summary refs log tree commit diff stats
diff options
context:
space:
mode:
-rw-r--r--lib/pure/json.nim31
1 files changed, 14 insertions, 17 deletions
diff --git a/lib/pure/json.nim b/lib/pure/json.nim
index 4a3d5b432..176da1d9d 100644
--- a/lib/pure/json.nim
+++ b/lib/pure/json.nim
@@ -710,23 +710,20 @@ proc pretty*(node: JsonNode, indent = 2): string =
   ## on multiple lines.
   ##
   ## Similar to prettyprint in Python.
-  ##
-  ## **Examples:**
-  ##
-  ## .. code-block:: Nim
-  ##   let j = %* {"name": "Isaac", "books": ["Robot Dreams"],
-  ##               "details": {"age":35, "pi":3.1415}}
-  ##   echo pretty(j)
-  ##   # {
-  ##   #   "name": "Isaac",
-  ##   #   "books": [
-  ##   #     "Robot Dreams"
-  ##   #   ],
-  ##   #   "details": {
-  ##   #     "age": 35,
-  ##   #     "pi": 3.1415
-  ##   #   }
-  ##   # }
+  runnableExamples:
+    let j = %* {"name": "Isaac", "books": ["Robot Dreams"],
+                "details": {"age":35, "pi":3.1415}}
+    doAssert pretty(j) == """
+{
+  "name": "Isaac",
+  "books": [
+    "Robot Dreams"
+  ],
+  "details": {
+    "age": 35,
+    "pi": 3.1415
+  }
+}"""
   result = ""
   toPretty(result, node, indent)
 
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
#
#
#            Nim's Runtime Library
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## Floating-point environment. Handling of floating-point rounding and
## exceptions (overflow, division by zero, etc.).

{.deadCodeElim:on.}

when defined(Posix) and not defined(haiku):
  {.passl: "-lm".}

var
  FE_DIVBYZERO* {.importc, header: "<fenv.h>".}: cint
    ## division by zero
  FE_INEXACT* {.importc, header: "<fenv.h>".}: cint
    ## inexact result
  FE_INVALID* {.importc, header: "<fenv.h>".}: cint
    ## invalid operation
  FE_OVERFLOW* {.importc, header: "<fenv.h>".}: cint
    ## result not representable due to overflow
  FE_UNDERFLOW* {.importc, header: "<fenv.h>".}: cint
    ## result not representable due to underflow
  FE_ALL_EXCEPT* {.importc, header: "<fenv.h>".}: cint
    ## bitwise OR of all supported exceptions
  FE_DOWNWARD* {.importc, header: "<fenv.h>".}: cint
    ## round toward -Inf
  FE_TONEAREST* {.importc, header: "<fenv.h>".}: cint
    ## round to nearest
  FE_TOWARDZERO* {.importc, header: "<fenv.h>".}: cint
    ## round toward 0
  FE_UPWARD* {.importc, header: "<fenv.h>".}: cint
    ## round toward +Inf
  FE_DFL_ENV* {.importc, header: "<fenv.h>".}: cint
    ## macro of type pointer to fenv_t to be used as the argument
    ## to functions taking an argument of type fenv_t; in this
    ## case the default environment will be used

type
  Tfenv* {.importc: "fenv_t", header: "<fenv.h>", final, pure.} =
    object ## Represents the entire floating-point environment. The
           ## floating-point environment refers collectively to any
           ## floating-point status flags and control modes supported
           ## by the implementation.
  Tfexcept* {.importc: "fexcept_t", header: "<fenv.h>", final, pure.} =
    object ## Represents the floating-point status flags collectively,
           ## including any status the implementation associates with the
           ## flags. A floating-point status flag is a system variable
           ## whose value is set (but never cleared) when a floating-point
           ## exception is raised, which occurs as a side effect of
           ## exceptional floating-point arithmetic to provide auxiliary
           ## information. A floating-point control mode is a system variable
           ## whose value may be set by the user to affect the subsequent
           ## behavior of floating-point arithmetic.

proc feclearexcept*(excepts: cint): cint {.importc, header: "<fenv.h>".}
  ## Clear the supported exceptions represented by `excepts`.

proc fegetexceptflag*(flagp: ptr Tfexcept, excepts: cint): cint {.
  importc, header: "<fenv.h>".}
  ## Store implementation-defined representation of the exception flags
  ## indicated by `excepts` in the object pointed to by `flagp`.

proc feraiseexcept*(excepts: cint): cint {.importc, header: "<fenv.h>".}
  ## Raise the supported exceptions represented by `excepts`.

proc fesetexceptflag*(flagp: ptr Tfexcept, excepts: cint): cint {.
  importc, header: "<fenv.h>".}
  ## Set complete status for exceptions indicated by `excepts` according to
  ## the representation in the object pointed to by `flagp`.

proc fetestexcept*(excepts: cint): cint {.importc, header: "<fenv.h>".}
  ## Determine which of subset of the exceptions specified by `excepts` are
  ## currently set.

proc fegetround*(): cint {.importc, header: "<fenv.h>".}
  ## Get current rounding direction.

proc fesetround*(roundingDirection: cint): cint {.importc, header: "<fenv.h>".}
  ## Establish the rounding direction represented by `roundingDirection`.

proc fegetenv*(envp: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
  ## Store the current floating-point environment in the object pointed
  ## to by `envp`.

proc feholdexcept*(envp: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
  ## Save the current environment in the object pointed to by `envp`, clear
  ## exception flags and install a non-stop mode (if available) for all
  ## exceptions.

proc fesetenv*(a1: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
  ## Establish the floating-point environment represented by the object
  ## pointed to by `envp`.

proc feupdateenv*(envp: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
  ## Save current exceptions in temporary storage, install environment
  ## represented by object pointed to by `envp` and raise exceptions
  ## according to saved exceptions.

var FP_RADIX_INTERNAL {. importc: "FLT_RADIX" header: "<float.h>" .} : int

template fpRadix* : int = FP_RADIX_INTERNAL
  ## The (integer) value of the radix used to represent any floating
  ## point type on the architecture used to build the program.

var FLT_MANT_DIG {. importc: "FLT_MANT_DIG" header: "<float.h>" .} : int
var FLT_DIG {. importc: "FLT_DIG" header: "<float.h>" .} : int
var FLT_MIN_EXP {. importc: "FLT_MIN_EXP" header: "<float.h>" .} : int
var FLT_MAX_EXP {. importc: "FLT_MAX_EXP" header: "<float.h>" .} : int
var FLT_MIN_10_EXP {. importc: "FLT_MIN_10_EXP" header: "<float.h>" .} : int
var FLT_MAX_10_EXP {. importc: "FLT_MAX_10_EXP" header: "<float.h>" .} : int
var FLT_MIN {. importc: "FLT_MIN" header: "<float.h>" .} : cfloat
var FLT_MAX {. importc: "FLT_MAX" header: "<float.h>" .} : cfloat
var FLT_EPSILON {. importc: "FLT_EPSILON" header: "<float.h>" .} : cfloat

var DBL_MANT_DIG {. importc: "DBL_MANT_DIG" header: "<float.h>" .} : int
var DBL_DIG {. importc: "DBL_DIG" header: "<float.h>" .} : int
var DBL_MIN_EXP {. importc: "DBL_MIN_EXP" header: "<float.h>" .} : int
var DBL_MAX_EXP {. importc: "DBL_MAX_EXP" header: "<float.h>" .} : int
var DBL_MIN_10_EXP {. importc: "DBL_MIN_10_EXP" header: "<float.h>" .} : int
var DBL_MAX_10_EXP {. importc: "DBL_MAX_10_EXP" header: "<float.h>" .} : int
var DBL_MIN {. importc: "DBL_MIN" header: "<float.h>" .} : cdouble
var DBL_MAX {. importc: "DBL_MAX" header: "<float.h>" .} : cdouble
var DBL_EPSILON {. importc: "DBL_EPSILON" header: "<float.h>" .} : cdouble

template mantissaDigits*(T : typedesc[float32]) : int = FLT_MANT_DIG
  ## Number of digits (in base ``floatingPointRadix``) in the mantissa
  ## of 32-bit floating-point numbers.
template digits*(T : typedesc[float32]) : int = FLT_DIG
  ## Number of decimal digits that can be represented in a
  ## 32-bit floating-point type without losing precision.
template minExponent*(T : typedesc[float32]) : int = FLT_MIN_EXP
  ## Minimum (negative) exponent for 32-bit floating-point numbers.
template maxExponent*(T : typedesc[float32]) : int = FLT_MAX_EXP
  ## Maximum (positive) exponent for 32-bit floating-point numbers.
template min10Exponent*(T : typedesc[float32]) : int = FLT_MIN_10_EXP
  ## Minimum (negative) exponent in base 10 for 32-bit floating-point
  ## numbers.
template max10Exponent*(T : typedesc[float32]) : int = FLT_MAX_10_EXP
  ## Maximum (positive) exponent in base 10 for 32-bit floating-point
  ## numbers.
template minimumPositiveValue*(T : typedesc[float32]) : float32 = FLT_MIN
  ## The smallest positive (nonzero) number that can be represented in a
  ## 32-bit floating-point type.
template maximumPositiveValue*(T : typedesc[float32]) : float32 = FLT_MAX
  ## The largest positive number that can be represented in a 32-bit
  ## floating-point type.
template epsilon*(T : typedesc[float32]): float32 = FLT_EPSILON
  ## The difference between 1.0 and the smallest number greater than
  ## 1.0 that can be represented in a 32-bit floating-point type.

template mantissaDigits*(T : typedesc[float64]) : int = DBL_MANT_DIG
  ## Number of digits (in base ``floatingPointRadix``) in the mantissa
  ## of 64-bit floating-point numbers.
template digits*(T : typedesc[float64]) : int = DBL_DIG
  ## Number of decimal digits that can be represented in a
  ## 64-bit floating-point type without losing precision.
template minExponent*(T : typedesc[float64]) : int = DBL_MIN_EXP
  ## Minimum (negative) exponent for 64-bit floating-point numbers.
template maxExponent*(T : typedesc[float64]) : int = DBL_MAX_EXP
  ## Maximum (positive) exponent for 64-bit floating-point numbers.
template min10Exponent*(T : typedesc[float64]) : int = DBL_MIN_10_EXP
  ## Minimum (negative) exponent in base 10 for 64-bit floating-point
  ## numbers.
template max10Exponent*(T : typedesc[float64]) : int = DBL_MAX_10_EXP
  ## Maximum (positive) exponent in base 10 for 64-bit floating-point
  ## numbers.
template minimumPositiveValue*(T : typedesc[float64]) : float64 = DBL_MIN
  ## The smallest positive (nonzero) number that can be represented in a
  ## 64-bit floating-point type.
template maximumPositiveValue*(T : typedesc[float64]) : float64 = DBL_MAX
  ## The largest positive number that can be represented in a 64-bit
  ## floating-point type.
template epsilon*(T : typedesc[float64]): float64 = DBL_EPSILON
  ## The difference between 1.0 and the smallest number greater than
  ## 1.0 that can be represented in a 64-bit floating-point type.