diff options
-rw-r--r-- | lib/pure/numeric.nim | 83 | ||||
-rw-r--r-- | lib/pure/poly.nim | 367 |
2 files changed, 450 insertions, 0 deletions
diff --git a/lib/pure/numeric.nim b/lib/pure/numeric.nim new file mode 100644 index 000000000..8ef5fabda --- /dev/null +++ b/lib/pure/numeric.nim @@ -0,0 +1,83 @@ +# +# +# Nimrod's Runtime Library +# (c) Copyright 2013 Robert Persson +# +# See the file "copying.txt", included in this +# distribution, for details about the copyright. +# + + +type TOneVarFunction* =proc (x:float):float + +proc brent*(xmin,xmax:float ,function:TOneVarFunction, tol:float,maxiter=1000): + tuple[rootx, rooty: float, success: bool]= + ## Searches `function` for a root between `xmin` and `xmax` + ## using brents method. If the function value at `xmin`and `xmax` has the + ## same sign, `rootx`/`rooty` is set too the extrema value closest to x-axis + ## and succes is set to false. + ## Otherwise there exists at least one root and success is set to true. + ## This root is searched for at most `maxiter` iterations. + ## If `tol` tolerance is reached within `maxiter` iterations + ## the root refinement stops and success=true. + + # see http://en.wikipedia.org/wiki/Brent%27s_method + var + a=xmin + b=xmax + c=a + d=1.0e308 + fa=function(a) + fb=function(b) + fc=fa + s=0.0 + fs=0.0 + mflag:bool + i=0 + tmp2:float + + if fa*fb>=0: + if abs(fa)<abs(fb): + return (a,fa,false) + else: + return (b,fb,false) + + if abs(fa)<abs(fb): + swap(fa,fb) + swap(a,b) + + while fb!=0.0 and abs(a-b)>tol: + if fa!=fc and fb!=fc: # inverse quadratic interpolation + s = a * fb * fc / (fa - fb) / (fa - fc) + b * fa * fc / (fb - fa) / (fb - fc) + c * fa * fb / (fc - fa) / (fc - fb) + else: #secant rule + s = b - fb * (b - a) / (fb - fa) + tmp2 = (3.0 * a + b) / 4.0 + if not((s > tmp2 and s < b) or (s < tmp2 and s > b)) or + (mflag and abs(s - b) >= (abs(b - c) / 2.0)) or + (not mflag and abs(s - b) >= abs(c - d) / 2.0): + s=(a+b)/2.0 + mflag=true + else: + if (mflag and (abs(b - c) < tol)) or (not mflag and (abs(c - d) < tol)): + s=(a+b)/2.0 + mflag=true + else: + mflag=false + fs = function(s) + d = c + c = b + fc = fb + if fa * fs<0.0: + b=s + fb=fs + else: + a=s + fa=fs + if abs(fa)<abs(fb): + swap(a,b) + swap(fa,fb) + inc i + if i>maxiter: + break + + return (b,fb,true) diff --git a/lib/pure/poly.nim b/lib/pure/poly.nim new file mode 100644 index 000000000..45e528604 --- /dev/null +++ b/lib/pure/poly.nim @@ -0,0 +1,367 @@ +# +# +# Nimrod's Runtime Library +# (c) Copyright 2013 Robert Persson +# +# See the file "copying.txt", included in this +# distribution, for details about the copyright. +# + +import math +import strutils +import numeric + +type + TPoly* = object + cofs:seq[float] + + +proc degree*(p:TPoly):int= + ## Returns the degree of the polynomial, + ## that is the number of coefficients-1 + return p.cofs.len-1 + + +proc eval*(p:TPoly,x:float):float= + ## Evaluates a polynomial function value for `x` + ## quickly using Horners method + var n=p.degree + result=p.cofs[n] + dec n + while n>=0: + result = result*x+p.cofs[n] + dec n + +proc `[]` *(p:TPoly;idx:int):float= + ## Gets a coefficient of the polynomial. + ## p[2] will returns the quadric term, p[3] the cubic etc. + ## Out of bounds index will return 0.0. + if idx<0 or idx>p.degree: + return 0.0 + return p.cofs[idx] + +proc `[]=` *(p:var TPoly;idx:int,v:float)= + ## Sets an coefficient of the polynomial by index. + ## p[2] set the quadric term, p[3] the cubic etc. + ## If index is out of range for the coefficients, + ## the polynomial grows to the smallest needed degree. + assert(idx>=0) + + if idx>p.degree: #polynomial must grow + var oldlen=p.cofs.len + p.cofs.setLen(idx+1) + for q in oldlen.. <high(p.cofs): + p.cofs[q]=0.0 #new-grown coefficients set to zero + + p.cofs[idx]=v + + +iterator items*(p:TPoly):float= + ## Iterates through the corfficients of the polynomial. + var i=p.degree + while i>=0: + yield p[i] + dec i + +proc clean*(p:var TPoly;zerotol=0.0)= + ## Removes leading zero coefficients of the polynomial. + ## An optional tolerance can be given for what's considered zero. + var n=p.degree + var relen=false + + while n>0 and abs(p[n])<=zerotol: # >0 => keep at least one coefficient + dec n + relen=true + + if relen: p.cofs.setLen(n+1) + + +proc `$` *(p:TPoly):string = + ## Gets a somewhat reasonable string representation of the polynomial + ## The format should be compatible with most online function plotters, + ## for example directly in google search + result="" + var first=true #might skip + sign if first coefficient + + for idx in countdown(p.degree,0): + let a=p[idx] + + if a==0.0: + continue + + if a>= 0.0 and not first: + result.add('+') + first=false + + if a!=1.0 or idx==0: + result.add(formatFloat(a,ffDefault,0)) + if idx>=2: + result.add("x^" & $idx) + elif idx==1: + result.add("x") + + if result=="": + result="0" + + +proc derivative*(p:TPoly):TPoly= + ## Returns a new polynomial, which is the derivative of `p` + newSeq[float](result.cofs,p.degree) + for idx in 0..high(result.cofs): + result.cofs[idx]=p.cofs[idx+1]*float(idx+1) + +proc diff*(p:TPoly,x:float):float= + ## Evaluates the differentiation of a polynomial with + ## respect to `x` quickly using a modifed Horners method + var n=p.degree + result=p[n]*float(n) + dec n + while n>=1: + result = result*x+p[n]*float(n) + dec n + +proc integral*(p:TPoly):TPoly= + ## Returns a new polynomial which is the indefinite + ## integral of `p`. The constant term is set to 0.0 + newSeq(result.cofs,p.cofs.len+1) + result.cofs[0]=0.0 #constant arbitrary term, use 0.0 + for i in 1..high(result.cofs): + result.cofs[i]=p.cofs[i-1]/float(i) + + +proc integrate*(p:TPoly;xmin,xmax:float):float= + ## Computes the definite integral of `p` between `xmin` and `xmax` + ## quickly using a modified version of Horners method + var + n=p.degree + s1=p[n]/float(n+1) + s2=s1 + fac:float + + dec n + while n>=0: + fac=p[n]/float(n+1) + s1 = s1*xmin+fac + s2 = s2*xmax+fac + dec n + + result=s2*xmax-s1*xmin + +proc initPoly*(cofs:varargs[float]):TPoly= + ## Initializes a polynomial with given coefficients. + ## The most significant coefficient is first, so to create x^2-2x+3: + ## intiPoly(1.0,-2.0,3.0) + if len(cofs)<=0: + result.cofs= @[0.0] #need at least one coefficient + else: + # reverse order of coefficients so indexing matches degree of + # coefficient... + result.cofs= @[] + for idx in countdown(cofs.len-1,0): + result.cofs.add(cofs[idx]) + + result.clean #remove leading zero terms + + +proc divMod*(p,d:TPoly;q,r:var TPoly)= + ## Divides `p` with `d`, and stores the quotinent in `q` and + ## the remainder in `d` + var + pdeg=p.degree + ddeg=d.degree + power=p.degree-d.degree + ratio:float + + r.cofs = p.cofs #initial remainder=numerator + if power<0: #denominator is larger than numerator + q.cofs= @ [0.0] #quotinent is 0.0 + return # keep remainder as numerator + + q.cofs=newSeq[float](power+1) + + for i in countdown(pdeg,ddeg): + ratio=r.cofs[i]/d.cofs[ddeg] + + q.cofs[i-ddeg]=ratio + r.cofs[i]=0.0 + + for j in countup(0,<ddeg): + var idx=i-ddeg+j + r.cofs[idx] = r.cofs[idx] - d.cofs[j]*ratio + + r.clean # drop zero coefficients in remainder + +proc `+` *(p1:TPoly,p2:TPoly):TPoly= + ## Adds two polynomials + var n=max(p1.cofs.len,p2.cofs.len) + newSeq(result.cofs,n) + + for idx in countup(0,n-1): + result[idx]=p1[idx]+p2[idx] + + result.clean # drop zero coefficients in remainder + +proc `*` *(p1:TPoly,p2:TPoly):TPoly= + ## Multiplies the polynomial `p1` with `p2` + var + d1=p1.degree + d2=p2.degree + n=d1+d2 + idx:int + + newSeq(result.cofs,n) + + for i1 in countup(0,d1): + for i2 in countup(0,d2): + idx=i1+i2 + result[idx]=result[idx]+p1[i1]*p2[i2] + + result.clean + +proc `*` *(p:TPoly,f:float):TPoly= + ## Multiplies the polynomial `p` with a real number + newSeq(result.cofs,p.cofs.len) + for i in 0..high(p.cofs): + result[i]=p.cofs[i]*f + result.clean + +proc `*` *(f:float,p:TPoly):TPoly= + ## Multiplies a real number with a polynomial + return p*f + +proc `-`*(p:TPoly):TPoly= + ## Negates a polynomial + result=p + for i in countup(0,<result.cofs.len): + result.cofs[i]= -result.cofs[i] + +proc `-` *(p1:TPoly,p2:TPoly):TPoly= + ## Subtract `p1` with `p2` + var n=max(p1.cofs.len,p2.cofs.len) + newSeq(result.cofs,n) + + for idx in countup(0,n-1): + result[idx]=p1[idx]-p2[idx] + + result.clean # drop zero coefficients in remainder + +proc `/`*(p:TPoly,f:float):TPoly= + ## Divides polynomial `p` with a real number `f` + newSeq(result.cofs,p.cofs.len) + for i in 0..high(p.cofs): + result[i]=p.cofs[i]/f + result.clean + +proc `/` *(p,q:TPoly):TPoly= + ## Divides polynomial `p` with polynomial `q` + var dummy:TPoly + p.divMod(q,result,dummy) + +proc `mod` *(p,q:TPoly):TPoly= + ## Computes the polynomial modulo operation, + ## that is the remainder of `p`/`q` + var dummy:TPoly + p.divMod(q,dummy,result) + + +proc normalize*(p:var TPoly)= + ## Multiplies the polynomial inplace by a term so that + ## the leading term is 1.0. + ## This might lead to an unstable polynomial + ## if the leading term is zero. + p=p/p[p.degree] + + +proc solveQuadric*(a,b,c:float;zerotol=0.0):seq[float]= + ## Solves the quadric equation `ax^2+bx+c`, with a possible + ## tolerance `zerotol` to find roots of curves just 'touching' + ## the x axis. Returns sequence with 0,1 or 2 solutions. + + var p,q,d:float + + p=b/(2.0*a) + + if p==inf or p==neginf: #linear equation.. + var linrt= -c/b + if linrt==inf or linrt==neginf: #constant only + return @[] + return @[linrt] + + q=c/a + d=p*p-q + + if d<0.0: + #check for inside zerotol range for neg. roots + var err=a*p*p-b*p+c #evaluate error at parabola center axis + if(err<=zerotol): return @[-p] + return @[] + else: + var sr=sqrt(d) + result= @[-sr-p,sr-p] + +proc getRangeForRoots(p:TPoly):tuple[xmin,xmax:float]= + ## helper function for `roots` function + ## quickly computes a range, guaranteed to contain + ## all the real roots of the polynomial + # see http://www.mathsisfun.com/algebra/polynomials-bounds-zeros.html + + var deg=p.degree + var d=p[deg] + var bound1,bound2:float + + for i in countup(0,deg): + var c=abs(p.cofs[i]/d) + bound1=max(bound1,c+1.0) + bound2=bound2+c + + bound2=max(1.0,bound2) + result.xmax=min(bound1,bound2) + result.xmin= -result.xmax + + +proc addRoot(p:TPoly,res:var seq[float],xp0,xp1,tol,zerotol,mergetol:float,maxiter:int)= + ## helper function for `roots` function + ## try to do a numeric search for a single root in range xp0-xp1, + ## adding it to `res` (allocating `res` if nil) + var br=brent(xp0,xp1, proc(x:float):float=p.eval(x),tol) + if br.success: + if res.len==0 or br.rootx>=res[high(res)]+mergetol: #dont add equal roots. + res.add(br.rootx) + else: + #this might be a 'touching' case, check function value against + #zero tolerance + if abs(br.rooty)<=zerotol: + if res.len==0 or br.rootx>=res[high(res)]+mergetol: #dont add equal roots. + res.add(br.rootx) + + +proc roots*(p:TPoly,tol=1.0e-9,zerotol=1.0e-6,mergetol=1.0e-12,maxiter=1000):seq[float]= + ## Computes the real roots of the polynomial `p` + ## `tol` is the tolerance used to break searching for each root when reached. + ## `zerotol` is the tolerance, which is 'close enough' to zero to be considered a root + ## and is used to find roots for curves that only 'touch' the x-axis. + ## `mergetol` is the tolerance, of which two x-values are considered beeing the same root. + ## `maxiter` can be used to limit the number of iterations for each root. + ## Returns a (possibly empty) sorted sequence with the solutions. + var deg=p.degree + if deg<=0: #constant only => no roots + return @[] + elif p.degree==1: #linear + var linrt= -p.cofs[0]/p.cofs[1] + if linrt==inf or linrt==neginf: + return @[] #constant only => no roots + return @[linrt] + elif p.degree==2: + return solveQuadric(p.cofs[2],p.cofs[1],p.cofs[0],zerotol) + else: + # degree >=3 , find min/max points of polynomial with recursive + # derivative and do a numerical search for root between each min/max + var range=p.getRangeForRoots() + var minmax=p.derivative.roots(tol,zerotol,mergetol) + result= @[] + if minmax!=nil: #ie. we have minimas/maximas in this function + for x in minmax.items: + addRoot(p,result,range.xmin,x,tol,zerotol,mergetol,maxiter) + range.xmin=x + addRoot(p,result,range.xmin,range.xmax,tol,zerotol,mergetol,maxiter) + |