summary refs log tree commit diff stats
diff options
context:
space:
mode:
-rw-r--r--lib/pure/algorithm.nim161
1 files changed, 103 insertions, 58 deletions
diff --git a/lib/pure/algorithm.nim b/lib/pure/algorithm.nim
index 366a85ab5..7f3d5e936 100644
--- a/lib/pure/algorithm.nim
+++ b/lib/pure/algorithm.nim
@@ -10,14 +10,17 @@
 ## This module implements some common generic algorithms.
 
 type
-  SortOrder* = enum   ## sort order
+  SortOrder* = enum
     Descending, Ascending
 
 proc `*`*(x: int, order: SortOrder): int {.inline.} =
-  ## flips `x` if ``order == Descending``;
-  ## if ``order == Ascending`` then `x` is returned.
-  ## `x` is supposed to be the result of a comparator, ie ``< 0`` for
-  ## *less than*, ``== 0`` for *equal*, ``> 0`` for *greater than*.
+  ## flips ``x`` if ``order == Descending``.
+  ## If ``order == Ascending`` then ``x`` is returned.
+  ##
+  ## ``x`` is supposed to be the result of a comparator, i.e.
+  ## | ``< 0`` for *less than*,
+  ## | ``== 0`` for *equal*,
+  ## | ``> 0`` for *greater than*.
   var y = order.ord - 1
   result = (x xor y) - y
 
@@ -28,16 +31,28 @@ template fillImpl[T](a: var openArray[T], first, last: int, value: T) =
     inc(x)
 
 proc fill*[T](a: var openArray[T], first, last: Natural, value: T) =
-  ## fills the array ``a[first..last]`` with `value`.
+  ## fills the slice ``a[first..last]`` with ``value``.
+  runnableExamples:
+      var a: array[6, int]
+      a.fill(1, 3, 9)
+      doAssert a == [0, 9, 9, 9, 0, 0]
   fillImpl(a, first, last, value)
 
 proc fill*[T](a: var openArray[T], value: T) =
-  ## fills the array `a` with `value`.
+  ## fills the container ``a`` with ``value``.
+  runnableExamples:
+      var a: array[6, int]
+      a.fill(9)
+      doAssert a == [9, 9, 9, 9, 9, 9]
   fillImpl(a, 0, a.high, value)
 
 
 proc reverse*[T](a: var openArray[T], first, last: Natural) =
-  ## reverses the array ``a[first..last]``.
+  ## reverses the slice ``a[first..last]``.
+  runnableExamples:
+      var a = [1, 2, 3, 4, 5, 6]
+      a.reverse(1, 3)
+      doAssert a == [1, 4, 3, 2, 5, 6]
   var x = first
   var y = last
   while x < y:
@@ -46,11 +61,20 @@ proc reverse*[T](a: var openArray[T], first, last: Natural) =
     inc(x)
 
 proc reverse*[T](a: var openArray[T]) =
-  ## reverses the array `a`.
+  ## reverses the contents of the container ``a``.
+  runnableExamples:
+      var a = [1, 2, 3, 4, 5, 6]
+      a.reverse()
+      doAssert  a == [6, 5, 4, 3, 2, 1]
   reverse(a, 0, max(0, a.high))
 
 proc reversed*[T](a: openArray[T], first: Natural, last: int): seq[T] =
-  ## returns the reverse of the array `a[first..last]`.
+  ## returns the reverse of the slice ``a[first..last]``.
+  runnableExamples:
+      let
+        a = [1, 2, 3, 4, 5, 6]
+        b = reversed(a, 1, 3)
+      doAssert b == @[4, 3, 2]
   assert last >= first-1
   var i = last - first
   var x = first.int
@@ -61,14 +85,19 @@ proc reversed*[T](a: openArray[T], first: Natural, last: int): seq[T] =
     inc(x)
 
 proc reversed*[T](a: openArray[T]): seq[T] =
-  ## returns the reverse of the array `a`.
+  ## returns the reverse of the container ``a``.
+  runnableExamples:
+      let
+        a = [1, 2, 3, 4, 5, 6]
+        b = reversed(a)
+      doAssert b == @[6, 5, 4, 3, 2, 1]
   reversed(a, 0, a.high)
 
 proc binarySearch*[T, K](a: openArray[T], key: K,
               cmp: proc (x: T, y: K): int {.closure.}): int =
-  ## binary search for `key` in `a`. Returns -1 if not found.
+  ## Binary search for ``key`` in ``a``. Returns -1 if not found.
   ##
-  ## `cmp` is the comparator function to use, the expected return values are
+  ## ``cmp`` is the comparator function to use, the expected return values are
   ## the same as that of system.cmp.
   if a.len == 0:
     return -1
@@ -111,7 +140,7 @@ proc binarySearch*[T, K](a: openArray[T], key: K,
     if result >= len or cmp(a[result], key) != 0: result = -1
 
 proc binarySearch*[T](a: openArray[T], key: T): int =
-  ## binary search for `key` in `a`. Returns -1 if not found.
+  ## Binary search for ``key`` in ``a``. Returns -1 if not found.
   binarySearch(a, key, cmp[T])
 
 proc smartBinarySearch*[T](a: openArray[T], key: T): int {.deprecated.} =
@@ -122,16 +151,17 @@ const
   onlySafeCode = true
 
 proc lowerBound*[T, K](a: openArray[T], key: K, cmp: proc(x: T, k: K): int {.closure.}): int =
-  ## Returns a position to the first element in the `a` that is greater than `key`, or last
-  ## if no such element is found. In other words if you have a sorted sequence and you call
-  ## insert(thing, elm, lowerBound(thing, elm))
+  ## returns a position to the first element in the ``a`` that is greater than
+  ## ``key``, or last if no such element is found.
+  ## In other words if you have a sorted sequence and you call
+  ## ``insert(thing, elm, lowerBound(thing, elm))``
   ## the sequence will still be sorted.
   ##
-  ## The first version uses `cmp` to compare the elements. The expected return values are
-  ## the same as that of system.cmp.
-  ## The second version uses the default comparison function `cmp`.
+  ## The first version uses ``cmp`` to compare the elements.
+  ## The expected return values are the same as that of ``system.cmp``.
+  ## The second version uses the default comparison function ``cmp``.
   ##
-  ## example::
+  ## .. code-block:: nim
   ##
   ##   var arr = @[1,2,3,5,6,7,8,9]
   ##   arr.insert(4, arr.lowerBound(4))
@@ -151,17 +181,17 @@ proc lowerBound*[T, K](a: openArray[T], key: K, cmp: proc(x: T, k: K): int {.clo
 proc lowerBound*[T](a: openArray[T], key: T): int = lowerBound(a, key, cmp[T])
 
 proc upperBound*[T, K](a: openArray[T], key: K, cmp: proc(x: T, k: K): int {.closure.}): int =
-  ## Returns a position to the first element in the `a` that is not less
-  ## (i.e. greater or equal to) than `key`, or last if no such element is found.
+  ## returns a position to the first element in the ``a`` that is not less
+  ## (i.e. greater or equal to) than ``key``, or last if no such element is found.
   ## In other words if you have a sorted sequence and you call
-  ## insert(thing, elm, upperBound(thing, elm))
+  ## ``insert(thing, elm, upperBound(thing, elm))``
   ## the sequence will still be sorted.
   ##
-  ## The first version uses `cmp` to compare the elements. The expected return values are
-  ## the same as that of system.cmp.
-  ## The second version uses the default comparison function `cmp`.
+  ## The first version uses ``cmp`` to compare the elements. The expected
+  ## return values are the same as that of ``system.cmp``.
+  ## The second version uses the default comparison function ``cmp``.
   ##
-  ## example::
+  ## .. code-block:: nim
   ##
   ##   var arr = @[1,2,3,4,6,7,8,9]
   ##   arr.insert(5, arr.upperBound(4))
@@ -268,7 +298,7 @@ func sort*[T](a: var openArray[T],
     s = s*2
 
 func sort*[T](a: var openArray[T], order = SortOrder.Ascending) =
-  ## Sort an openarray in-place with a default lexicographical ordering.
+  ## sorts an openarray in-place with a default lexicographical ordering.
   runnableExamples:
     var s = @[1,3,2,5,4]
     s.sort
@@ -277,14 +307,21 @@ func sort*[T](a: var openArray[T], order = SortOrder.Ascending) =
 
 func sorted*[T](a: openArray[T], cmp: proc(x, y: T): int {.closure.},
                 order = SortOrder.Ascending): seq[T] =
-  ## Returns `a` sorted by `cmp` in the specified `order`.
+  ## returns ``a`` sorted by ``cmp`` in the specified ``order``.
+  runnableExamples:
+      let
+        a = [2, 3, 1, 5, 4]
+        b = sorted(a, system.cmp)
+        c = sorted(a, system.cmp, Descending)
+      doAssert b == @[1, 2, 3, 4, 5]
+      doAssert c == @[5, 4, 3, 2, 1]
   result = newSeq[T](a.len)
   for i in 0 .. a.high:
     result[i] = a[i]
   sort(result, cmp, order)
 
 func sorted*[T](a: openArray[T], order = SortOrder.Ascending): seq[T] =
-  ## Returns `a` sorted with default lexicographical ordering
+  ## returns ``a`` sorted with default lexicographical ordering.
   runnableExamples:
     let orig = @[2,3,1,2]
     let copy = orig.sorted()
@@ -328,16 +365,16 @@ template sortedByIt*(seq1, op: untyped): untyped =
 func isSorted*[T](a: openArray[T],
                  cmp: proc(x, y: T): int {.closure.},
                  order = SortOrder.Ascending): bool =
-  ## Checks to see whether `a` is already sorted in `order`
-  ## using `cmp` for the comparison. Parameters identical
-  ## to `sort`
+  ## checks to see whether ``a`` is already sorted in ``order``
+  ## using ``cmp`` for the comparison. Parameters identical
+  ## to ``sort``.
   result = true
   for i in 0..<len(a)-1:
     if cmp(a[i],a[i+1]) * order > 0:
       return false
 
 func isSorted*[T](a: openArray[T], order = SortOrder.Ascending): bool =
-  ## Checks whether `a` is sorted with a default lexicographical ordering
+  ## checks whether ``a`` is sorted with a default lexicographical ordering.
   runnableExamples:
     let test = @[1,1,2,3,5,8]
     doAssert test.isSorted()
@@ -377,7 +414,7 @@ proc product*[T](x: openArray[seq[T]]): seq[seq[T]] =
     indexes[index] -= 1
 
 proc nextPermutation*[T](x: var openarray[T]): bool {.discardable.} =
-  ## Calculates the next lexicographic permutation, directly modifying ``x``.
+  ## calculates the next lexicographic permutation, directly modifying ``x``.
   ## The result is whether a permutation happened, otherwise we have reached
   ## the last-ordered permutation.
   ##
@@ -406,8 +443,8 @@ proc nextPermutation*[T](x: var openarray[T]): bool {.discardable.} =
   result = true
 
 proc prevPermutation*[T](x: var openarray[T]): bool {.discardable.} =
-  ## Calculates the previous lexicographic permutation, directly modifying
-  ## ``x``.  The result is whether a permutation happened, otherwise we have
+  ## calculates the previous lexicographic permutation, directly modifying
+  ## ``x``. The result is whether a permutation happened, otherwise we have
   ## reached the first-ordered permutation.
   ##
   ## .. code-block:: nim
@@ -517,48 +554,56 @@ proc rotatedInternal[T](arg: openarray[T]; first, middle, last: int): seq[T] =
   for i in last ..< arg.len:
     result[i] = arg[i]
 
-proc rotateLeft*[T](arg: var openarray[T]; slice: HSlice[int, int]; dist: int): int =
-  ## Performs a left rotation on a range of elements. If you want to rotate right, use a negative ``dist``.
-  ## Specifically, ``rotateLeft`` rotates the elements at ``slice`` by ``dist`` positions.
-  ## The element at index ``slice.a + dist`` will be at index ``slice.a``.
-  ## The element at index ``slice.b`` will be at ``slice.a + dist -1``.
-  ## The element at index ``slice.a`` will be at ``slice.b + 1 - dist``.
-  ## The element at index ``slice.a + dist - 1`` will be at ``slice.b``.
-  #
-  ## Elements outsize of ``slice`` will be left unchanged.
+proc rotateLeft*[T](arg: var openarray[T]; slice: HSlice[int, int]; dist: int): int {.discardable.} =
+  ## performs a left rotation on a range of elements. If you want to rotate
+  ## right, use a negative ``dist``. Specifically, ``rotateLeft`` rotates
+  ## the elements at ``slice`` by ``dist`` positions.
+  ##
+  ## | The element at index ``slice.a + dist`` will be at index ``slice.a``.
+  ## | The element at index ``slice.b`` will be at ``slice.a + dist -1``.
+  ## | The element at index ``slice.a`` will be at ``slice.b + 1 - dist``.
+  ## | The element at index ``slice.a + dist - 1`` will be at ``slice.b``.
+  ##
+  ## Elements outside of ``slice`` will be left unchanged.
   ## The time complexity is linear to ``slice.b - slice.a + 1``.
   ##
   ## ``slice``
-  ##   the indices of the element range that should be rotated.
+  ##   The indices of the element range that should be rotated.
   ##
   ## ``dist``
-  ##   the distance in amount of elements that the data should be rotated. Can be negative, can be any number.
+  ##   The distance in amount of elements that the data should be rotated.
+  ##   Can be negative, can be any number.
   ##
   ## .. code-block:: nim
-  ##     var list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
-  ##     list.rotateLeft(1 .. 8, 3)
-  ##     doAssert list == [0, 4, 5, 6, 7, 8, 1, 2, 3, 9, 10]
+  ##
+  ##   var list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
+  ##   list.rotateLeft(1 .. 8, 3)
+  ##   doAssert list == [0, 4, 5, 6, 7, 8, 1, 2, 3, 9, 10]
   let sliceLen = slice.b + 1 - slice.a
   let distLeft = ((dist mod sliceLen) + sliceLen) mod sliceLen
   arg.rotateInternal(slice.a, slice.a+distLeft, slice.b + 1)
 
-proc rotateLeft*[T](arg: var openarray[T]; dist: int): int =
-  ## default arguments for slice, so that this procedure operates on the entire
+proc rotateLeft*[T](arg: var openarray[T]; dist: int): int {.discardable.} =
+  ## Default arguments for slice, so that this procedure operates on the entire
   ## ``arg``, and not just on a part of it.
+  runnableExamples:
+      var a = [1, 2, 3, 4, 5]
+      a.rotateLeft(2)
+      doAssert a == [3, 4, 5, 1, 2]
   let arglen = arg.len
   let distLeft = ((dist mod arglen) + arglen) mod arglen
   arg.rotateInternal(0, distLeft, arglen)
 
 proc rotatedLeft*[T](arg: openarray[T]; slice: HSlice[int, int], dist: int): seq[T] =
-  ## same as ``rotateLeft``, just with the difference that it does
-  ## not modify the argument. It creates a new ``seq`` instead
+  ## Same as ``rotateLeft``, just with the difference that it does
+  ## not modify the argument. It creates a new ``seq`` instead.
   let sliceLen = slice.b + 1 - slice.a
   let distLeft = ((dist mod sliceLen) + sliceLen) mod sliceLen
   arg.rotatedInternal(slice.a, slice.a+distLeft, slice.b+1)
 
 proc rotatedLeft*[T](arg: openarray[T]; dist: int): seq[T] =
-  ## same as ``rotateLeft``, just with the difference that it does
-  ## not modify the argument. It creates a new ``seq`` instead
+  ## Same as ``rotateLeft``, just with the difference that it does
+  ## not modify the argument. It creates a new ``seq`` instead.
   let arglen = arg.len
   let distLeft = ((dist mod arglen) + arglen) mod arglen
   arg.rotatedInternal(0, distLeft, arg.len)