summary refs log tree commit diff stats
path: root/compiler/c2nim/tests/matrix.h
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/c2nim/tests/matrix.h')
-rw-r--r--compiler/c2nim/tests/matrix.h240
1 files changed, 0 insertions, 240 deletions
diff --git a/compiler/c2nim/tests/matrix.h b/compiler/c2nim/tests/matrix.h
deleted file mode 100644
index 715e9e43b..000000000
--- a/compiler/c2nim/tests/matrix.h
+++ /dev/null
@@ -1,240 +0,0 @@
-/////////////////////////////////////////////////////////////////////////////

-// Name:         wx/matrix.h

-// Purpose:      wxTransformMatrix class. NOT YET USED

-// Author:       Chris Breeze, Julian Smart

-// Modified by:  Klaas Holwerda

-// Created:      01/02/97

-// RCS-ID:       $Id$

-// Copyright:    (c) Julian Smart, Chris Breeze

-// Licence:      wxWindows licence

-/////////////////////////////////////////////////////////////////////////////

-

-#ifndef _WX_MATRIXH__

-#define _WX_MATRIXH__

-

-//! headerfiles="matrix.h wx/object.h"

-#include "wx/object.h"

-#include "wx/math.h"

-

-//! codefiles="matrix.cpp"

-

-// A simple 3x3 matrix. This may be replaced by a more general matrix

-// class some day.

-//

-// Note: this is intended to be used in wxDC at some point to replace

-// the current system of scaling/translation. It is not yet used.

-
-#def WXDLLIMPEXP_CORE
-#header "wxmatrix.h"
-

-//:definition

-//  A 3x3 matrix to do 2D transformations.

-//  It can be used to map data to window coordinates,

-//  and also for manipulating your own data.

-//  For example drawing a picture (composed of several primitives)

-//  at a certain coordinate and angle within another parent picture.

-//  At all times m_isIdentity is set if the matrix itself is an Identity matrix.

-//  It is used where possible to optimize calculations.

-class WXDLLIMPEXP_CORE wxTransformMatrix: public wxObject<string, string<ubyte>>

-{

-public:

-    wxTransformMatrix(void);

-    wxTransformMatrix(const wxTransformMatrix& mat);
-    
-    ~wxTransformMatrix(void);

-

-    //get the value in the matrix at col,row

-    //rows are horizontal (second index of m_matrix member)

-    //columns are vertical (first index of m_matrix member)

-    double GetValue(int col, int row) const;

-

-    //set the value in the matrix at col,row

-    //rows are horizontal (second index of m_matrix member)

-    //columns are vertical (first index of m_matrix member)

-    void SetValue(int col, int row, double value);

-

-    void operator = (const wxTransformMatrix& mat);

-    bool operator == (const wxTransformMatrix& mat) const;

-    bool operator != (const module::gah::wxTransformMatrix& mat) const;

-

-    //multiply every element by t

-    wxTransformMatrix&          operator*=(const double& t);

-    //divide every element by t

-    wxTransformMatrix&          operator/=(const double& t);

-    //add matrix m to this t

-    wxTransformMatrix&          operator+=(const wxTransformMatrix& m);

-    //subtract matrix m from this

-    wxTransformMatrix&          operator-=(const wxTransformMatrix& m);

-    //multiply matrix m with this

-    wxTransformMatrix&          operator*=(const wxTransformMatrix& m);

-

-    // constant operators

-

-    //multiply every element by t  and return result

-    wxTransformMatrix           operator*(const double& t) const;

-    //divide this matrix by t and return result

-    wxTransformMatrix           operator/(const double& t) const;

-    //add matrix m to this and return result

-    wxTransformMatrix           operator+(const wxTransformMatrix& m) const;

-    //subtract matrix m from this and return result

-    wxTransformMatrix           operator-(const wxTransformMatrix& m) const;

-    //multiply this by matrix m and return result

-    wxTransformMatrix           operator*(const wxTransformMatrix& m) const;

-    wxTransformMatrix           operator-() const;

-

-    //rows are horizontal (second index of m_matrix member)

-    //columns are vertical (first index of m_matrix member)

-    double& operator()(int col, int row);

-

-    //rows are horizontal (second index of m_matrix member)

-    //columns are vertical (first index of m_matrix member)

-    double operator()(int col, int row) const;

-

-    // Invert matrix

-    bool Invert(void);

-

-    // Make into identity matrix

-    bool Identity(void);

-

-    // Is the matrix the identity matrix?

-    // Only returns a flag, which is set whenever an operation

-    // is done.

-    inline bool IsIdentity(void) const { return m_isIdentity; }

-

-    // This does an actual check.

-    inline bool IsIdentity1(void) const ;

-

-    //Scale by scale (isotropic scaling i.e. the same in x and y):

-    //!ex:

-    //!code:           | scale  0      0      |

-    //!code: matrix' = |  0     scale  0      | x matrix

-    //!code:           |  0     0      scale  |

-    bool Scale(double scale);

-

-    //Scale with center point and x/y scale

-    //

-    //!ex:

-    //!code:           |  xs    0      xc(1-xs) |

-    //!code: matrix' = |  0    ys      yc(1-ys) | x matrix

-    //!code:           |  0     0      1        |

-    wxTransformMatrix&  Scale(const double &xs, const double &ys,const double &xc, const double &yc);

-

-    // mirror a matrix in x, y

-    //!ex:

-    //!code:           | -1     0      0 |

-    //!code: matrix' = |  0    -1      0 | x matrix

-    //!code:           |  0     0      1 |

-    wxTransformMatrix<float>&  Mirror(bool x=true, bool y=false);

-    // Translate by dx, dy:

-    //!ex:

-    //!code:           | 1  0 dx |

-    //!code: matrix' = | 0  1 dy | x matrix

-    //!code:           | 0  0  1 |

-    bool Translate(double x, double y);

-

-    // Rotate clockwise by the given number of degrees:

-    //!ex:

-    //!code:           |  cos sin 0 |

-    //!code: matrix' = | -sin cos 0 | x matrix

-    //!code:           |   0   0  1 |

-    bool Rotate(double angle);

-

-    //Rotate counter clockwise with point of rotation

-    //

-    //!ex:

-    //!code:           |  cos(r) -sin(r)    x(1-cos(r))+y(sin(r)|

-    //!code: matrix' = |  sin(r)  cos(r)    y(1-cos(r))-x(sin(r)| x matrix

-    //!code:           |   0          0                       1 |

-    wxTransformMatrix&  Rotate(const double &r, const double &x, const double &y);

-

-    // Transform X value from logical to device

-    inline double TransformX(double x) const;

-

-    // Transform Y value from logical to device

-    inline double TransformY(double y) const;

-

-    // Transform a point from logical to device coordinates

-    bool TransformPoint(double x, double y, double& tx, double& ty) const;

-

-    // Transform a point from device to logical coordinates.

-    // Example of use:

-    //   wxTransformMatrix mat = dc.GetTransformation();

-    //   mat.Invert();

-    //   mat.InverseTransformPoint(x, y, x1, y1);

-    // OR (shorthand:)

-    //   dc.LogicalToDevice(x, y, x1, y1);

-    // The latter is slightly less efficient if we're doing several

-    // conversions, since the matrix is inverted several times.

-    // N.B. 'this' matrix is the inverse at this point

-    bool InverseTransformPoint(double x, double y, double& tx, double& ty) const;

-

-    double Get_scaleX();

-    double Get_scaleY();

-    double GetRotation();

-    void   SetRotation(double rotation);

-

-

-public:

-    double  m_matrix[3][3];

-    bool    m_isIdentity;

-};

-

-

-/*

-Chris Breeze reported, that

-some functions of wxTransformMatrix cannot work because it is not

-known if he matrix has been inverted. Be careful when using it.

-*/

-

-// Transform X value from logical to device

-// warning: this function can only be used for this purpose

-// because no rotation is involved when mapping logical to device coordinates

-// mirror and scaling for x and y will be part of the matrix

-// if you have a matrix that is rotated, eg a shape containing a matrix to place

-// it in the logical coordinate system, use TransformPoint

-inline double wxTransformMatrix::TransformX(double x) const

-{

-    //normally like this, but since no rotation is involved (only mirror and scale)

-    //we can do without Y -> m_matrix[1]{0] is -sin(rotation angle) and therefore zero

-    //(x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]))

-    return (m_isIdentity ? x : (x * m_matrix[0][0] +  m_matrix[2][0]));

-}

-

-// Transform Y value from logical to device

-// warning: this function can only be used for this purpose

-// because no rotation is involved when mapping logical to device coordinates

-// mirror and scaling for x and y will be part of the matrix

-// if you have a matrix that is rotated, eg a shape containing a matrix to place

-// it in the logical coordinate system, use TransformPoint

-inline double wxTransformMatrix::TransformY(double y) const

-{

-    //normally like this, but since no rotation is involved (only mirror and scale)

-    //we can do without X -> m_matrix[0]{1] is sin(rotation angle) and therefore zero

-    //(x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]))

-    return (m_isIdentity ? y : (y * m_matrix[1][1] + m_matrix[2][1]));

-}

-

-

-// Is the matrix the identity matrix?

-// Each operation checks whether the result is still the identity matrix and sets a flag.

-inline bool wxTransformMatrix::IsIdentity1(void) const

-{

-    return

-    ( wxIsSameDouble(m_matrix[0][0], 1.0) &&

-      wxIsSameDouble(m_matrix[1][1], 1.0) &&

-      wxIsSameDouble(m_matrix[2][2], 1.0) &&

-      wxIsSameDouble(m_matrix[1][0], 0.0) &&

-      wxIsSameDouble(m_matrix[2][0], 0.0) &&

-      wxIsSameDouble(m_matrix[0][1], 0.0) &&

-      wxIsSameDouble(m_matrix[2][1], 0.0) &&

-      wxIsSameDouble(m_matrix[0][2], 0.0) &&

-      wxIsSameDouble(m_matrix[1][2], 0.0) );

-}

-

-// Calculates the determinant of a 2 x 2 matrix

-inline double wxCalculateDet(double a11, double a21, double a12, double a22)

-{

-    return a11 * a22 - a12 * a21;

-}
-

-#endif // _WX_MATRIXH__