +106,7 @@ proc openAsync*(filename: string, mode = fmRead): AsyncFile =
     let flags = getPosixFlags(mode)
     # RW (Owner), RW (Group), R (Other)
     let perm = S_IRUSR or S_IWUSR or S_IRGRP or S_IWGRP or S_IROTH
-    result.fd = open(filename, flags, perm).TAsyncFD
+    result.fd = open(filename, flags, perm).AsyncFD
     if result.fd.cint == -1:
       raiseOSError(osLastError())
 
@@ -125,8 +125,8 @@ proc read*(f: AsyncFile, size: int): Future[string] =
 
     var ol = PCustomOverlapped()
     GC_ref(ol)
-    ol.data = TCompletionData(fd: f.fd, cb:
-      proc (fd: TAsyncFD, bytesCount: Dword, errcode: OSErrorCode) =
+    ol.data = CompletionData(fd: f.fd, cb:
+      proc (fd: AsyncFD, bytesCount: Dword, errcode: OSErrorCode) =
         if not retFuture.finished:
           if errcode == OSErrorCode(-1):
             assert bytesCount > 0
@@ -148,7 +148,7 @@ proc read*(f: AsyncFile, size: int): Future[string] =
     ol.offsetHigh = DWord(f.offset shr 32)
 
     # According to MSDN we're supposed to pass nil to lpNumberOfBytesRead.
-    let ret = readFile(f.fd.THandle, buffer, size.int32, nil,
+    let ret = readFile(f.fd.Handle, buffer, size.int32, nil,
                        cast[POVERLAPPED](ol))
     if not ret.bool:
       let err = osLastError()
@@ -161,7 +161,7 @@ proc read*(f: AsyncFile, size: int): Future[string] =
     else:
       # Request completed immediately.
       var bytesRead: DWord
-      let overlappedRes = getOverlappedResult(f.fd.THandle,
+      let overlappedRes = getOverlappedResult(f.fd.Handle,
           cast[POverlapped](ol)[], bytesRead, false.WinBool)
       if not overlappedRes.bool:
         let err = osLastError()
@@ -179,7 +179,7 @@ proc read*(f: AsyncFile, size: int): Future[string] =
   else:
     var readBuffer = newString(size)
 
-    proc cb(fd: TAsyncFD): bool =
+    proc cb(fd: AsyncFD): bool =
       result = true
       let res = read(fd.cint, addr readBuffer[0], size.cint)
       if res < 0:
@@ -251,8 +251,8 @@ proc write*(f: AsyncFile, data: string): Future[void] =
 
     var ol = PCustomOverlapped()
     GC_ref(ol)
-    ol.data = TCompletionData(fd: f.fd, cb:
-      proc (fd: TAsyncFD, bytesCount: DWord, errcode: OSErrorCode) =
+    ol.data = CompletionData(fd: f.fd, cb:
+      proc (fd: AsyncFD, bytesCount: DWord, errcode: OSErrorCode) =
         if not retFuture.finished:
           if errcode == OSErrorCode(-1):
             assert bytesCount == data.len.int32
@@ -268,7 +268,7 @@ proc write*(f: AsyncFile, data: string): Future[void] =
     ol.offsetHigh = DWord(f.offset shr 32)
 
     # According to MSDN we're supposed to pass nil to lpNumberOfBytesWritten.
-    let ret = writeFile(f.fd.THandle, buffer, data.len.int32, nil,
+    let ret = writeFile(f.fd.Handle, buffer, data.len.int32, nil,
                        cast[POVERLAPPED](ol))
     if not ret.bool:
       let err = osLastError()
@@ -281,7 +281,7 @@ proc write*(f: AsyncFile, data: string): Future[void] =
     else:
       # Request completed immediately.
       var bytesWritten: DWord
-      let overlappedRes = getOverlappedResult(f.fd.THandle,
+      let overlappedRes = getOverlappedResult(f.fd.Handle,
           cast[POverlapped](ol)[], bytesWritten, false.WinBool)
       if not overlappedRes.bool:
         retFuture.fail(newException(OSError, osErrorMsg(osLastError())))
@@ -292,7 +292,7 @@ proc write*(f: AsyncFile, data: string): Future[void] =
   else:
     var written = 0
     
-    proc cb(fd: TAsyncFD): bool =
+    proc cb(fd: AsyncFD): bool =
       result = true
       let remainderSize = data.len-written
       let res = write(fd.cint, addr copy[written], remainderSize.cint)
@@ -317,7 +317,7 @@ proc write*(f: AsyncFile, data: string): Future[void] =
 proc close*(f: AsyncFile) =
   ## Closes the file specified.
   when defined(windows) or defined(nimdoc):
-    if not closeHandle(f.fd.THandle).bool:
+    if not closeHandle(f.fd.Handle).bool:
       raiseOSError(osLastError())
   else:
     if close(f.fd.cint) == -1:
diff --git a/lib/pure/asyncio.nim b/lib/pure/asyncio.nim
index 6ae2c608b..5fd45b215 100644
--- a/lib/pure/asyncio.nim
+++ b/lib/pure/asyncio.nim
@@ -188,8 +188,8 @@ proc asyncSocket*(domain: Domain = AF_INET, typ: SockType = SOCK_STREAM,
   result.socket.setBlocking(false)
 
 proc toAsyncSocket*(sock: Socket, state: SocketStatus = SockConnected): AsyncSocket =
-  ## Wraps an already initialized ``TSocket`` into a AsyncSocket.
-  ## This is useful if you want to use an already connected TSocket as an
+  ## Wraps an already initialized ``Socket`` into a AsyncSocket.
+  ## This is useful if you want to use an already connected Socket as an
   ## asynchronous AsyncSocket in asyncio's event loop.
   ##
   ## ``state`` may be overriden, i.e. if ``sock`` is not connected it should be
diff --git a/lib/pure/asyncnet.nim b/lib/pure/asyncnet.nim
index aadbde824..d44e5d31f 100644
--- a/lib/pure/asyncnet.nim
+++ b/lib/pure/asyncnet.nim
@@ -91,9 +91,9 @@ type
 
 # TODO: Save AF, domain etc info and reuse it in procs which need it like connect.
 
-proc newAsyncSocket*(fd: TAsyncFD, isBuff: bool): AsyncSocket =
+proc newAsyncSocket*(fd: AsyncFD, isBuff: bool): AsyncSocket =
   ## Creates a new ``AsyncSocket`` based on the supplied params.
-  assert fd != osInvalidSocket.TAsyncFD
+  assert fd != osInvalidSocket.AsyncFD
   new(result)
   result.fd = fd.SocketHandle
   result.isBuffered = isBuff
@@ -142,7 +142,7 @@ when defined(ssl):
       if read < 0:
         raiseSslError()
       data.setLen(read)
-      await socket.fd.TAsyncFd.send(data, flags)
+      await socket.fd.AsyncFd.send(data, flags)
 
   proc appeaseSsl(socket: AsyncSocket, flags: set[SocketFlag],
                   sslError: cint) {.async.} =
@@ -150,7 +150,7 @@ when defined(ssl):
     of SSL_ERROR_WANT_WRITE:
       await sendPendingSslData(socket, flags)
     of SSL_ERROR_WANT_READ:
-      var data = await recv(socket.fd.TAsyncFD, BufferSize, flags)
+      var data = await recv(socket.fd.AsyncFD, BufferSize, flags)
       let ret = bioWrite(socket.bioIn, addr data[0], data.len.cint)
       if ret < 0:
         raiseSSLError()
@@ -175,7 +175,7 @@ proc connect*(socket: AsyncSocket, address: string, port: Port,
   ##
   ## Returns a ``Future`` which will complete when the connection succeeds
   ## or an error occurs.
-  await connect(socket.fd.TAsyncFD, address, port, af)
+  await connect(socket.fd.AsyncFD, address, port, af)
   if socket.isSsl:
     when defined(ssl):
       let flags = {SocketFlag.SafeDisconn}
@@ -194,7 +194,7 @@ template readInto(buf: cstring, size: int, socket: AsyncSocket,
         sslRead(socket.sslHandle, buf, size.cint))
       res = opResult
   else:
-    var recvIntoFut = recvInto(socket.fd.TAsyncFD, buf, size, flags)
+    var recvIntoFut = recvInto(socket.fd.AsyncFD, buf, size, flags)
     yield recvIntoFut
     # Not in SSL mode.
     res = recvIntoFut.read()
@@ -271,7 +271,7 @@ proc send*(socket: AsyncSocket, data: string,
         sslWrite(socket.sslHandle, addr copy[0], copy.len.cint))
       await sendPendingSslData(socket, flags)
   else:
-    await send(socket.fd.TAsyncFD, data, flags)
+    await send(socket.fd.AsyncFD, data, flags)
 
 proc acceptAddr*(socket: AsyncSocket, flags = {SocketFlag.SafeDisconn}):
       Future[tuple[address: string, client: AsyncSocket]] =
@@ -279,9 +279,9 @@ proc acceptAddr*(socket: AsyncSocket, flags = {SocketFlag.SafeDisconn}):
   ## corresponding to that connection and the remote address of the client.
   ## The future will complete when the connection is successfully accepted.
   var retFuture = newFuture[tuple[address: string, client: AsyncSocket]]("asyncnet.acceptAddr")
-  var fut = acceptAddr(socket.fd.TAsyncFD, flags)
+  var fut = acceptAddr(socket.fd.AsyncFD, flags)
   fut.callback =
-    proc (future: Future[tuple[address: string, client: TAsyncFD]]) =
+    proc (future: Future[tuple[address: string, client: AsyncFD]]) =
       assert future.finished
       if future.failed:
         retFuture.fail(future.readError)
@@ -445,7 +445,7 @@ proc bindAddr*(socket: AsyncSocket, port = Port(0), address = "") {.
 proc close*(socket: AsyncSocket) =
   ## Closes the socket.
   defer:
-    socket.fd.TAsyncFD.closeSocket()
+    socket.fd.AsyncFD.closeSocket()
   when defined(ssl):
     if socket.isSSL:
       let res = SslShutdown(socket.sslHandle)
diff --git a/lib/pure/basic2d.nim b/lib/pure/basic2d.nim
index a344cd053..d18e73c16 100644
--- a/lib/pure/basic2d.nim
+++ b/lib/pure/basic2d.nim
@@ -20,20 +20,20 @@ import strutils
 ##   
 ##   # Create a matrix which first rotates, then scales and at last translates
 ##   
-##   var m:TMatrix2d=rotate(DEG90) & scale(2.0) & move(100.0,200.0)
+##   var m:Matrix2d=rotate(DEG90) & scale(2.0) & move(100.0,200.0)
 ##   
 ##   # Create a 2d point at (100,0) and a vector (5,2)
 ##   
-##   var pt:TPoint2d=point2d(100.0,0.0) 
+##   var pt:Point2d=point2d(100.0,0.0) 
 ##   
-##   var vec:TVector2d=vector2d(5.0,2.0)
+##   var vec:Vector2d=vector2d(5.0,2.0)
 ##   
 ##   
 ##   pt &= m # transforms pt in place
 ##   
-##   var pt2:TPoint2d=pt & m #concatenates pt with m and returns a new point
+##   var pt2:Point2d=pt & m #concatenates pt with m and returns a new point
 ##   
-##   var vec2:TVector2d=vec & m #concatenates vec with m and returns a new vector
+##   var vec2:Vector2d=vec & m #concatenates vec with m and returns a new vector
 
 
 const
@@ -57,46 +57,46 @@ const
     ## used internally by DegToRad and RadToDeg
 
 type
-    TMatrix2d* = object
+    Matrix2d* = object
       ## Implements a row major 2d matrix, which means
       ## transformations are applied the order they are concatenated.
       ## The rightmost column of the 3x3 matrix is left out since normally
       ## not used for geometric transformations in 2d.
       ax*,ay*,bx*,by*,tx*,ty*:float
-    TPoint2d* = object
+    Point2d* = object
       ## Implements a non-homegeneous 2d point stored as 
       ## an `x` coordinate and an `y` coordinate.
       x*,y*:float
-    TVector2d* = object 
+    Vector2d* = object 
       ## Implements a 2d **direction vector** stored as 
       ## an `x` coordinate and an `y` coordinate. Direction vector means, 
       ## that when transforming a vector with a matrix, the translational
       ## part of the matrix is ignored.
       x*,y*:float
- 
+{.deprecated: [TMatrix2d: Matrix2d, TPoint2d: Point2d, TVector2d: Vector2d].}
 
 
 # Some forward declarations...
-proc matrix2d*(ax,ay,bx,by,tx,ty:float):TMatrix2d {.noInit.}
+proc matrix2d*(ax,ay,bx,by,tx,ty:float):Matrix2d {.noInit.}
   ## Creates a new matrix. 
   ## `ax`,`ay` is the local x axis
   ## `bx`,`by` is the local y axis
   ## `tx`,`ty` is the translation
-proc vector2d*(x,y:float):TVector2d {.noInit,inline.}
+proc vector2d*(x,y:float):Vector2d {.noInit,inline.}
   ## Returns a new vector (`x`,`y`)
-proc point2d*(x,y:float):TPoint2d {.noInit,inline.}
+proc point2d*(x,y:float):Point2d {.noInit,inline.}
   ## Returns a new point (`x`,`y`)
 
 
 
 let
-  IDMATRIX*:TMatrix2d=matrix2d(1.0,0.0,0.0,1.0,0.0,0.0)
+  IDMATRIX*:Matrix2d=matrix2d(1.0,0.0,0.0,1.0,0.0,0.0)
     ## Quick access to an identity matrix
-  ORIGO*:TPoint2d=point2d(0.0,0.0)
+  ORIGO*:Point2d=point2d(0.0,0.0)
     ## Quick acces to point (0,0)
-  XAXIS*:TVector2d=vector2d(1.0,0.0)
+  XAXIS*:Vector2d=vector2d(1.0,0.0)
     ## Quick acces to an 2d x-axis unit vector
-  YAXIS*:TVector2d=vector2d(0.0,1.0)
+  YAXIS*:Vector2d=vector2d(0.0,1.0)
     ## Quick acces to an 2d y-axis unit vector
 
   
@@ -116,21 +116,21 @@ proc safeArccos(v:float):float=
 
 template makeBinOpVector(s:expr)= 
   ## implements binary operators + , - , * and / for vectors
-  proc s*(a,b:TVector2d):TVector2d {.inline,noInit.} = vector2d(s(a.x,b.x),s(a.y,b.y))
-  proc s*(a:TVector2d,b:float):TVector2d {.inline,noInit.}  = vector2d(s(a.x,b),s(a.y,b))
-  proc s*(a:float,b:TVector2d):TVector2d {.inline,noInit.}  = vector2d(s(a,b.x),s(a,b.y))
+  proc s*(a,b:Vector2d):Vector2d {.inline,noInit.} = vector2d(s(a.x,b.x),s(a.y,b.y))
+  proc s*(a:Vector2d,b:float):Vector2d {.inline,noInit.}  = vector2d(s(a.x,b),s(a.y,b))
+  proc s*(a:float,b:Vector2d):Vector2d {.inline,noInit.}  = vector2d(s(a,b.x),s(a,b.y))
   
 template makeBinOpAssignVector(s:expr)= 
   ## implements inplace binary operators += , -= , /= and *= for vectors
-  proc s*(a:var TVector2d,b:TVector2d) {.inline.} = s(a.x,b.x) ; s(a.y,b.y)
-  proc s*(a:var TVector2d,b:float) {.inline.} = s(a.x,b) ; s(a.y,b)
+  proc s*(a:var Vector2d,b:Vector2d) {.inline.} = s(a.x,b.x) ; s(a.y,b.y)
+  proc s*(a:var Vector2d,b:float) {.inline.} = s(a.x,b) ; s(a.y,b)
 
 
 # ***************************************
-#     TMatrix2d implementation
+#     Matrix2d implementation
 # ***************************************
 
-proc setElements*(t:var TMatrix2d,ax,ay,bx,by,tx,ty:float) {.inline.}=
+proc setElements*(t:var Matrix2d,ax,ay,bx,by,tx,ty:float) {.inline.}=
   ## Sets arbitrary elements in an existing matrix.
   t.ax=ax
   t.ay=ay
@@ -139,10 +139,10 @@ proc setElements*(t:var TMatrix2d,ax,ay,bx,by,tx,ty:float) {.inline.}=
   t.tx=tx
   t.ty=ty
 
-proc matrix2d*(ax,ay,bx,by,tx,ty:float):TMatrix2d =
+proc matrix2d*(ax,ay,bx,by,tx,ty:float):Matrix2d =
   result.setElements(ax,ay,bx,by,tx,ty)
 
-proc `&`*(a,b:TMatrix2d):TMatrix2d {.noInit.} = #concatenate matrices
+proc `&`*(a,b:Matrix2d):Matrix2d {.noInit.} = #concatenate matrices
   ## Concatenates matrices returning a new matrix.
   
   # | a.AX a.AY 0 |   | b.AX b.AY 0 |
@@ -157,34 +157,34 @@ proc `&`*(a,b:TMatrix2d):TMatrix2d {.noInit.} = #concatenate matrices
     a.tx * b.ay + a.ty * b.by + b.ty)
 
 
-proc scale*(s:float):TMatrix2d {.noInit.} =
+proc scale*(s:float):Matrix2d {.noInit.} =
   ## Returns a new scale matrix.
   result.setElements(s,0,0,s,0,0)
 
-proc scale*(s:float,org:TPoint2d):TMatrix2d {.noInit.} =
+proc scale*(s:float,org:Point2d):Matrix2d {.noInit.} =
   ## Returns a new scale matrix using, `org` as scale origin.
   result.setElements(s,0,0,s,org.x-s*org.x,org.y-s*org.y)
 
-proc stretch*(sx,sy:float):TMatrix2d {.noInit.} =
+proc stretch*(sx,sy:float):Matrix2d {.noInit.} =
   ## Returns new a stretch matrix, which is a
   ## scale matrix with non uniform scale in x and y.
   result.setElements(sx,0,0,sy,0,0)
     
-proc stretch*(sx,sy:float,org:TPoint2d):TMatrix2d {.noInit.} =
+proc stretch*(sx,sy:float,org:Point2d):Matrix2d {.noInit.} =
   ## Returns a new stretch matrix, which is a
   ## scale matrix with non uniform scale in x and y.
   ## `org` is used as stretch origin.
   result.setElements(sx,0,0,sy,org.x-sx*org.x,org.y-sy*org.y)
     
-proc move*(dx,dy:float):TMatrix2d {.noInit.} =
+proc move*(dx,dy:float):Matrix2d {.noInit.} =
   ## Returns a new translation matrix.
   result.setElements(1,0,0,1,dx,dy)
 
-proc move*(v:TVector2d):TMatrix2d {.noInit.} =
+proc move*(v:Vector2d):Matrix2d {.noInit.} =
   ## Returns a new translation matrix from a vector.
   result.setElements(1,0,0,1,v.x,v.y)
 
-proc rotate*(rad:float):TMatrix2d {.noInit.} =
+proc rotate*(rad:float):Matrix2d {.noInit.} =
   ## Returns a new rotation matrix, which
   ## represents a rotation by `rad` radians
   let 
@@ -192,7 +192,7 @@ proc rotate*(rad:float):TMatrix2d {.noInit.} =
     c=cos(rad)
   result.setElements(c,s,-s,c,0,0)
 
-proc rotate*(rad:float,org:TPoint2d):TMatrix2d {.noInit.} =
+proc rotate*(rad:float,org:Point2d):Matrix2d {.noInit.} =
   ## Returns a new rotation matrix, which
   ## represents a rotation by `rad` radians around
   ## the origin `org`
@@ -201,7 +201,7 @@ proc rotate*(rad:float,org:TPoint2d):TMatrix2d {.noInit.} =
     c=cos(rad)
   result.setElements(c,s,-s,c,org.x+s*org.y-c*org.x,org.y-c*org.y-s*org.x)
   
-proc mirror*(v:TVector2d):TMatrix2d {.noInit.} =
+proc mirror*(v:Vector2d):Matrix2d {.noInit.} =
   ## Returns a new mirror matrix, mirroring
   ## around the line that passes through origo and
   ## has the direction of `v`
@@ -220,7 +220,7 @@ proc mirror*(v:TVector2d):TMatrix2d {.noInit.} =
     xy2,-sqd,
     0.0,0.0)
 
-proc mirror*(org:TPoint2d,v:TVector2d):TMatrix2d {.noInit.} =
+proc mirror*(org:Point2d,v:Vector2d):Matrix2d {.noInit.} =
   ## Returns a new mirror matrix, mirroring
   ## around the line that passes through `org` and
   ## has the direction of `v`
@@ -241,20 +241,20 @@ proc mirror*(org:TPoint2d,v:TVector2d):TMatrix2d {.noInit.} =
   
 
 
-proc skew*(xskew,yskew:float):TMatrix2d {.noInit.} =
+proc skew*(xskew,yskew:float):Matrix2d {.noInit.} =
   ## Returns a new skew matrix, which has its 
   ## x axis rotated `xskew` radians from the local x axis, and
   ## y axis rotated `yskew` radians from the local y axis
   result.setElements(cos(yskew),sin(yskew),-sin(xskew),cos(xskew),0,0)
   
 
-proc `$`* (t:TMatrix2d):string {.noInit.} =
+proc `$`* (t:Matrix2d):string {.noInit.} =
   ## Returns a string representation of the matrix
   return rtos(t.ax) & "," & rtos(t.ay) &
     "," & rtos(t.bx) & "," & rtos(t.by) & 
     "," & rtos(t.tx) & "," & rtos(t.ty)
 
-proc isUniform*(t:TMatrix2d,tol=1.0e-6):bool=
+proc isUniform*(t:Matrix2d,tol=1.0e-6):bool=
   ## Checks if the transform is uniform, that is 
   ## perpendicular axes of equal length, which means (for example)
   ## it cannot transform a circle into an ellipse.
@@ -268,18 +268,18 @@ proc isUniform*(t:TMatrix2d,tol=1.0e-6):bool=
       return true
   return false
     
-proc determinant*(t:TMatrix2d):float=
+proc determinant*(t:Matrix2d):float=
   ## Computes the determinant of the matrix.
   
   #NOTE: equivalent with perp.dot product for two 2d vectors
   return t.ax*t.by-t.bx*t.ay  
 
-proc isMirroring* (m:TMatrix2d):bool=
+proc isMirroring* (m:Matrix2d):bool=
   ## Checks if the `m` is a mirroring matrix,
   ## which means it will reverse direction of a curve transformed with it
   return m.determinant<0.0
   
-proc inverse*(m:TMatrix2d):TMatrix2d {.noInit.} =
+proc inverse*(m:Matrix2d):Matrix2d {.noInit.} =
   ## Returns a new matrix, which is the inverse of the matrix
   ## If the matrix is not invertible (determinant=0), an EDivByZero
   ## will be raised.
@@ -293,7 +293,7 @@ proc inverse*(m:TMatrix2d):TMatrix2d {.noInit.} =
     (m.bx*m.ty-m.by*m.tx)/d,
     (m.ay*m.tx-m.ax*m.ty)/d)
 
-proc equals*(m1:TMatrix2d,m2:TMatrix2d,tol=1.0e-6):bool=
+proc equals*(m1:Matrix2d,m2:Matrix2d,tol=1.0e-6):bool=
   ## Checks if all elements of `m1`and `m2` is equal within
   ## a given tolerance `tol`.
   return 
@@ -304,17 +304,17 @@ proc equals*(m1:TMatrix2d,m2:TMatrix2d,tol=1.0e-6):bool=
     abs(m1.tx-m2.tx)<=tol and
     abs(m1.ty-m2.ty)<=tol
     
-proc `=~`*(m1,m2:TMatrix2d):bool=
+proc `=~`*(m1,m2:Matrix2d):bool=
   ## Checks if `m1`and `m2` is approximately equal, using a
   ## tolerance of 1e-6.
   equals(m1,m2)
 
-proc isIdentity*(m:TMatrix2d,tol=1.0e-6):bool=
+proc isIdentity*(m:Matrix2d,tol=1.0e-6):bool=
   ## Checks is a matrix is approximately an identity matrix,
   ## using `tol` as tolerance for each element.
   return equals(m,IDMATRIX,tol)
 
-proc apply*(m:TMatrix2d,x,y:var float,translate=false)=
+proc apply*(m:Matrix2d,x,y:var float,translate=false)=
   ## Applies transformation `m` onto `x`,`y`, optionally
   ## using the translation part of the matrix.
   if translate: # positional style transform
@@ -329,29 +329,29 @@ proc apply*(m:TMatrix2d,x,y:var float,translate=false)=
 
 
 # ***************************************
-#     TVector2d implementation
+#     Vector2d implementation
 # ***************************************
-proc vector2d*(x,y:float):TVector2d = #forward decl.
+proc vector2d*(x,y:float):Vector2d = #forward decl.
   result.x=x
   result.y=y
 
-proc polarVector2d*(ang:float,len:float):TVector2d {.noInit.} =
+proc polarVector2d*(ang:float,len:float):Vector2d {.noInit.} =
   ## Returns a new vector with angle `ang` and magnitude `len`
   result.x=cos(ang)*len
   result.y=sin(ang)*len
 
-proc slopeVector2d*(slope:float,len:float):TVector2d {.noInit.} =
+proc slopeVector2d*(slope:float,len:float):Vector2d {.noInit.} =
   ## Returns a new vector having slope (dy/dx) given by
   ## `slope`, and a magnitude of `len`
   let ang=arctan(slope)
   result.x=cos(ang)*len
   result.y=sin(ang)*len
 
-proc len*(v:TVector2d):float {.inline.}=
+proc len*(v:Vector2d):float {.inline.}=
   ## Returns the length of the vector.
   sqrt(v.x*v.x+v.y*v.y)
   
-proc `len=`*(v:var TVector2d,newlen:float) {.noInit.} =
+proc `len=`*(v:var Vector2d,newlen:float) {.noInit.} =
   ## Sets the length of the vector, keeping its angle.
   let fac=newlen/v.len
   
@@ -369,25 +369,25 @@ proc `len=`*(v:var TVector2d,newlen:float) {.noInit.} =
     v.x*=fac
     v.y*=fac
   
-proc sqrLen*(v:TVector2d):float {.inline.}=
+proc sqrLen*(v:Vector2d):float {.inline.}=
   ## Computes the squared length of the vector, which is
   ## faster than computing the absolute length.
   v.x*v.x+v.y*v.y
   
-proc angle*(v:TVector2d):float=
+proc angle*(v:Vector2d):float=
   ## Returns the angle of the vector. 
   ## (The counter clockwise plane angle between posetive x axis and `v`)
   result=arctan2(v.y,v.x)
   if result<0.0: result+=DEG360
   
-proc `$` *(v:TVector2d):string=
+proc `$` *(v:Vector2d):string=
   ## String representation of `v`
   result=rtos(v.x)
   result.add(",")
   result.add(rtos(v.y))
   
   
-proc `&` *(v:TVector2d,m:TMatrix2d):TVector2d {.noInit.} =
+proc `&` *(v:Vector2d,m:Matrix2d):Vector2d {.noInit.} =
   ## Concatenate vector `v` with a transformation matrix.
   ## Transforming a vector ignores the translational part
   ## of the matrix.
@@ -399,7 +399,7 @@ proc `&` *(v:TVector2d,m:TMatrix2d):TVector2d {.noInit.} =
   result.y=v.x*m.ay+v.y*m.by
 
 
-proc `&=`*(v:var TVector2d,m:TMatrix2d) {.inline.}=
+proc `&=`*(v:var Vector2d,m:Matrix2d) {.inline.}=
   ## Applies transformation `m` onto `v` in place.
   ## Transforming a vector ignores the translational part
   ## of the matrix.
@@ -412,7 +412,7 @@ proc `&=`*(v:var TVector2d,m:TMatrix2d) {.inline.}=
   v.x=newx
 
 
-proc tryNormalize*(v:var TVector2d):bool= 
+proc tryNormalize*(v:var Vector2d):bool= 
   ## Modifies `v` to have a length of 1.0, keeping its angle.
   ## If `v` has zero length (and thus no angle), it is left unmodified and 
   ## false is returned, otherwise true is returned.
@@ -427,13 +427,13 @@ proc tryNormalize*(v:var TVector2d):bool=
   return true
 
 
-proc normalize*(v:var TVector2d) {.inline.}= 
+proc normalize*(v:var Vector2d) {.inline.}= 
   ## Modifies `v` to have a length of 1.0, keeping its angle.
   ## If  `v` has zero length, an EDivByZero will be raised.
   if not tryNormalize(v):
     raise newException(DivByZeroError,"Cannot normalize zero length vector")
   
-proc transformNorm*(v:var TVector2d,t:TMatrix2d)=
+proc transformNorm*(v:var Vector2d,t:Matrix2d)=
   ## Applies a normal direction transformation `t` onto `v` in place.
   ## The resulting vector is *not* normalized.  Transforming a vector ignores the 
   ## translational part of the matrix. If the matrix is not invertible 
@@ -452,7 +452,7 @@ proc transformNorm*(v:var TVector2d,t:TMatrix2d)=
   v.y = (t.ax*v.y-t.bx*v.x)/d
   v.x = newx
 
-proc transformInv*(v:var TVector2d,t:TMatrix2d)=
+proc transformInv*(v:var Vector2d,t:Matrix2d)=
   ## Applies inverse of a transformation `t` to `v` in place.
   ## This is faster than creating an inverse matrix and apply() it.
   ## Transforming a vector ignores the translational part
@@ -467,7 +467,7 @@ proc transformInv*(v:var TVector2d,t:TMatrix2d)=
   v.y = (t.ax*v.y-t.ay*v.x)/d
   v.x = newx
 
-proc transformNormInv*(v:var TVector2d,t:TMatrix2d)=
+proc transformNormInv*(v:var Vector2d,t:Matrix2d)=
   ## Applies an inverse normal direction transformation `t` onto `v` in place.
   ## This is faster than creating an inverse 
   ## matrix and transformNorm(...) it. Transforming a vector ignores the 
@@ -484,25 +484,25 @@ proc transformNormInv*(v:var TVector2d,t:TMatrix2d)=
   v.y=t.by*v.y+t.bx*v.x
   v.x=newx
 
-proc rotate90*(v:var TVector2d) {.inline.}=
+proc rotate90*(v:var Vector2d) {.inline.}=
   ## Quickly rotates vector `v` 90 degrees counter clockwise,
   ## without using any trigonometrics.
   swap(v.x,v.y)
   v.x= -v.x
   
-proc rotate180*(v:var TVector2d){.inline.}=
+proc rotate180*(v:var Vector2d){.inline.}=
   ## Quickly rotates vector `v` 180 degrees counter clockwise,
   ## without using any trigonometrics.
   v.x= -v.x
   v.y= -v.y
   
-proc rotate270*(v:var TVector2d) {.inline.}=
+proc rotate270*(v:var Vector2d) {.inline.}=
   ## Quickly rotates vector `v` 270 degrees counter clockwise,
   ## without using any trigonometrics.
   swap(v.x,v.y)
   v.y= -v.y
   
-proc rotate*(v:var TVector2d,rad:float) =
+proc rotate*(v:var Vector2d,rad:float) =
   ## Rotates vector `v` `rad` radians in place.
   let
     s=sin(rad)
@@ -511,18 +511,18 @@ proc rotate*(v:var TVector2d,rad:float) =
   v.y=c*v.y+s*v.x
   v.x=newx
   
-proc scale*(v:var TVector2d,fac:float){.inline.}=
+proc scale*(v:var Vector2d,fac:float){.inline.}=
   ## Scales vector `v` `rad` radians in place.
   v.x*=fac
   v.y*=fac
   
-proc stretch*(v:var TVector2d,facx,facy:float){.inline.}=
+proc stretch*(v:var Vector2d,facx,facy:float){.inline.}=
   ## Stretches vector `v` `facx` times horizontally,
   ## and `facy` times vertically.
   v.x*=facx
   v.y*=facy
   
-proc mirror*(v:var TVector2d,mirrvec:TVector2d)=
+proc mirror*(v:var Vector2d,mirrvec:Vector2d)=
   ## Mirrors vector `v` using `mirrvec` as mirror direction.
   let
     sqx=mirrvec.x*mirrvec.x
@@ -539,7 +539,7 @@ proc mirror*(v:var TVector2d,mirrvec:TVector2d)=
   v.x=newx
     
  
-proc `-` *(v:TVector2d):TVector2d=
+proc `-` *(v:Vector2d):Vector2d=
   ## Negates a vector
   result.x= -v.x
   result.y= -v.y
@@ -555,27 +555,27 @@ makeBinOpAssignVector(`*=`)
 makeBinOpAssignVector(`/=`)
 
 
-proc dot*(v1,v2:TVector2d):float=
+proc dot*(v1,v2:Vector2d):float=
   ## Computes the dot product of two vectors. 
   ## Returns 0.0 if the vectors are perpendicular.
   return v1.x*v2.x+v1.y*v2.y
   
-proc cross*(v1,v2:TVector2d):float=
+proc cross*(v1,v2:Vector2d):float=
   ## Computes the cross product of two vectors, also called
   ## the 'perpendicular dot product' in 2d. Returns 0.0 if the vectors
   ## are parallel.
   return v1.x*v2.y-v1.y*v2.x
   
-proc equals*(v1,v2:TVector2d,tol=1.0e-6):bool=
+proc equals*(v1,v2:Vector2d,tol=1.0e-6):bool=
   ## Checks if two vectors approximately equals with a tolerance.
   return abs(v2.x-v1.x)<=tol and abs(v2.y-v1.y)<=tol
   
-proc `=~` *(v1,v2:TVector2d):bool=
+proc `=~` *(v1,v2:Vector2d):bool=
   ## Checks if two vectors approximately equals with a 
   ## hardcoded tolerance 1e-6
   equals(v1,v2)
   
-proc angleTo*(v1,v2:TVector2d):float=
+proc angleTo*(v1,v2:Vector2d):float=
   ## Returns the smallest of the two possible angles 
   ## between `v1` and `v2` in radians.
   var
@@ -585,7 +585,7 @@ proc angleTo*(v1,v2:TVector2d):float=
     return 0.0 # zero length vector has zero angle to any other vector
   return safeArccos(dot(nv1,nv2))
   
-proc angleCCW*(v1,v2:TVector2d):float=
+proc angleCCW*(v1,v2:Vector2d):float=
   ## Returns the counter clockwise plane angle from `v1` to `v2`,
   ## in range 0 - 2*PI
   let a=v1.angleTo(v2)
@@ -593,7 +593,7 @@ proc angleCCW*(v1,v2:TVector2d):float=
     return a
   return DEG360-a
   
-proc angleCW*(v1,v2:TVector2d):float=
+proc angleCW*(v1,v2:Vector2d):float=
   ## Returns the clockwise plane angle from `v1` to `v2`,
   ## in range 0 - 2*PI
   let a=v1.angleTo(v2)
@@ -601,7 +601,7 @@ proc angleCW*(v1,v2:TVector2d):float=
     return a
   return DEG360-a
 
-proc turnAngle*(v1,v2:TVector2d):float=
+proc turnAngle*(v1,v2:Vector2d):float=
   ## Returns the amount v1 should be rotated (in radians) to equal v2,
   ## in range -PI to PI
   let a=v1.angleTo(v2)
@@ -609,7 +609,7 @@ proc turnAngle*(v1,v2:TVector2d):float=
     return -a
   return a
 
-proc bisect*(v1,v2:TVector2d):TVector2d {.noInit.}=
+proc bisect*(v1,v2:Vector2d):Vector2d {.noInit.}=
   ## Computes the bisector between v1 and v2 as a normalized vector.
   ## If one of the input vectors has zero length, a normalized version
   ## of the other is returned. If both input vectors has zero length, 
@@ -645,24 +645,24 @@ proc bisect*(v1,v2:TVector2d):TVector2d {.noInit.}=
 
 
 # ***************************************
-#     TPoint2d implementation
+#     Point2d implementation
 # ***************************************
 
-proc point2d*(x,y:float):TPoint2d =
+proc point2d*(x,y:float):Point2d =
   result.x=x
   result.y=y
   
-proc sqrDist*(a,b:TPoint2d):float=
+proc sqrDist*(a,b:Point2d):float=
   ## Computes the squared distance between `a` and `b`
   let dx=b.x-a.x
   let dy=b.y-a.y
   result=dx*dx+dy*dy
   
-proc dist*(a,b:TPoint2d):float {.inline.}=
+proc dist*(a,b:Point2d):float {.inline.}=
   ## Computes the absolute distance between `a` and `b`
   result=sqrt(sqrDist(a,b))
 
-proc angle*(a,b:TPoint2d):float=
+proc angle*(a,b:Point2d):float=
   ## Computes the angle of the vector `b`-`a`
   let dx=b.x-a.x
   let dy=b.y-a.y
@@ -670,13 +670,13 @@ proc angle*(a,b:TPoint2d):float=
   if result<0:
     result += DEG360
 
-proc `$` *(p:TPoint2d):string=
+proc `$` *(p:Point2d):string=
   ## String representation of `p`
   result=rtos(p.x)
   result.add(",")
   result.add(rtos(p.y))
   
-proc `&`*(p:TPoint2d,t:TMatrix2d):TPoint2d {.noInit,inline.} =
+proc `&`*(p:Point2d,t:Matrix2d):Point2d {.noInit,inline.} =
   ## Concatenates a point `p` with a transform `t`,
   ## resulting in a new, transformed point.
   
@@ -686,14 +686,14 @@ proc `&`*(p:TPoint2d,t:TMatrix2d):TPoint2d {.noInit,inline.} =
   result.x=p.x*t.ax+p.y*t.bx+t.tx
   result.y=p.x*t.ay+p.y*t.by+t.ty
 
-proc `&=` *(p:var TPoint2d,t:TMatrix2d) {.inline.}=
+proc `&=` *(p:var Point2d,t:Matrix2d) {.inline.}=
   ## Applies transformation `t` onto `p` in place.
   let newx=p.x*t.ax+p.y*t.bx+t.tx
   p.y=p.x*t.ay+p.y*t.by+t.ty
   p.x=newx
 
 
-proc transformInv*(p:var TPoint2d,t:TMatrix2d){.inline.}=
+proc transformInv*(p:var Point2d,t:Matrix2d){.inline.}=
   ## Applies the inverse of transformation `t` onto `p` in place.
   ## If the matrix is not invertable (determinant=0) , EDivByZero will
   ## be raised.
@@ -710,48 +710,48 @@ proc transformInv*(p:var TPoint2d,t:TMatrix2d){.inline.}=
   p.x=newx
   
   
-proc `+`*(p:TPoint2d,v:TVector2d):TPoint2d {.noInit,inline.} =
+proc `+`*(p:Point2d,v:Vector2d):Point2d {.noInit,inline.} =
   ## Adds a vector `v` to a point `p`, resulting 
   ## in a new point.
   result.x=p.x+v.x
   result.y=p.y+v.y
 
-proc `+=`*(p:var TPoint2d,v:TVector2d) {.noInit,inline.} =
+proc `+=`*(p:var Point2d,v:Vector2d) {.noInit,inline.} =
   ## Adds a vector `v` to a point `p` in place.
   p.x+=v.x
   p.y+=v.y
 
-proc `-`*(p:TPoint2d,v:TVector2d):TPoint2d {.noInit,inline.} =
+proc `-`*(p:Point2d,v:Vector2d):Point2d {.noInit,inline.} =
   ## Subtracts a vector `v` from a point `p`, resulting 
   ## in a new point.
   result.x=p.x-v.x
   result.y=p.y-v.y
 
-proc `-`*(p1,p2:TPoint2d):TVector2d {.noInit,inline.} =
+proc `-`*(p1,p2:Point2d):Vector2d {.noInit,inline.} =
   ## Subtracts `p2`from `p1` resulting in a difference vector.
   result.x=p1.x-p2.x
   result.y=p1.y-p2.y
 
-proc `-=`*(p:var TPoint2d,v:TVector2d) {.noInit,inline.} =
+proc `-=`*(p:var Point2d,v:Vector2d) {.noInit,inline.} =
   ## Subtracts a vector `v` from a point `p` in place.
   p.x-=v.x
   p.y-=v.y
   
-proc equals(p1,p2:TPoint2d,tol=1.0e-6):bool {.inline.}=
+proc equals(p1,p2:Point2d,tol=1.0e-6):bool {.inline.}=
   ## Checks if two points approximately equals with a tolerance.
   return abs(p2.x-p1.x)<=tol and abs(p2.y-p1.y)<=tol
 
-proc `=~`*(p1,p2:TPoint2d):bool {.inline.}=
+proc `=~`*(p1,p2:Point2d):bool {.inline.}=
   ## Checks if two vectors approximately equals with a 
   ## hardcoded tolerance 1e-6
   equals(p1,p2)
 
-proc polar*(p:TPoint2d,ang,dist:float):TPoint2d {.noInit.} =
+proc polar*(p:Point2d,ang,dist:float):Point2d {.noInit.} =
   ## Returns a point with a given angle and distance away from `p`
   result.x=p.x+cos(ang)*dist
   result.y=p.y+sin(ang)*dist
 
-proc rotate*(p:var TPoint2d,rad:float)=
+proc rotate*(p:var Point2d,rad:float)=
   ## Rotates a point in place `rad` radians around origo.
   let
     c=cos(rad)
@@ -760,7 +760,7 @@ proc rotate*(p:var TPoint2d,rad:float)=
   p.y=p.y*c+p.x*s
   p.x=newx
     
-proc rotate*(p:var TPoint2d,rad:float,org:TPoint2d)=
+proc rotate*(p:var Point2d,rad:float,org:Point2d)=
   ## Rotates a point in place `rad` radians using `org` as
   ## center of rotation.
   let
@@ -770,50 +770,50 @@ proc rotate*(p:var TPoint2d,rad:float,org:TPoint2d)=
   p.y=(p.y - org.y) * c + (p.x - org.x) * s + org.y
   p.x=newx
   
-proc scale*(p:var TPoint2d,fac:float) {.inline.}=
+proc scale*(p:var Point2d,fac:float) {.inline.}=
   ## Scales a point in place `fac` times with world origo as origin.
   p.x*=fac
   p.y*=fac
   
-proc scale*(p:var TPoint2d,fac:float,org:TPoint2d){.inline.}=
+proc scale*(p:var Point2d,fac:float,org:Point2d){.inline.}=
   ## Scales the point in place `fac` times with `org` as origin.
   p.x=(p.x - org.x) * fac + org.x
   p.y=(p.y - org.y) * fac + org.y
 
-proc stretch*(p:var TPoint2d,facx,facy:float){.inline.}=
+proc stretch*(p:var Point2d,facx,facy:float){.inline.}=
   ## Scales a point in place non uniformly `facx` and `facy` times with 
   ## world origo as origin.
   p.x*=facx
   p.y*=facy
 
-proc stretch*(p:var TPoint2d,facx,facy:float,org:TPoint2d){.inline.}=
+proc stretch*(p:var Point2d,facx,facy:float,org:Point2d){.inline.}=
   ## Scales the point in place non uniformly `facx` and `facy` times with 
   ## `org` as origin.
   p.x=(p.x - org.x) * facx + org.x
   p.y=(p.y - org.y) * facy + org.y
 
-proc move*(p:var TPoint2d,dx,dy:float){.inline.}=
+proc move*(p:var Point2d,dx,dy:float){.inline.}=
   ## Translates a point `dx`, `dy` in place.
   p.x+=dx
   p.y+=dy
 
-proc move*(p:var TPoint2d,v:TVector2d){.inline.}=
+proc move*(p:var Point2d,v:Vector2d){.inline.}=
   ## Translates a point with vector `v` in place.
   p.x+=v.x
   p.y+=v.y
 
-proc sgnArea*(a,b,c:TPoint2d):float=
+proc sgnArea*(a,b,c:Point2d):float=
   ## Computes the signed area of the triangle thru points `a`,`b` and `c`
   ## result>0.0 for counter clockwise triangle
   ## result<0.0 for clockwise triangle
   ## This is commonly used to determinate side of a point with respect to a line.
   return ((b.x - c.x) * (b.y - a.y)-(b.y - c.y) * (b.x - a.x))*0.5
 
-proc area*(a,b,c:TPoint2d):float=
+proc area*(a,b,c:Point2d):float=
   ## Computes the area of the triangle thru points `a`,`b` and `c`
   return abs(sgnArea(a,b,c))
 
-proc closestPoint*(p:TPoint2d,pts:varargs[TPoint2d]):TPoint2d=
+proc closestPoint*(p:Point2d,pts:varargs[Point2d]):Point2d=
   ## Returns a point selected from `pts`, that has the closest 
   ## euclidean distance to `p`
   assert(pts.len>0) # must have at least one point
diff --git a/lib/pure/basic3d.nim b/lib/pure/basic3d.nim
index 5a943dd05..b99357e3a 100644
--- a/lib/pure/basic3d.nim
+++ b/lib/pure/basic3d.nim
@@ -25,25 +25,25 @@ import times
 ##
 ##   # Create a matrix which first rotates, then scales and at last translates
 ##
-##   var m:TMatrix3d=rotate(PI,vector3d(1,1,2.5)) & scale(2.0) & move(100.0,200.0,300.0)
+##   var m:Matrix3d=rotate(PI,vector3d(1,1,2.5)) & scale(2.0) & move(100.0,200.0,300.0)
 ##
 ##   # Create a 3d point at (100,150,200) and a vector (5,2,3)
 ##
-##   var pt:TPoint3d=point3d(100.0,150.0,200.0)
+##   var pt:Point3d=point3d(100.0,150.0,200.0)
 ##
-##   var vec:TVector3d=vector3d(5.0,2.0,3.0)
+##   var vec:Vector3d=vector3d(5.0,2.0,3.0)
 ##
 ##
 ##   pt &= m # transforms pt in place
 ##
-##   var pt2:TPoint3d=pt & m #concatenates pt with m and returns a new point
+##   var pt2:Point3d=pt & m #concatenates pt with m and returns a new point
 ##
-##   var vec2:TVector3d=vec & m #concatenates vec with m and returns a new vector
+##   var vec2:Vector3d=vec & m #concatenates vec with m and returns a new vector
 
 
 
 type
-  TMatrix3d* =object
+  Matrix3d* =object
     ## Implements a row major 3d matrix, which means
     ## transformations are applied the order they are concatenated.
     ## This matrix is stored as an 4x4 matrix:
@@ -52,31 +52,31 @@ type
     ## [ cx cy cz cw ]
     ## [ tx ty tz tw ]
     ax*,ay*,az*,aw*,  bx*,by*,bz*,bw*,  cx*,cy*,cz*,cw*,  tx*,ty*,tz*,tw*:float
-  TPoint3d* = object
+  Point3d* = object
     ## Implements a non-homegeneous 2d point stored as
     ## an `x` , `y` and `z` coordinate.
     x*,y*,z*:float
-  TVector3d* = object
+  Vector3d* = object
     ## Implements a 3d **direction vector** stored as
     ## an `x` , `y` and `z` coordinate. Direction vector means,
     ## that when transforming a vector with a matrix, the translational
     ## part of the matrix is ignored.
     x*,y*,z*:float
-
+{.deprecated: [TMatrix3d: Matrix3d, TPoint3d: Point3d, TVector3d: Vector3d].}
 
 
 # Some forward declarations
-proc matrix3d*(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float):TMatrix3d {.noInit.}
+proc matrix3d*(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float):Matrix3d {.noInit.}
   ## Creates a new 4x4 3d transformation matrix.
   ## `ax` , `ay` , `az` is the local x axis.
   ## `bx` , `by` , `bz` is the local y axis.
   ## `cx` , `cy` , `cz` is the local z axis.
   ## `tx` , `ty` , `tz` is the translation.
-proc vector3d*(x,y,z:float):TVector3d {.noInit,inline.}
+proc vector3d*(x,y,z:float):Vector3d {.noInit,inline.}
   ## Returns a new 3d vector (`x`,`y`,`z`)
-proc point3d*(x,y,z:float):TPoint3d {.noInit,inline.}
+proc point3d*(x,y,z:float):Point3d {.noInit,inline.}
   ## Returns a new 4d point (`x`,`y`,`z`)
-proc tryNormalize*(v:var TVector3d):bool
+proc tryNormalize*(v:var Vector3d):bool
   ## Modifies `v` to have a length of 1.0, keeping its angle.
   ## If `v` has zero length (and thus no angle), it is left unmodified and false is
   ## returned, otherwise true is returned.
@@ -84,19 +84,19 @@ proc tryNormalize*(v:var TVector3d):bool
 
 
 let
-  IDMATRIX*:TMatrix3d=matrix3d(
+  IDMATRIX*:Matrix3d=matrix3d(
     1.0,0.0,0.0,0.0,
     0.0,1.0,0.0,0.0,
     0.0,0.0,1.0,0.0,
     0.0,0.0,0.0,1.0)
     ## Quick access to a 3d identity matrix
-  ORIGO*:TPoint3d=point3d(0.0,0.0,0.0)
+  ORIGO*:Point3d=point3d(0.0,0.0,0.0)
     ## Quick access to point (0,0)
-  XAXIS*:TVector3d=vector3d(1.0,0.0,0.0)
+  XAXIS*:Vector3d=vector3d(1.0,0.0,0.0)
     ## Quick access to an 3d x-axis unit vector
-  YAXIS*:TVector3d=vector3d(0.0,1.0,0.0)
+  YAXIS*:Vector3d=vector3d(0.0,1.0,0.0)
     ## Quick access to an 3d y-axis unit vector
-  ZAXIS*:TVector3d=vector3d(0.0,0.0,1.0)
+  ZAXIS*:Vector3d=vector3d(0.0,0.0,1.0)
     ## Quick access to an 3d z-axis unit vector
 
 
@@ -116,27 +116,27 @@ proc safeArccos(v:float):float=
 
 template makeBinOpVector(s:expr)=
   ## implements binary operators + , - , * and / for vectors
-  proc s*(a,b:TVector3d):TVector3d {.inline,noInit.} =
+  proc s*(a,b:Vector3d):Vector3d {.inline,noInit.} =
     vector3d(s(a.x,b.x),s(a.y,b.y),s(a.z,b.z))
-  proc s*(a:TVector3d,b:float):TVector3d {.inline,noInit.}  =
+  proc s*(a:Vector3d,b:float):Vector3d {.inline,noInit.}  =
     vector3d(s(a.x,b),s(a.y,b),s(a.z,b))
-  proc s*(a:float,b:TVector3d):TVector3d {.inline,noInit.}  =
+  proc s*(a:float,b:Vector3d):Vector3d {.inline,noInit.}  =
     vector3d(s(a,b.x),s(a,b.y),s(a,b.z))
 
 template makeBinOpAssignVector(s:expr)=
   ## implements inplace binary operators += , -= , /= and *= for vectors
-  proc s*(a:var TVector3d,b:TVector3d) {.inline.} =
+  proc s*(a:var Vector3d,b:Vector3d) {.inline.} =
     s(a.x,b.x) ; s(a.y,b.y) ; s(a.z,b.z)
-  proc s*(a:var TVector3d,b:float) {.inline.} =
+  proc s*(a:var Vector3d,b:float) {.inline.} =
     s(a.x,b) ; s(a.y,b) ; s(a.z,b)
 
 
 
 # ***************************************
-#     TMatrix3d implementation
+#     Matrix3d implementation
 # ***************************************
 
-proc setElements*(t:var TMatrix3d,ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float) {.inline.}=
+proc setElements*(t:var Matrix3d,ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float) {.inline.}=
   ## Sets arbitrary elements in an exisitng matrix.
   t.ax=ax
   t.ay=ay
@@ -155,10 +155,10 @@ proc setElements*(t:var TMatrix3d,ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,t
   t.tz=tz
   t.tw=tw
 
-proc matrix3d*(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float):TMatrix3d =
+proc matrix3d*(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float):Matrix3d =
   result.setElements(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw)
 
-proc `&`*(a,b:TMatrix3d):TMatrix3d {.noinit.} =
+proc `&`*(a,b:Matrix3d):Matrix3d {.noinit.} =
   ## Concatenates matrices returning a new matrix.
   result.setElements(
     a.aw*b.tx+a.az*b.cx+a.ay*b.bx+a.ax*b.ax,
@@ -182,36 +182,36 @@ proc `&`*(a,b:TMatrix3d):TMatrix3d {.noinit.} =
     a.tw*b.tw+a.tz*b.cw+a.ty*b.bw+a.tx*b.aw)
 
 
-proc scale*(s:float):TMatrix3d {.noInit.} =
+proc scale*(s:float):Matrix3d {.noInit.} =
   ## Returns a new scaling matrix.
   result.setElements(s,0,0,0, 0,s,0,0, 0,0,s,0, 0,0,0,1)
 
-proc scale*(s:float,org:TPoint3d):TMatrix3d {.noInit.} =
+proc scale*(s:float,org:Point3d):Matrix3d {.noInit.} =
   ## Returns a new scaling matrix using, `org` as scale origin.
   result.setElements(s,0,0,0, 0,s,0,0, 0,0,s,0,
     org.x-s*org.x,org.y-s*org.y,org.z-s*org.z,1.0)
 
-proc stretch*(sx,sy,sz:float):TMatrix3d {.noInit.} =
+proc stretch*(sx,sy,sz:float):Matrix3d {.noInit.} =
   ## Returns new a stretch matrix, which is a
   ## scale matrix with non uniform scale in x,y and z.
   result.setElements(sx,0,0,0, 0,sy,0,0, 0,0,sz,0, 0,0,0,1)
 
-proc stretch*(sx,sy,sz:float,org:TPoint3d):TMatrix3d {.noInit.} =
+proc stretch*(sx,sy,sz:float,org:Point3d):Matrix3d {.noInit.} =
   ## Returns a new stretch matrix, which is a
   ## scale matrix with non uniform scale in x,y and z.
   ## `org` is used as stretch origin.
   result.setElements(sx,0,0,0, 0,sy,0,0, 0,0,sz,0, org.x-sx*org.x,org.y-sy*org.y,org.z-sz*org.z,1)
 
-proc move*(dx,dy,dz:float):TMatrix3d {.noInit.} =
+proc move*(dx,dy,dz:float):Matrix3d {.noInit.} =
   ## Returns a new translation matrix.
   result.setElements(1,0,0,0, 0,1,0,0, 0,0,1,0, dx,dy,dz,1)
 
-proc move*(v:TVector3d):TMatrix3d {.noInit.} =
+proc move*(v:Vector3d):Matrix3d {.noInit.} =
   ## Returns a new translation matrix from a vector.
   result.setElements(1,0,0,0, 0,1,0,0, 0,0,1,0, v.x,v.y,v.z,1)
 
 
-proc rotate*(angle:float,axis:TVector3d):TMatrix3d {.noInit.}=
+proc rotate*(angle:float,axis:Vector3d):Matrix3d {.noInit.}=
   ## Creates a rotation matrix that rotates `angle` radians over
   ## `axis`, which passes through origo.
 
@@ -242,7 +242,7 @@ proc rotate*(angle:float,axis:TVector3d):TMatrix3d {.noInit.}=
     uwomc+vsi, vwomc-usi, w2+(1.0-w2)*cs, 0.0,
     0.0,0.0,0.0,1.0)
 
-proc rotate*(angle:float,org:TPoint3d,axis:TVector3d):TMatrix3d {.noInit.}=
+proc rotate*(angle:float,org:Point3d,axis:Vector3d):Matrix3d {.noInit.}=
   ## Creates a rotation matrix that rotates `angle` radians over
   ## `axis`, which passes through `org`.
 
@@ -282,7 +282,7 @@ proc rotate*(angle:float,org:TPoint3d,axis:TVector3d):TMatrix3d {.noInit.}=
     (c*(u2+v2)-w*(a*u+b*v))*omc+(a*v-b*u)*si,1.0)
 
 
-proc rotateX*(angle:float):TMatrix3d {.noInit.}=
+proc rotateX*(angle:float):Matrix3d {.noInit.}=
   ## Creates a matrix that rotates around the x-axis with `angle` radians,
   ## which is also called a 'roll' matrix.
   let
@@ -294,7 +294,7 @@ proc rotateX*(angle:float):TMatrix3d {.noInit.}=
     0,-s,c,0,
     0,0,0,1)
 
-proc rotateY*(angle:float):TMatrix3d {.noInit.}=
+proc rotateY*(angle:float):Matrix3d {.noInit.}=
   ## Creates a matrix that rotates around the y-axis with `angle` radians,
   ## which is also called a 'pitch' matrix.
   let
@@ -306,7 +306,7 @@ proc rotateY*(angle:float):TMatrix3d {.noInit.}=
     s,0,c,0,
     0,0,0,1)
 
-proc rotateZ*(angle:float):TMatrix3d {.noInit.}=
+proc rotateZ*(angle:float):Matrix3d {.noInit.}=
   ## Creates a matrix that rotates around the z-axis with `angle` radians,
   ## which is also called a 'yaw' matrix.
   let
@@ -318,7 +318,7 @@ proc rotateZ*(angle:float):TMatrix3d {.noInit.}=
     0,0,1,0,
     0,0,0,1)
 
-proc isUniform*(m:TMatrix3d,tol=1.0e-6):bool=
+proc isUniform*(m:Matrix3d,tol=1.0e-6):bool=
   ## Checks if the transform is uniform, that is
   ## perpendicular axes of equal length, which means (for example)
   ## it cannot transform a sphere into an ellipsoid.
@@ -341,7 +341,7 @@ proc isUniform*(m:TMatrix3d,tol=1.0e-6):bool=
 
 
 
-proc mirror*(planeperp:TVector3d):TMatrix3d {.noInit.}=
+proc mirror*(planeperp:Vector3d):Matrix3d {.noInit.}=
   ## Creates a matrix that mirrors over the plane that has `planeperp` as normal,
   ## and passes through origo. `planeperp` does not need to be normalized.
 
@@ -365,7 +365,7 @@ proc mirror*(planeperp:TVector3d):TMatrix3d {.noInit.}=
     0,0,0,1)
 
 
-proc mirror*(org:TPoint3d,planeperp:TVector3d):TMatrix3d {.noInit.}=
+proc mirror*(org:Point3d,planeperp:Vector3d):Matrix3d {.noInit.}=
   ## Creates a matrix that mirrors over the plane that has `planeperp` as normal,
   ## and passes through `org`. `planeperp` does not need to be normalized.
 
@@ -400,7 +400,7 @@ proc mirror*(org:TPoint3d,planeperp:TVector3d):TMatrix3d {.noInit.}=
     2*(cc*tz+bc*ty+ac*tx) ,1)
 
 
-proc determinant*(m:TMatrix3d):float=
+proc determinant*(m:Matrix3d):float=
   ## Computes the determinant of matrix `m`.
 
   # This computation is gotten from ratsimp(optimize(determinant(m)))
@@ -419,7 +419,7 @@ proc determinant*(m:TMatrix3d):float=
     (O3*m.az-O5*m.ay+O6*m.ax)*m.bw
 
 
-proc inverse*(m:TMatrix3d):TMatrix3d {.noInit.}=
+proc inverse*(m:Matrix3d):Matrix3d {.noInit.}=
   ## Computes the inverse of matrix `m`. If the matrix
   ## determinant is zero, thus not invertible, a EDivByZero
   ## will be raised.
@@ -461,7 +461,7 @@ proc inverse*(m:TMatrix3d):TMatrix3d {.noInit.}=
     (-m.ax*O7+m.ay*O14-m.az*O18)/det , (m.ax*O10-m.ay*O16+m.az*O19)/det)
 
 
-proc equals*(m1:TMatrix3d,m2:TMatrix3d,tol=1.0e-6):bool=
+proc equals*(m1:Matrix3d,m2:Matrix3d,tol=1.0e-6):bool=
   ## Checks if all elements of `m1`and `m2` is equal within
   ## a given tolerance `tol`.
   return
@@ -482,42 +482,42 @@ proc equals*(m1:TMatrix3d,m2:TMatrix3d,tol=1.0e-6):bool=
     abs(m1.tz-m2.tz)<=tol and
     abs(m1.tw-m2.tw)<=tol
 
-proc `=~`*(m1,m2:TMatrix3d):bool=
+proc `=~`*(m1,m2:Matrix3d):bool=
   ## Checks if `m1` and `m2` is approximately equal, using a
   ## tolerance of 1e-6.
   equals(m1,m2)
 
-proc transpose*(m:TMatrix3d):TMatrix3d {.noInit.}=
+proc transpose*(m:Matrix3d):Matrix3d {.noInit.}=
   ## Returns the transpose of `m`
   result.setElements(m.ax,m.bx,m.cx,m.tx,m.ay,m.by,m.cy,m.ty,m.az,m.bz,m.cz,m.tz,m.aw,m.bw,m.cw,m.tw)
 
-proc getXAxis*(m:TMatrix3d):TVector3d {.noInit.}=
+proc getXAxis*(m:Matrix3d):Vector3d {.noInit.}=
   ## Gets the local x axis of `m`
   result.x=m.ax
   result.y=m.ay
   result.z=m.az
 
-proc getYAxis*(m:TMatrix3d):TVector3d {.noInit.}=
+proc getYAxis*(m:Matrix3d):Vector3d {.noInit.}=
   ## Gets the local y axis of `m`
   result.x=m.bx
   result.y=m.by
   result.z=m.bz
 
-proc getZAxis*(m:TMatrix3d):TVector3d {.noInit.}=
+proc getZAxis*(m:Matrix3d):Vector3d {.noInit.}=
   ## Gets the local y axis of `m`
   result.x=m.cx
   result.y=m.cy
   result.z=m.cz
 
 
-proc `$`*(m:TMatrix3d):string=
+proc `$`*(m:Matrix3d):string=
   ## String representation of `m`
   return rtos(m.ax) & "," & rtos(m.ay) & "," & rtos(m.az) & "," & rtos(m.aw) &
     "\n" & rtos(m.bx) & "," & rtos(m.by) & "," & rtos(m.bz) & "," & rtos(m.bw) &
     "\n" & rtos(m.cx) & "," & rtos(m.cy) & "," & rtos(m.cz) & "," & rtos(m.cw) &
     "\n" & rtos(m.tx) & "," & rtos(m.ty) & "," & rtos(m.tz) & "," & rtos(m.tw)
 
-proc apply*(m:TMatrix3d, x,y,z:var float, translate=false)=
+proc apply*(m:Matrix3d, x,y,z:var float, translate=false)=
   ## Applies transformation `m` onto `x` , `y` , `z` , optionally
   ## using the translation part of the matrix.
   let
@@ -535,18 +535,18 @@ proc apply*(m:TMatrix3d, x,y,z:var float, translate=false)=
     z+=m.tz
 
 # ***************************************
-#     TVector3d implementation
+#     Vector3d implementation
 # ***************************************
-proc vector3d*(x,y,z:float):TVector3d=
+proc vector3d*(x,y,z:float):Vector3d=
   result.x=x
   result.y=y
   result.z=z
 
-proc len*(v:TVector3d):float=
+proc len*(v:Vector3d):float=
   ## Returns the length of the vector `v`.
   sqrt(v.x*v.x+v.y*v.y+v.z*v.z)
 
-proc `len=`*(v:var TVector3d,newlen:float) {.noInit.} =
+proc `len=`*(v:var Vector3d,newlen:float) {.noInit.} =
   ## Sets the length of the vector, keeping its direction.
   ## If the vector has zero length before changing it's length,
   ## an arbitrary vector of the requested length is returned.
@@ -571,12 +571,12 @@ proc `len=`*(v:var TVector3d,newlen:float) {.noInit.} =
     v.z*=fac
 
 
-proc sqrLen*(v:TVector3d):float {.inline.}=
+proc sqrLen*(v:Vector3d):float {.inline.}=
   ## Computes the squared length of the vector, which is
   ## faster than computing the absolute length.
   return v.x*v.x+v.y*v.y+v.z*v.z
 
-proc `$` *(v:TVector3d):string=
+proc `$` *(v:Vector3d):string=
   ## String representation of `v`
   result=rtos(v.x)
   result.add(",")
@@ -584,7 +584,7 @@ proc `$` *(v:TVector3d):string=
   result.add(",")
   result.add(rtos(v.z))
 
-proc `&` *(v:TVector3d,m:TMatrix3d):TVector3d {.noInit.} =
+proc `&` *(v:Vector3d,m:Matrix3d):Vector3d {.noInit.} =
   ## Concatenate vector `v` with a transformation matrix.
   ## Transforming a vector ignores the translational part
   ## of the matrix.
@@ -601,7 +601,7 @@ proc `&` *(v:TVector3d,m:TMatrix3d):TVector3d {.noInit.} =
   result.x=newx
 
 
-proc `&=` *(v:var TVector3d,m:TMatrix3d) {.noInit.} =
+proc `&=` *(v:var Vector3d,m:Matrix3d) {.noInit.} =
   ## Applies transformation `m` onto `v` in place.
   ## Transforming a vector ignores the translational part
   ## of the matrix.
@@ -618,7 +618,7 @@ proc `&=` *(v:var TVector3d,m:TMatrix3d) {.noInit.} =
   v.y=newy
   v.x=newx
 
-proc transformNorm*(v:var TVector3d,m:TMatrix3d)=
+proc transformNorm*(v:var Vector3d,m:Matrix3d)=
   ## Applies a normal direction transformation `m` onto `v` in place.
   ## The resulting vector is *not* normalized.  Transforming a vector ignores the
   ## translational part of the matrix. If the matrix is not invertible
@@ -631,7 +631,7 @@ proc transformNorm*(v:var TVector3d,m:TMatrix3d)=
   # (possibly by hardware) as well as having a consistent API with the 2d version.
   v&=transpose(inverse(m))
 
-proc transformInv*(v:var TVector3d,m:TMatrix3d)=
+proc transformInv*(v:var Vector3d,m:Matrix3d)=
   ## Applies the inverse of `m` on vector `v`. Transforming a vector ignores
   ## the translational part of the matrix.  Transforming a vector ignores the
   ## translational part of the matrix.
@@ -642,7 +642,7 @@ proc transformInv*(v:var TVector3d,m:TMatrix3d)=
   # (possibly by hardware) as well as having a consistent API with the 2d version.
   v&=m.inverse
 
-proc transformNormInv*(vec:var TVector3d,m:TMatrix3d)=
+proc transformNormInv*(vec:var Vector3d,m:Matrix3d)=
   ## Applies an inverse normal direction transformation `m` onto `v` in place.
   ## This is faster than creating an inverse
   ## matrix and transformNorm(...) it. Transforming a vector ignores the
@@ -651,7 +651,7 @@ proc transformNormInv*(vec:var TVector3d,m:TMatrix3d)=
   # see vector2d:s equivalent for a deeper look how/why this works
   vec&=m.transpose
 
-proc tryNormalize*(v:var TVector3d):bool=
+proc tryNormalize*(v:var Vector3d):bool=
   ## Modifies `v` to have a length of 1.0, keeping its angle.
   ## If `v` has zero length (and thus no angle), it is left unmodified and false is
   ## returned, otherwise true is returned.
@@ -666,13 +666,13 @@ proc tryNormalize*(v:var TVector3d):bool=
 
   return true
 
-proc normalize*(v:var TVector3d) {.inline.}=
+proc normalize*(v:var Vector3d) {.inline.}=
   ## Modifies `v` to have a length of 1.0, keeping its angle.
   ## If  `v` has zero length, an EDivByZero will be raised.
   if not tryNormalize(v):
     raise newException(DivByZeroError,"Cannot normalize zero length vector")
 
-proc rotate*(vec:var TVector3d,angle:float,axis:TVector3d)=
+proc rotate*(vec:var Vector3d,angle:float,axis:Vector3d)=
   ## Rotates `vec` in place, with `angle` radians over `axis`, which passes
   ## through origo.
 
@@ -699,19 +699,19 @@ proc rotate*(vec:var TVector3d,angle:float,axis:TVector3d)=
   vec.y=v*uxyzomc+y*cs+(w*x-u*z)*si
   vec.z=w*uxyzomc+z*cs+(u*y-v*x)*si
 
-proc scale*(v:var TVector3d,s:float)=
+proc scale*(v:var Vector3d,s:float)=
   ## Scales the vector in place with factor `s`
   v.x*=s
   v.y*=s
   v.z*=s
 
-proc stretch*(v:var TVector3d,sx,sy,sz:float)=
+proc stretch*(v:var Vector3d,sx,sy,sz:float)=
   ## Scales the vector non uniformly with factors `sx` , `sy` , `sz`
   v.x*=sx
   v.y*=sy
   v.z*=sz
 
-proc mirror*(v:var TVector3d,planeperp:TVector3d)=
+proc mirror*(v:var Vector3d,planeperp:Vector3d)=
   ## Computes the mirrored vector of `v` over the plane
   ## that has `planeperp` as normal direction.
   ## `planeperp` does not need to be normalized.
@@ -735,7 +735,7 @@ proc mirror*(v:var TVector3d,planeperp:TVector3d)=
   v.z= -2*(c*c*z+bc*y+ac*x)+z
 
 
-proc `-` *(v:TVector3d):TVector3d=
+proc `-` *(v:Vector3d):Vector3d=
   ## Negates a vector
   result.x= -v.x
   result.y= -v.y
@@ -751,12 +751,12 @@ makeBinOpAssignVector(`-=`)
 makeBinOpAssignVector(`*=`)
 makeBinOpAssignVector(`/=`)
 
-proc dot*(v1,v2:TVector3d):float {.inline.}=
+proc dot*(v1,v2:Vector3d):float {.inline.}=
   ## Computes the dot product of two vectors.
   ## Returns 0.0 if the vectors are perpendicular.
   return v1.x*v2.x+v1.y*v2.y+v1.z*v2.z
 
-proc cross*(v1,v2:TVector3d):TVector3d {.inline.}=
+proc cross*(v1,v2:Vector3d):Vector3d {.inline.}=
   ## Computes the cross product of two vectors.
   ## The result is a vector which is perpendicular
   ## to the plane of `v1` and `v2`, which means
@@ -766,16 +766,16 @@ proc cross*(v1,v2:TVector3d):TVector3d {.inline.}=
   result.y = (v1.z * v2.x) - (v2.z * v1.x)
   result.z = (v1.x * v2.y) - (v2.x * v1.y)
 
-proc equals*(v1,v2:TVector3d,tol=1.0e-6):bool=
+proc equals*(v1,v2:Vector3d,tol=1.0e-6):bool=
   ## Checks if two vectors approximately equals with a tolerance.
   return abs(v2.x-v1.x)<=tol and abs(v2.y-v1.y)<=tol and abs(v2.z-v1.z)<=tol
 
-proc `=~` *(v1,v2:TVector3d):bool=
+proc `=~` *(v1,v2:Vector3d):bool=
   ## Checks if two vectors approximately equals with a
   ## hardcoded tolerance 1e-6
   equals(v1,v2)
 
-proc angleTo*(v1,v2:TVector3d):float=
+proc angleTo*(v1,v2:Vector3d):float=
   ## Returns the smallest angle between v1 and v2,
   ## which is in range 0-PI
   var
@@ -785,13 +785,13 @@ proc angleTo*(v1,v2:TVector3d):float=
     return 0.0 # zero length vector has zero angle to any other vector
   return safeArccos(dot(nv1,nv2))
 
-proc arbitraryAxis*(norm:TVector3d):TMatrix3d {.noInit.}=
+proc arbitraryAxis*(norm:Vector3d):Matrix3d {.noInit.}=
   ## Computes the rotation matrix that would transform
   ## world z vector into `norm`. The inverse of this matrix
   ## is useful to transform a planar 3d object to 2d space.
   ## This is the same algorithm used to interpret DXF and DWG files.
   const lim=1.0/64.0
-  var ax,ay,az:TVector3d
+  var ax,ay,az:Vector3d
   if abs(norm.x)<lim and abs(norm.y)<lim:
     ax=cross(YAXIS,norm)
   else:
@@ -808,7 +808,7 @@ proc arbitraryAxis*(norm:TVector3d):TMatrix3d {.noInit.}=
     az.x,az.y,az.z,0.0,
     0.0,0.0,0.0,1.0)
 
-proc bisect*(v1,v2:TVector3d):TVector3d {.noInit.}=
+proc bisect*(v1,v2:Vector3d):Vector3d {.noInit.}=
   ## Computes the bisector between v1 and v2 as a normalized vector.
   ## If one of the input vectors has zero length, a normalized version
   ## of the other is returned. If both input vectors has zero length,
@@ -851,25 +851,25 @@ proc bisect*(v1,v2:TVector3d):TVector3d {.noInit.}=
 
 
 # ***************************************
-#     TPoint3d implementation
+#     Point3d implementation
 # ***************************************
-proc point3d*(x,y,z:float):TPoint3d=
+proc point3d*(x,y,z:float):Point3d=
   result.x=x
   result.y=y
   result.z=z
 
-proc sqrDist*(a,b:TPoint3d):float=
+proc sqrDist*(a,b:Point3d):float=
   ## Computes the squared distance between `a`and `b`
   let dx=b.x-a.x
   let dy=b.y-a.y
   let dz=b.z-a.z
   result=dx*dx+dy*dy+dz*dz
 
-proc dist*(a,b:TPoint3d):float {.inline.}=
+proc dist*(a,b:Point3d):float {.inline.}=
   ## Computes the absolute distance between `a`and `b`
   result=sqrt(sqrDist(a,b))
 
-proc `$` *(p:TPoint3d):string=
+proc `$` *(p:Point3d):string=
   ## String representation of `p`
   result=rtos(p.x)
   result.add(",")
@@ -877,14 +877,14 @@ proc `$` *(p:TPoint3d):string=
   result.add(",")
   result.add(rtos(p.z))
 
-proc `&`*(p:TPoint3d,m:TMatrix3d):TPoint3d=
+proc `&`*(p:Point3d,m:Matrix3d):Point3d=
   ## Concatenates a point `p` with a transform `m`,
   ## resulting in a new, transformed point.
   result.z=m.cz*p.z+m.bz*p.y+m.az*p.x+m.tz
   result.y=m.cy*p.z+m.by*p.y+m.ay*p.x+m.ty
   result.x=m.cx*p.z+m.bx*p.y+m.ax*p.x+m.tx
 
-proc `&=` *(p:var TPoint3d,m:TMatrix3d)=
+proc `&=` *(p:var Point3d,m:Matrix3d)=
   ## Applies transformation `m` onto `p` in place.
   let
     x=p.x
@@ -894,7 +894,7 @@ proc `&=` *(p:var TPoint3d,m:TMatrix3d)=
   p.y=m.cy*z+m.by*y+m.ay*x+m.ty
   p.z=m.cz*z+m.bz*y+m.az*x+m.tz
 
-proc transformInv*(p:var TPoint3d,m:TMatrix3d)=
+proc transformInv*(p:var Point3d,m:Matrix3d)=
   ## Applies the inverse of transformation `m` onto `p` in place.
   ## If the matrix is not invertable (determinant=0) , EDivByZero will
   ## be raised.
@@ -903,48 +903,48 @@ proc transformInv*(p:var TPoint3d,m:TMatrix3d)=
   p&=inverse(m)
 
 
-proc `+`*(p:TPoint3d,v:TVector3d):TPoint3d {.noInit,inline.} =
+proc `+`*(p:Point3d,v:Vector3d):Point3d {.noInit,inline.} =
   ## Adds a vector `v` to a point `p`, resulting
   ## in a new point.
   result.x=p.x+v.x
   result.y=p.y+v.y
   result.z=p.z+v.z
 
-proc `+=`*(p:var TPoint3d,v:TVector3d) {.noInit,inline.} =
+proc `+=`*(p:var Point3d,v:Vector3d) {.noInit,inline.} =
   ## Adds a vector `v` to a point `p` in place.
   p.x+=v.x
   p.y+=v.y
   p.z+=v.z
 
-proc `-`*(p:TPoint3d,v:TVector3d):TPoint3d {.noInit,inline.} =
+proc `-`*(p:Point3d,v:Vector3d):Point3d {.noInit,inline.} =
   ## Subtracts a vector `v` from a point `p`, resulting
   ## in a new point.
   result.x=p.x-v.x
   result.y=p.y-v.y
   result.z=p.z-v.z
 
-proc `-`*(p1,p2:TPoint3d):TVector3d {.noInit,inline.} =
+proc `-`*(p1,p2:Point3d):Vector3d {.noInit,inline.} =
   ## Subtracts `p2`from `p1` resulting in a difference vector.
   result.x=p1.x-p2.x
   result.y=p1.y-p2.y
   result.z=p1.z-p2.z
 
-proc `-=`*(p:var TPoint3d,v:TVector3d) {.noInit,inline.} =
+proc `-=`*(p:var Point3d,v:Vector3d) {.noInit,inline.} =
   ## Subtracts a vector `v` from a point `p` in place.
   p.x-=v.x
   p.y-=v.y
   p.z-=v.z
 
-proc equals(p1,p2:TPoint3d,tol=1.0e-6):bool {.inline.}=
+proc equals(p1,p2:Point3d,tol=1.0e-6):bool {.inline.}=
   ## Checks if two points approximately equals with a tolerance.
   return abs(p2.x-p1.x)<=tol and abs(p2.y-p1.y)<=tol and abs(p2.z-p1.z)<=tol
 
-proc `=~`*(p1,p2:TPoint3d):bool {.inline.}=
+proc `=~`*(p1,p2:Point3d):bool {.inline.}=
   ## Checks if two vectors approximately equals with a
   ## hardcoded tolerance 1e-6
   equals(p1,p2)
 
-proc rotate*(p:var TPoint3d,rad:float,axis:TVector3d)=
+proc rotate*(p:var Point3d,rad:float,axis:Vector3d)=
   ## Rotates point `p` in place `rad` radians about an axis
   ## passing through origo.
 
@@ -954,7 +954,7 @@ proc rotate*(p:var TPoint3d,rad:float,axis:TVector3d)=
   p.y=v.y
   p.z=v.z
 
-proc rotate*(p:var TPoint3d,angle:float,org:TPoint3d,axis:TVector3d)=
+proc rotate*(p:var Point3d,angle:float,org:Point3d,axis:Vector3d)=
   ## Rotates point `p` in place `rad` radians about an axis
   ## passing through `org`
 
@@ -992,26 +992,26 @@ proc rotate*(p:var TPoint3d,angle:float,org:TPoint3d,axis:TVector3d)=
   p.y=(b*(uu+ww)-v*(au+cw-uxmvymwz))*omc + y*cs + (c*u-a*w+w*x-u*z)*si
   p.z=(c*(uu+vv)-w*(au+bv-uxmvymwz))*omc + z*cs + (a*v+u*y-b*u-v*x)*si
 
-proc scale*(p:var TPoint3d,fac:float) {.inline.}=
+proc scale*(p:var Point3d,fac:float) {.inline.}=
   ## Scales a point in place `fac` times with world origo as origin.
   p.x*=fac
   p.y*=fac
   p.z*=fac
 
-proc scale*(p:var TPoint3d,fac:float,org:TPoint3d){.inline.}=
+proc scale*(p:var Point3d,fac:float,org:Point3d){.inline.}=
   ## Scales the point in place `fac` times with `org` as origin.
   p.x=(p.x - org.x) * fac + org.x
   p.y=(p.y - org.y) * fac + org.y
   p.z=(p.z - org.z) * fac + org.z
 
-proc stretch*(p:var TPoint3d,facx,facy,facz:float){.inline.}=
+proc stretch*(p:var Point3d,facx,facy,facz:float){.inline.}=
   ## Scales a point in place non uniformly `facx` , `facy` , `facz` times
   ## with world origo as origin.
   p.x*=facx
   p.y*=facy
   p.z*=facz
 
-proc stretch*(p:var TPoint3d,facx,facy,facz:float,org:TPoint3d){.inline.}=
+proc stretch*(p:var Point3d,facx,facy,facz:float,org:Point3d){.inline.}=
   ## Scales the point in place non uniformly `facx` , `facy` , `facz` times
   ## with `org` as origin.
   p.x=(p.x - org.x) * facx + org.x
@@ -1019,19 +1019,19 @@ proc stretch*(p:var TPoint3d,facx,facy,facz:float,org:TPoint3d){.inline.}=
   p.z=(p.z - org.z) * facz + org.z
 
 
-proc move*(p:var TPoint3d,dx,dy,dz:float){.inline.}=
+proc move*(p:var Point3d,dx,dy,dz:float){.inline.}=
   ## Translates a point `dx` , `dy` , `dz` in place.
   p.x+=dx
   p.y+=dy
   p.z+=dz
 
-proc move*(p:var TPoint3d,v:TVector3d){.inline.}=
+proc move*(p:var Point3d,v:Vector3d){.inline.}=
   ## Translates a point with vector `v` in place.
   p.x+=v.x
   p.y+=v.y
   p.z+=v.z
 
-proc area*(a,b,c:TPoint3d):float {.inline.}=
+proc area*(a,b,c:Point3d):float {.inline.}=
   ## Computes the area of the triangle thru points `a` , `b` and `c`
 
   # The area of a planar 3d quadliteral is the magnitude of the cross
diff --git a/lib/pure/collections/LockFreeHash.nim b/lib/pure/collections/LockFreeHash.nim
index 0df97c685..1758c5b1a 100644
--- a/lib/pure/collections/LockFreeHash.nim
+++ b/lib/pure/collections/LockFreeHash.nim
@@ -46,24 +46,25 @@ const
 
 when sizeof(int) == 4: # 32bit
   type 
-    TRaw = range[0..1073741823]
+    Raw = range[0..1073741823]
     ## The range of uint values that can be stored directly in a value slot
     ## when on a 32 bit platform
-
+  {.deprecated: [TRaw: Raw].}
 elif sizeof(int) == 8: # 64bit
   type
-    TRaw = range[0..4611686018427387903]
+    Raw = range[0..4611686018427387903]
     ## The range of uint values that can be stored directly in a value slot
     ## when on a 64 bit platform
+  {.deprecated: [TRaw: Raw].}
 else: 
   {.error: "unsupported platform".}
   
 type  
-  TEntry = tuple
+  Entry = tuple
     key: int
     value: int
 
-  TEntryArr = ptr array[0..10_000_000, TEntry]
+  EntryArr = ptr array[0..10_000_000, Entry]
   
   PConcTable[K,V] = ptr object {.pure.}
     len: int
@@ -72,8 +73,8 @@ type
     copyIdx: int
     copyDone: int
     next: PConcTable[K,V]    
-    data: TEntryArr
-
+    data: EntryArr
+{.deprecated: [TEntry: Entry, TEntryArr: EntryArr.}
 
 proc setVal[K,V](table: var PConcTable[K,V], key: int, val: int,
   expVal: int, match: bool): int 
@@ -84,7 +85,7 @@ proc setVal[K,V](table: var PConcTable[K,V], key: int, val: int,
 proc newLFTable*[K,V](size: int = minTableSize): PConcTable[K,V]  =
   let 
     dataLen = max(nextPowerOfTwo(size), minTableSize)   
-    dataSize = dataLen*sizeof(TEntry) 
+    dataSize = dataLen*sizeof(Entry) 
     dataMem = allocShared0(dataSize) 
     tableSize = 7 * intSize
     tableMem = allocShared0(tableSize)
@@ -95,7 +96,7 @@ proc newLFTable*[K,V](size: int = minTableSize): PConcTable[K,V]  =
   table.copyIdx = 0
   table.copyDone = 0
   table.next = nil
-  table.data = cast[TEntryArr](dataMem)
+  table.data = cast[EntryArr](dataMem)
   result = table
 
 #------------------------------------------------------------------------------  
@@ -107,7 +108,7 @@ proc deleteConcTable[K,V](tbl: PConcTable[K,V]) =
 
 #------------------------------------------------------------------------------  
 
-proc `[]`[K,V](table: var PConcTable[K,V], i: int): var TEntry {.inline.} =
+proc `[]`[K,V](table: var PConcTable[K,V], i: int): var Entry {.inline.} =
   table.data[i]
 
 #------------------------------------------------------------------------------
@@ -191,7 +192,7 @@ proc resize[K,V](self: PConcTable[K,V]): PConcTable[K,V] =
 #proc keyEQ[K](key1: ptr K, key2: ptr K): bool {.inline.} = 
 proc keyEQ[K](key1: int, key2: int): bool {.inline.} = 
   result = false
-  when K is TRaw:
+  when K is Raw:
     if key1 == key2: 
       result = true
   else:
@@ -236,7 +237,7 @@ proc copySlot[K,V](idx: int, oldTbl: var PConcTable[K,V], newTbl: var PConcTable
       break
   #echo("oldVal was = ", oldVal, "  set it to prime ", box)
   if isPrime(oldVal) and isTomb(oldVal): 
-    #when not (K is TRaw):
+    #when not (K is Raw):
     #  deallocShared(popPtr[K](oldKey)) 
     return false
   if isTomb(oldVal): 
@@ -343,7 +344,7 @@ proc helpCopy[K,V](table: var PConcTable[K,V]): PConcTable[K,V] =
 proc setVal[K,V](table: var PConcTable[K,V], key: int, val: int,
   expVal: int, match: bool): int =
   #echo("-try set- in table ", " key = ", (popPtr[K](key)[]), " val = ", val)   
-  when K is TRaw: 
+  when K is Raw: 
     var idx = hashInt(key)    
   else:
     var idx = popPtr[K](key)[].hash                
@@ -428,7 +429,7 @@ proc setVal[K,V](table: var PConcTable[K,V], key: int, val: int,
 
 proc getVal[K,V](table: var PConcTable[K,V], key: int): int = 
   #echo("-try get-  key = " & $key)
-  when K is TRaw: 
+  when K is Raw: 
     var idx = hashInt(key)
   else:
     var idx = popPtr[K](key)[].hash 
@@ -468,37 +469,37 @@ proc getVal[K,V](table: var PConcTable[K,V], key: int): int =
 
 #------------------------------------------------------------------------------
    
-#proc set*(table: var PConcTable[TRaw,TRaw], key: TRaw, val: TRaw) =
+#proc set*(table: var PConcTable[Raw,Raw], key: Raw, val: Raw) =
 #  discard setVal(table, pack(key), pack(key), 0, false)
 
-#proc set*[V](table: var PConcTable[TRaw,V], key: TRaw, val: ptr V) =
+#proc set*[V](table: var PConcTable[Raw,V], key: Raw, val: ptr V) =
 #  discard setVal(table, pack(key), cast[int](val), 0, false)
 
 proc set*[K,V](table: var PConcTable[K,V], key: var K, val: var V) =
-  when not (K is TRaw): 
+  when not (K is Raw): 
     var newKey = cast[int](copyShared(key))
   else: 
     var newKey = pack(key)
-  when not (V is TRaw): 
+  when not (V is Raw): 
     var newVal = cast[int](copyShared(val))
   else: 
     var newVal = pack(val)
   var oldPtr = pop(setVal(table, newKey, newVal, 0, false))
     #echo("oldPtr = ", cast[int](oldPtr), " newPtr = ", cast[int](newPtr))
-  when not (V is TRaw): 
+  when not (V is Raw): 
     if newVal != oldPtr and oldPtr != 0: 
       deallocShared(cast[ptr V](oldPtr))
   
  
 
 proc get*[K,V](table: var PConcTable[K,V], key: var K): V =
-  when not (V is TRaw):
-    when not (K is TRaw):
+  when not (V is Raw):
+    when not (K is Raw):
       return popPtr[V](getVal(table, cast[int](key.addr)))[]
     else: 
       return popPtr[V](getVal(table, pack(key)))[]
   else:
-    when not (K is TRaw):
+    when not (K is Raw):
       return popRaw(getVal(table, cast[int](key.addr)))
     else: 
       return popRaw(getVal(table, pack(key)))   
@@ -535,23 +536,24 @@ when not defined(testing) and isMainModule:
 
     
   type
-    TTestObj = tuple
+    TestObj = tuple
       thr: int      
       f0: int
       f1: int
 
-    TData = tuple[k: string,v: TTestObj]
-    PDataArr = array[0..numTests-1, TData]
-    Dict = PConcTable[string,TTestObj]
+    Data = tuple[k: string,v: TestObj]
+    PDataArr = array[0..numTests-1, Data]
+    Dict = PConcTable[string,TestObj]
+  {.deprecated: [TTestObj: TestObj, TData: Data].}
     
   var 
-    thr: array[0..numThreads-1, TThread[Dict]]
+    thr: array[0..numThreads-1, Thread[Dict]]
     
-    table = newLFTable[string,TTestObj](8)        
+    table = newLFTable[string,TestObj](8)        
     rand = newMersenneTwister(2525)
 
   proc createSampleData(len: int): PDataArr = 
-    #result = cast[PDataArr](allocShared0(sizeof(TData)*numTests))             
+    #result = cast[PDataArr](allocShared0(sizeof(Data)*numTests))             
     for i in 0..len-1:
       result[i].k = "mark" & $(i+1)
       #echo("mark" & $(i+1), " ", hash("mark" & $(i+1)))      
diff --git a/lib/pure/collections/intsets.nim b/lib/pure/collections/intsets.nim
index 25f6616a6..38bc9d462 100644
--- a/lib/pure/collections/intsets.nim
+++ b/lib/pure/collections/intsets.nim
@@ -30,25 +30,25 @@ const
   IntMask = 1 shl IntShift - 1
 
 type
-  PTrunk = ref TTrunk
-  TTrunk {.final.} = object
+  PTrunk = ref Trunk
+  Trunk {.final.} = object
     next: PTrunk             # all nodes are connected with this pointer
     key: int                 # start address at bit 0
     bits: array[0..IntsPerTrunk - 1, BitScalar] # a bit vector
 
-  TTrunkSeq = seq[PTrunk]
+  TrunkSeq = seq[PTrunk]
   IntSet* = object ## an efficient set of 'int' implemented as a sparse bit set
     counter, max: int
     head: PTrunk
-    data: TTrunkSeq
+    data: TrunkSeq
 
-{.deprecated: [TIntSet: IntSet].}
+{.deprecated: [TIntSet: IntSet, TTrunk: Trunk, TTrunkSeq: TrunkSeq].}
 
 proc mustRehash(length, counter: int): bool {.inline.} =
   assert(length > counter)
   result = (length * 2 < counter * 3) or (length - counter < 4)
 
-proc nextTry(h, maxHash: THash): THash {.inline.} =
+proc nextTry(h, maxHash: Hash): Hash {.inline.} =
   result = ((5 * h) + 1) and maxHash
 
 proc intSetGet(t: IntSet, key: int): PTrunk =
@@ -59,7 +59,7 @@ proc intSetGet(t: IntSet, key: int): PTrunk =
     h = nextTry(h, t.max)
   result = nil
 
-proc intSetRawInsert(t: IntSet, data: var TTrunkSeq, desc: PTrunk) =
+proc intSetRawInsert(t: IntSet, data: var TrunkSeq, desc: PTrunk) =
   var h = desc.key and t.max
   while data[h] != nil:
     assert(data[h] != desc)
@@ -68,7 +68,7 @@ proc intSetRawInsert(t: IntSet, data: var TTrunkSeq, desc: PTrunk) =
   data[h] = desc
 
 proc intSetEnlarge(t: var IntSet) =
-  var n: TTrunkSeq
+  var n: TrunkSeq
   var oldMax = t.max
   t.max = ((t.max + 1) * 2) - 1
   newSeq(n, t.max + 1)
diff --git a/lib/pure/collections/sets.nim b/lib/pure/collections/sets.nim
index 280e0eeba..3d4de8fdc 100644
--- a/lib/pure/collections/sets.nim
+++ b/lib/pure/collections/sets.nim
@@ -29,7 +29,7 @@ when not defined(nimhygiene):
 # codes should never be needed, and this can pack more entries per cache-line.
 # Losing hcode entirely is also possible - if some element value is forbidden.
 type
-  KeyValuePair[A] = tuple[hcode: THash, key: A]
+  KeyValuePair[A] = tuple[hcode: Hash, key: A]
   KeyValuePairSeq[A] = seq[KeyValuePair[A]]
   HashSet* {.myShallow.}[A] = object ## \
     ## A generic hash set.
@@ -43,10 +43,10 @@ type
 
 # hcode for real keys cannot be zero.  hcode==0 signifies an empty slot.  These
 # two procs retain clarity of that encoding without the space cost of an enum.
-proc isEmpty(hcode: THash): bool {.inline.} =
+proc isEmpty(hcode: Hash): bool {.inline.} =
   result = hcode == 0
 
-proc isFilled(hcode: THash): bool {.inline.} =
+proc isFilled(hcode: Hash): bool {.inline.} =
   result = hcode != 0
 
 proc isValid*[A](s: HashSet[A]): bool =
@@ -58,7 +58,7 @@ proc isValid*[A](s: HashSet[A]): bool =
   ## initialized. Example:
   ##
   ## .. code-block ::
-  ##   proc savePreferences(options: TSet[string]) =
+  ##   proc savePreferences(options: Set[string]) =
   ##     assert options.isValid, "Pass an initialized set!"
   ##     # Do stuff here, may crash in release builds!
   result = not s.data.isNil
@@ -72,7 +72,7 @@ proc len*[A](s: HashSet[A]): int =
   ##
   ## .. code-block::
   ##
-  ##   var values: TSet[int]
+  ##   var values: Set[int]
   ##   assert(not values.isValid)
   ##   assert values.len == 0
   result = s.counter
@@ -123,15 +123,15 @@ proc rightSize*(count: Natural): int {.inline.} =
   ## Internally, we want mustRehash(rightSize(x), x) == false.
   result = nextPowerOfTwo(count * 3 div 2  +  4)
 
-proc nextTry(h, maxHash: THash): THash {.inline.} =
+proc nextTry(h, maxHash: Hash): Hash {.inline.} =
   result = (h + 1) and maxHash
 
 template rawGetKnownHCImpl() {.dirty.} =
-  var h: THash = hc and high(s.data)  # start with real hash value
+  var h: Hash = hc and high(s.data)  # start with real hash value
   while isFilled(s.data[h].hcode):
     # Compare hc THEN key with boolean short circuit. This makes the common case
     # zero ==key's for missing (e.g.inserts) and exactly one ==key for present.
-    # It does slow down succeeding lookups by one extra THash cmp&and..usually
+    # It does slow down succeeding lookups by one extra Hash cmp&and..usually
     # just a few clock cycles, generally worth it for any non-integer-like A.
     if s.data[h].hcode == hc and s.data[h].key == key:  # compare hc THEN key
       return h
@@ -148,10 +148,10 @@ template rawInsertImpl() {.dirty.} =
   data[h].key = key
   data[h].hcode = hc
 
-proc rawGetKnownHC[A](s: HashSet[A], key: A, hc: THash): int {.inline.} =
+proc rawGetKnownHC[A](s: HashSet[A], key: A, hc: Hash): int {.inline.} =
   rawGetKnownHCImpl()
 
-proc rawGet[A](s: HashSet[A], key: A, hc: var THash): int {.inline.} =
+proc rawGet[A](s: HashSet[A], key: A, hc: var Hash): int {.inline.} =
   rawGetImpl()
 
 proc mget*[A](s: var HashSet[A], key: A): var A =
@@ -160,7 +160,7 @@ proc mget*[A](s: var HashSet[A], key: A): var A =
   ## when one overloaded 'hash' and '==' but still needs reference semantics
   ## for sharing.
   assert s.isValid, "The set needs to be initialized."
-  var hc: THash
+  var hc: Hash
   var index = rawGet(s, key, hc)
   if index >= 0: result = s.data[index].key
   else: raise newException(KeyError, "key not found: " & $key)
@@ -178,12 +178,12 @@ proc contains*[A](s: HashSet[A], key: A): bool =
   ##   values.excl(2)
   ##   assert(not values.contains(2))
   assert s.isValid, "The set needs to be initialized."
-  var hc: THash
+  var hc: Hash
   var index = rawGet(s, key, hc)
   result = index >= 0
 
 proc rawInsert[A](s: var HashSet[A], data: var KeyValuePairSeq[A], key: A,
-                  hc: THash, h: THash) =
+                  hc: Hash, h: Hash) =
   rawInsertImpl()
 
 proc enlarge[A](s: var HashSet[A]) =
@@ -196,7 +196,7 @@ proc enlarge[A](s: var HashSet[A]) =
       rawInsert(s, s.data, n[i].key, n[i].hcode, j)
 
 template inclImpl() {.dirty.} =
-  var hc: THash
+  var hc: Hash
   var index = rawGet(s, key, hc)
   if index < 0:
     if mustRehash(len(s.data), s.counter):
@@ -206,7 +206,7 @@ template inclImpl() {.dirty.} =
     inc(s.counter)
 
 template containsOrInclImpl() {.dirty.} =
-  var hc: THash
+  var hc: Hash
   var index = rawGet(s, key, hc)
   if index >= 0:
     result = true
@@ -261,7 +261,7 @@ proc excl*[A](s: var HashSet[A], key: A) =
   ##   s.excl(2)
   ##   assert s.len == 3
   assert s.isValid, "The set needs to be initialized."
-  var hc: THash
+  var hc: Hash
   var i = rawGet(s, key, hc)
   var msk = high(s.data)
   if i >= 0:
@@ -323,7 +323,7 @@ proc init*[A](s: var HashSet[A], initialSize=64) =
   ## existing values and calling `excl() <#excl,TSet[A],A>`_ on them. Example:
   ##
   ## .. code-block ::
-  ##   var a: TSet[int]
+  ##   var a: Set[int]
   ##   a.init(4)
   ##   a.incl(2)
   ##   a.init
@@ -552,7 +552,7 @@ proc map*[A, B](data: HashSet[A], op: proc (x: A): B {.closure.}): HashSet[B] =
 
 type
   OrderedKeyValuePair[A] = tuple[
-    hcode: THash, next: int, key: A]
+    hcode: Hash, next: int, key: A]
   OrderedKeyValuePairSeq[A] = seq[OrderedKeyValuePair[A]]
   OrderedSet* {.myShallow.}[A] = object ## \
     ## A generic hash set that remembers insertion order.
@@ -574,7 +574,7 @@ proc isValid*[A](s: OrderedSet[A]): bool =
   ## correctly initialized. Example:
   ##
   ## .. code-block::
-  ##   proc saveTarotCards(cards: TOrderedSet[int]) =
+  ##   proc saveTarotCards(cards: OrderedSet[int]) =
   ##     assert cards.isValid, "Pass an initialized set!"
   ##     # Do stuff here, may crash in release builds!
   result = not s.data.isNil
@@ -588,7 +588,7 @@ proc len*[A](s: OrderedSet[A]): int {.inline.} =
   ##
   ## .. code-block::
   ##
-  ##   var values: TOrderedSet[int]
+  ##   var values: OrderedSet[int]
   ##   assert(not values.isValid)
   ##   assert values.len == 0
   result = s.counter
@@ -629,10 +629,10 @@ iterator items*[A](s: OrderedSet[A]): A =
   forAllOrderedPairs:
     yield s.data[h].key
 
-proc rawGetKnownHC[A](s: OrderedSet[A], key: A, hc: THash): int {.inline.} =
+proc rawGetKnownHC[A](s: OrderedSet[A], key: A, hc: Hash): int {.inline.} =
   rawGetKnownHCImpl()
 
-proc rawGet[A](s: OrderedSet[A], key: A, hc: var THash): int {.inline.} =
+proc rawGet[A](s: OrderedSet[A], key: A, hc: var Hash): int {.inline.} =
   rawGetImpl()
 
 proc contains*[A](s: OrderedSet[A], key: A): bool =
@@ -646,12 +646,12 @@ proc contains*[A](s: OrderedSet[A], key: A): bool =
   ##   values.incl(2)
   ##   assert values.contains(2)
   assert s.isValid, "The set needs to be initialized."
-  var hc: THash
+  var hc: Hash
   var index = rawGet(s, key, hc)
   result = index >= 0
 
 proc rawInsert[A](s: var OrderedSet[A], data: var OrderedKeyValuePairSeq[A],
-                  key: A, hc: THash, h: THash) =
+                  key: A, hc: Hash, h: Hash) =
   rawInsertImpl()
   data[h].next = -1
   if s.first < 0: s.first = h
@@ -729,7 +729,7 @@ proc init*[A](s: var OrderedSet[A], initialSize=64) =
   ## from an ordered hash set. Example:
   ##
   ## .. code-block ::
-  ##   var a: TOrderedSet[int]
+  ##   var a: OrderedSet[int]
   ##   a.init(4)
   ##   a.incl(2)
   ##   a.init
diff --git a/lib/pure/collections/tables.nim b/lib/pure/collections/tables.nim
index 9496fa2fe..c44adfc82 100644
--- a/lib/pure/collections/tables.nim
+++ b/lib/pure/collections/tables.nim
@@ -24,13 +24,13 @@
 ##
 ##   Error: type mismatch: got (Person)
 ##   but expected one of:
-##   hashes.hash(x: openarray[A]): THash
-##   hashes.hash(x: int): THash
-##   hashes.hash(x: float): THash
+##   hashes.hash(x: openarray[A]): Hash
+##   hashes.hash(x: int): Hash
+##   hashes.hash(x: float): Hash
 ##   …
 ##
 ## What is happening here is that the types used for table keys require to have
-## a ``hash()`` proc which will convert them to a `THash <hashes.html#THash>`_
+## a ``hash()`` proc which will convert them to a `Hash <hashes.html#Hash>`_
 ## value, and the compiler is listing all the hash functions it knows.
 ## Additionally there has to be a ``==`` operator that provides the same
 ## semantics as its corresponding ``hash`` proc.
@@ -46,7 +46,7 @@
 ##     Person = object
 ##       firstName, lastName: string
 ##
-##   proc hash(x: Person): THash =
+##   proc hash(x: Person): Hash =
 ##     ## Piggyback on the already available string hash proc.
 ##     ##
 ##     ## Without this proc nothing works!
@@ -71,7 +71,7 @@ import
 {.pragma: myShallow.}
 
 type
-  KeyValuePair[A, B] = tuple[hcode: THash, key: A, val: B]
+  KeyValuePair[A, B] = tuple[hcode: Hash, key: A, val: B]
   KeyValuePairSeq[A, B] = seq[KeyValuePair[A, B]]
   Table* {.myShallow.}[A, B] = object ## generic hash table
     data: KeyValuePairSeq[A, B]
@@ -85,10 +85,10 @@ when not defined(nimhygiene):
 
 # hcode for real keys cannot be zero.  hcode==0 signifies an empty slot.  These
 # two procs retain clarity of that encoding without the space cost of an enum.
-proc isEmpty(hcode: THash): bool {.inline.} =
+proc isEmpty(hcode: Hash): bool {.inline.} =
   result = hcode == 0
 
-proc isFilled(hcode: THash): bool {.inline.} =
+proc isFilled(hcode: Hash): bool {.inline.} =
   result = hcode != 0
 
 proc len*[A, B](t: Table[A, B]): int =
@@ -137,15 +137,15 @@ proc rightSize*(count: Natural): int {.inline.} =
   ## Internally, we want mustRehash(rightSize(x), x) == false.
   result = nextPowerOfTwo(count * 3 div 2  +  4)
 
-proc nextTry(h, maxHash: THash): THash {.inline.} =
+proc nextTry(h, maxHash: Hash): Hash {.inline.} =
   result = (h + 1) and maxHash
 
 template rawGetKnownHCImpl() {.dirty.} =
-  var h: THash = hc and high(t.data)   # start with real hash value
+  var h: Hash = hc and high(t.data)   # start with real hash value
   while isFilled(t.data[h].hcode):
     # Compare hc THEN key with boolean short circuit. This makes the common case
     # zero ==key's for missing (e.g.inserts) and exactly one ==key for present.
-    # It does slow down succeeding lookups by one extra THash cmp&and..usually
+    # It does slow down succeeding lookups by one extra Hash cmp&and..usually
     # just a few clock cycles, generally worth it for any non-integer-like A.
     if t.data[h].hcode == hc and t.data[h].key == key:
       return h
@@ -162,7 +162,7 @@ template rawGetDeepImpl() {.dirty.} =   # Search algo for unconditional add
   hc = hash(key)
   if hc == 0:
     hc = 314159265
-  var h: THash = hc and high(t.data)
+  var h: Hash = hc and high(t.data)
   while isFilled(t.data[h].hcode):
     h = nextTry(h, high(t.data))
   result = h
@@ -172,13 +172,13 @@ template rawInsertImpl() {.dirty.} =
   data[h].val = val
   data[h].hcode = hc
 
-proc rawGetKnownHC[A, B](t: Table[A, B], key: A, hc: THash): int {.inline.} =
+proc rawGetKnownHC[A, B](t: Table[A, B], key: A, hc: Hash): int {.inline.} =
   rawGetKnownHCImpl()
 
-proc rawGetDeep[A, B](t: Table[A, B], key: A, hc: var THash): int {.inline.} =
+proc rawGetDeep[A, B](t: Table[A, B], key: A, hc: var Hash): int {.inline.} =
   rawGetDeepImpl()
 
-proc rawGet[A, B](t: Table[A, B], key: A, hc: var THash): int {.inline.} =
+proc rawGet[A, B](t: Table[A, B], key: A, hc: var Hash): int {.inline.} =
   rawGetImpl()
 
 proc `[]`*[A, B](t: Table[A, B], key: A): B =
@@ -186,14 +186,14 @@ proc `[]`*[A, B](t: Table[A, B], key: A): B =
   ## default empty value for the type `B` is returned
   ## and no exception is raised. One can check with ``hasKey`` whether the key
   ## exists.
-  var hc: THash
+  var hc: Hash
   var index = rawGet(t, key, hc)
   if index >= 0: result = t.data[index].val
 
 proc mget*[A, B](t: var Table[A, B], key: A): var B =
   ## retrieves the value at ``t[key]``. The value can be modified.
   ## If `key` is not in `t`, the ``KeyError`` exception is raised.
-  var hc: THash
+  var hc: Hash
   var index = rawGet(t, key, hc)
   if index >= 0: result = t.data[index].val
   else:
@@ -204,7 +204,7 @@ proc mget*[A, B](t: var Table[A, B], key: A): var B =
 
 iterator allValues*[A, B](t: Table[A, B]; key: A): B =
   ## iterates over any value in the table `t` that belongs to the given `key`.
-  var h: THash = hash(key) and high(t.data)
+  var h: Hash = hash(key) and high(t.data)
   while isFilled(t.data[h].hcode):
     if t.data[h].key == key:
       yield t.data[h].val
@@ -212,7 +212,7 @@ iterator allValues*[A, B](t: Table[A, B]; key: A): B =
 
 proc hasKey*[A, B](t: Table[A, B], key: A): bool =
   ## returns true iff `key` is in the table `t`.
-  var hc: THash
+  var hc: Hash
   result = rawGet(t, key, hc) >= 0
 
 proc contains*[A, B](t: Table[A, B], key: A): bool =
@@ -220,7 +220,7 @@ proc contains*[A, B](t: Table[A, B], key: A): bool =
   return hasKey[A, B](t, key)
 
 proc rawInsert[A, B](t: var Table[A, B], data: var KeyValuePairSeq[A, B],
-                     key: A, val: B, hc: THash, h: THash) =
+                     key: A, val: B, hc: Hash, h: Hash) =
   rawInsertImpl()
 
 proc enlarge[A, B](t: var Table[A, B]) =
@@ -234,7 +234,7 @@ proc enlarge[A, B](t: var Table[A, B]) =
 
 template addImpl() {.dirty.} =
   if mustRehash(len(t.data), t.counter): enlarge(t)
-  var hc: THash
+  var hc: Hash
   var j = rawGetDeep(t, key, hc)
   rawInsert(t, t.data, key, val, hc, j)
   inc(t.counter)
@@ -248,19 +248,19 @@ template maybeRehashPutImpl() {.dirty.} =
   inc(t.counter)
 
 template putImpl() {.dirty.} =
-  var hc: THash
+  var hc: Hash
   var index = rawGet(t, key, hc)
   if index >= 0: t.data[index].val = val
   else: maybeRehashPutImpl()
 
 template mgetOrPutImpl() {.dirty.} =
-  var hc: THash
+  var hc: Hash
   var index = rawGet(t, key, hc)
   if index < 0: maybeRehashPutImpl()    # not present: insert (flipping index)
   result = t.data[index].val            # either way return modifiable val
 
 template hasKeyOrPutImpl() {.dirty.} =
-  var hc: THash
+  var hc: Hash
   var index = rawGet(t, key, hc)
   if index < 0:
     result = false
@@ -291,7 +291,7 @@ template doWhile(a: expr, b: stmt): stmt =
 
 proc del*[A, B](t: var Table[A, B], key: A) =
   ## deletes `key` from hash table `t`.
-  var hc: THash
+  var hc: Hash
   var i = rawGet(t, key, hc)
   let msk = high(t.data)
   if i >= 0:
@@ -460,7 +460,7 @@ proc newTableFrom*[A, B, C](collection: A, index: proc(x: B): C): TableRef[C, B]
 
 type
   OrderedKeyValuePair[A, B] = tuple[
-    hcode: THash, next: int, key: A, val: B]
+    hcode: Hash, next: int, key: A, val: B]
   OrderedKeyValuePairSeq[A, B] = seq[OrderedKeyValuePair[A, B]]
   OrderedTable* {.
       myShallow.}[A, B] = object ## table that remembers insertion order
@@ -509,13 +509,13 @@ iterator mvalues*[A, B](t: var OrderedTable[A, B]): var B =
   forAllOrderedPairs:
     yield t.data[h].val
 
-proc rawGetKnownHC[A, B](t: OrderedTable[A, B], key: A, hc: THash): int =
+proc rawGetKnownHC[A, B](t: OrderedTable[A, B], key: A, hc: Hash): int =
   rawGetKnownHCImpl()
 
-proc rawGetDeep[A, B](t: OrderedTable[A, B], key: A, hc: var THash): int {.inline.} =
+proc rawGetDeep[A, B](t: OrderedTable[A, B], key: A, hc: var Hash): int {.inline.} =
   rawGetDeepImpl()
 
-proc rawGet[A, B](t: OrderedTable[A, B], key: A, hc: var THash): int =
+proc rawGet[A, B](t: OrderedTable[A, B], key: A, hc: var Hash): int =
   rawGetImpl()
 
 proc `[]`*[A, B](t: OrderedTable[A, B], key: A): B =
@@ -523,21 +523,21 @@ proc `[]`*[A, B](t: OrderedTable[A, B], key: A): B =
   ## default empty value for the type `B` is returned
   ## and no exception is raised. One can check with ``hasKey`` whether the key
   ## exists.
-  var hc: THash
+  var hc: Hash
   var index = rawGet(t, key, hc)
   if index >= 0: result = t.data[index].val
 
 proc mget*[A, B](t: var OrderedTable[A, B], key: A): var B =
   ## retrieves the value at ``t[key]``. The value can be modified.
   ## If `key` is not in `t`, the ``EInvalidKey`` exception is raised.
-  var hc: THash
+  var hc: Hash
   var index = rawGet(t, key, hc)
   if index >= 0: result = t.data[index].val
   else: raise newException(KeyError, "key not found: " & $key)
 
 proc hasKey*[A, B](t: OrderedTable[A, B], key: A): bool =
   ## returns true iff `key` is in the table `t`.
-  var hc: THash
+  var hc: Hash
   result = rawGet(t, key, hc) >= 0
 
 proc contains*[A, B](t: OrderedTable[A, B], key: A): bool =
@@ -546,7 +546,7 @@ proc contains*[A, B](t: OrderedTable[A, B], key: A): bool =
 
 proc rawInsert[A, B](t: var OrderedTable[A, B],
                      data: var OrderedKeyValuePairSeq[A, B],
-                     key: A, val: B, hc: THash, h: THash) =
+                     key: A, val: B, hc: Hash, h: Hash) =
   rawInsertImpl()
   data[h].next = -1
   if t.first < 0: t.first = h
@@ -796,7 +796,7 @@ iterator mvalues*[A](t: CountTable[A]): var int =
     if t.data[h].val != 0: yield t.data[h].val
 
 proc rawGet[A](t: CountTable[A], key: A): int =
-  var h: THash = hash(key) and high(t.data) # start with real hash value
+  var h: Hash = hash(key) and high(t.data) # start with real hash value
   while t.data[h].val != 0:
     if t.data[h].key == key: return h
     h = nextTry(h, high(t.data))
@@ -826,7 +826,7 @@ proc contains*[A](t: CountTable[A], key: A): bool =
 
 proc rawInsert[A](t: CountTable[A], data: var seq[tuple[key: A, val: int]],
                   key: A, val: int) =
-  var h: THash = hash(key) and high(data)
+  var h: Hash = hash(key) and high(data)
   while data[h].val != 0: h = nextTry(h, high(data))
   data[h].key = key
   data[h].val = val
@@ -1032,7 +1032,7 @@ when isMainModule:
     Person = object
       firstName, lastName: string
 
-  proc hash(x: Person): THash =
+  proc hash(x: Person): Hash =
     ## Piggyback on the already available string hash proc.
     ##
     ## Without this proc nothing works!
diff --git a/lib/pure/concurrency/cpuload.nim b/lib/pure/concurrency/cpuload.nim
index 7ce5e01b7..1f3f54056 100644
--- a/lib/pure/concurrency/cpuload.nim
+++ b/lib/pure/concurrency/cpuload.nim
@@ -34,7 +34,7 @@ proc advice*(s: var ThreadPoolState): ThreadPoolAdvice =
       sysIdle, sysKernel, sysUser,
         procCreation, procExit, procKernel, procUser: TFILETIME
     if getSystemTimes(sysIdle, sysKernel, sysUser) == 0 or
-        getProcessTimes(THandle(-1), procCreation, procExit, 
+        getProcessTimes(Handle(-1), procCreation, procExit, 
                         procKernel, procUser) == 0:
       return doNothing
     if s.calls > 0:
diff --git a/lib/pure/concurrency/threadpool.nim b/lib/pure/concurrency/threadpool.nim
index 7080e16eb..749a2fa2d 100644
--- a/lib/pure/concurrency/threadpool.nim
+++ b/lib/pure/concurrency/threadpool.nim
@@ -18,8 +18,8 @@ import cpuinfo, cpuload, locks
 
 type
   Semaphore = object
-    c: TCond
-    L: TLock
+    c: Cond
+    L: Lock
     counter: int
 
 proc createSemaphore(): Semaphore =
@@ -113,7 +113,7 @@ type
 
   ToFreeQueue = object
     len: int
-    lock: TLock
+    lock: Lock
     empty: Semaphore
     data: array[128, pointer]
 
@@ -355,7 +355,7 @@ proc parallel*(body: stmt) {.magic: "Parallel".}
 
 var
   state: ThreadPoolState
-  stateLock: TLock
+  stateLock: Lock
 
 initLock stateLock