diff options
Diffstat (limited to 'compiler/evalffi.nim')
-rw-r--r-- | compiler/evalffi.nim | 379 |
1 files changed, 198 insertions, 181 deletions
diff --git a/compiler/evalffi.nim b/compiler/evalffi.nim index e863c8995..9871c81af 100644 --- a/compiler/evalffi.nim +++ b/compiler/evalffi.nim @@ -9,76 +9,85 @@ ## This file implements the FFI part of the evaluator for Nim code. -import ast, astalgo, ropes, types, options, tables, dynlib, libffi, msgs, os +import ast, types, options, msgs, lineinfos +from std/os import getAppFilename +import libffi/libffi + +import std/[tables, dynlib] when defined(windows): const libcDll = "msvcrt.dll" -else: +elif defined(linux): const libcDll = "libc.so(.6|.5|)" +elif defined(openbsd): + const libcDll = "/usr/lib/libc.so(.95.1|)" +elif defined(bsd): + const libcDll = "/lib/libc.so.7" +elif defined(osx): + const libcDll = "/usr/lib/libSystem.dylib" +else: + {.error: "`libcDll` not implemented on this platform".} type - TDllCache = tables.TTable[string, TLibHandle] + TDllCache = tables.Table[string, LibHandle] var - gDllCache = initTable[string, TLibHandle]() + gDllCache = initTable[string, LibHandle]() when defined(windows): - var gExeHandle = loadLib(os.getAppFilename()) + var gExeHandle = loadLib(getAppFilename()) else: var gExeHandle = loadLib() -proc getDll(cache: var TDllCache; dll: string; info: TLineInfo): pointer = - result = cache[dll] +proc getDll(conf: ConfigRef, cache: var TDllCache; dll: string; info: TLineInfo): pointer = + result = nil + if dll in cache: + return cache[dll] + var libs: seq[string] = @[] + libCandidates(dll, libs) + for c in libs: + result = loadLib(c) + if not result.isNil: break if result.isNil: - var libs: seq[string] = @[] - libCandidates(dll, libs) - for c in libs: - result = loadLib(c) - if not result.isNil: break - if result.isNil: - globalError(info, "cannot load: " & dll) - cache[dll] = result + globalError(conf, info, "cannot load: " & dll) + cache[dll] = result const nkPtrLit = nkIntLit # hopefully we can get rid of this hack soon -var myerrno {.importc: "errno", header: "<errno.h>".}: cint ## error variable - -proc importcSymbol*(sym: PSym): PNode = - let name = ropeToStr(sym.loc.r) - +proc importcSymbol*(conf: ConfigRef, sym: PSym): PNode = + let name = sym.cname # $sym.loc.r would point to internal name # the AST does not support untyped pointers directly, so we use an nkIntLit # that contains the address instead: result = newNodeIT(nkPtrLit, sym.info, sym.typ) - case name - of "stdin": result.intVal = cast[ByteAddress](system.stdin) - of "stdout": result.intVal = cast[ByteAddress](system.stdout) - of "stderr": result.intVal = cast[ByteAddress](system.stderr) - of "vmErrnoWrapper": result.intVal = cast[ByteAddress](myerrno) - else: + when true: + var libPathMsg = "" let lib = sym.annex if lib != nil and lib.path.kind notin {nkStrLit..nkTripleStrLit}: - globalError(sym.info, "dynlib needs to be a string lit for the REPL") - var theAddr: pointer - if lib.isNil and not gExehandle.isNil: + globalError(conf, sym.info, "dynlib needs to be a string lit") + var theAddr: pointer = nil + if (lib.isNil or lib.kind == libHeader) and not gExeHandle.isNil: + libPathMsg = "current exe: " & getAppFilename() & " nor libc: " & libcDll # first try this exe itself: - theAddr = gExehandle.symAddr(name) + theAddr = gExeHandle.symAddr(name.cstring) # then try libc: if theAddr.isNil: - let dllhandle = gDllCache.getDll(libcDll, sym.info) - theAddr = dllhandle.symAddr(name) + let dllhandle = getDll(conf, gDllCache, libcDll, sym.info) + theAddr = dllhandle.symAddr(name.cstring) elif not lib.isNil: - let dllhandle = gDllCache.getDll(if lib.kind == libHeader: libcDll - else: lib.path.strVal, sym.info) - theAddr = dllhandle.symAddr(name) - if theAddr.isNil: globalError(sym.info, "cannot import: " & sym.name.s) - result.intVal = cast[ByteAddress](theAddr) - -proc mapType(t: ast.PType): ptr libffi.TType = + let dll = if lib.kind == libHeader: libcDll else: lib.path.strVal + libPathMsg = dll + let dllhandle = getDll(conf, gDllCache, dll, sym.info) + theAddr = dllhandle.symAddr(name.cstring) + if theAddr.isNil: globalError(conf, sym.info, + "cannot import symbol: " & name & " from " & libPathMsg) + result.intVal = cast[int](theAddr) + +proc mapType(conf: ConfigRef, t: ast.PType): ptr libffi.Type = if t == nil: return addr libffi.type_void case t.kind of tyBool, tyEnum, tyChar, tyInt..tyInt64, tyUInt..tyUInt64, tySet: - case t.getSize + case getSize(conf, t) of 1: result = addr libffi.type_uint8 of 2: result = addr libffi.type_sint16 of 4: result = addr libffi.type_sint32 @@ -86,93 +95,98 @@ proc mapType(t: ast.PType): ptr libffi.TType = else: result = nil of tyFloat, tyFloat64: result = addr libffi.type_double of tyFloat32: result = addr libffi.type_float - of tyVar, tyLent, tyPointer, tyPtr, tyRef, tyCString, tySequence, tyString, tyExpr, - tyStmt, tyTypeDesc, tyProc, tyArray, tyStatic, tyNil: + of tyVar, tyLent, tyPointer, tyPtr, tyRef, tyCstring, tySequence, tyString, tyUntyped, + tyTyped, tyTypeDesc, tyProc, tyArray, tyStatic, tyNil: result = addr libffi.type_pointer of tyDistinct, tyAlias, tySink: - result = mapType(t.sons[0]) + result = mapType(conf, t.skipModifier) else: result = nil # too risky: #of tyFloat128: result = addr libffi.type_longdouble -proc mapCallConv(cc: TCallingConvention, info: TLineInfo): TABI = +proc mapCallConv(conf: ConfigRef, cc: TCallingConvention, info: TLineInfo): TABI = case cc - of ccDefault: result = DEFAULT_ABI - of ccStdCall: result = when defined(windows): STDCALL else: DEFAULT_ABI + of ccNimCall: result = DEFAULT_ABI + of ccStdCall: result = when defined(windows) and defined(x86): STDCALL else: DEFAULT_ABI of ccCDecl: result = DEFAULT_ABI else: - globalError(info, "cannot map calling convention to FFI") + result = default(TABI) + globalError(conf, info, "cannot map calling convention to FFI") -template rd(T, p: untyped): untyped = (cast[ptr T](p))[] -template wr(T, p, v: untyped): untyped = (cast[ptr T](p))[] = v +template rd(typ, p: untyped): untyped = (cast[ptr typ](p))[] +template wr(typ, p, v: untyped): untyped = (cast[ptr typ](p))[] = v template `+!`(x, y: untyped): untyped = - cast[pointer](cast[ByteAddress](x) + y) + cast[pointer](cast[int](x) + y) -proc packSize(v: PNode, typ: PType): int = +proc packSize(conf: ConfigRef, v: PNode, typ: PType): int = ## computes the size of the blob case typ.kind of tyPtr, tyRef, tyVar, tyLent: if v.kind in {nkNilLit, nkPtrLit}: result = sizeof(pointer) else: - result = sizeof(pointer) + packSize(v.sons[0], typ.lastSon) + result = sizeof(pointer) + packSize(conf, v[0], typ.elementType) of tyDistinct, tyGenericInst, tyAlias, tySink: - result = packSize(v, typ.sons[0]) + result = packSize(conf, v, typ.skipModifier) of tyArray: # consider: ptr array[0..1000_000, int] which is common for interfacing; # we use the real length here instead if v.kind in {nkNilLit, nkPtrLit}: result = sizeof(pointer) elif v.len != 0: - result = v.len * packSize(v.sons[0], typ.sons[1]) + result = v.len * packSize(conf, v[0], typ.elementType) + else: + result = 0 else: - result = typ.getSize.int + result = getSize(conf, typ).int -proc pack(v: PNode, typ: PType, res: pointer) +proc pack(conf: ConfigRef, v: PNode, typ: PType, res: pointer) -proc getField(n: PNode; position: int): PSym = +proc getField(conf: ConfigRef, n: PNode; position: int): PSym = case n.kind of nkRecList: - for i in countup(0, sonsLen(n) - 1): - result = getField(n.sons[i], position) + result = nil + for i in 0..<n.len: + result = getField(conf, n[i], position) if result != nil: return of nkRecCase: - result = getField(n.sons[0], position) + result = getField(conf, n[0], position) if result != nil: return - for i in countup(1, sonsLen(n) - 1): - case n.sons[i].kind + for i in 1..<n.len: + case n[i].kind of nkOfBranch, nkElse: - result = getField(lastSon(n.sons[i]), position) + result = getField(conf, lastSon(n[i]), position) if result != nil: return - else: internalError(n.info, "getField(record case branch)") + else: internalError(conf, n.info, "getField(record case branch)") of nkSym: if n.sym.position == position: result = n.sym - else: discard + else: result = nil + else: result = nil -proc packObject(x: PNode, typ: PType, res: pointer) = - internalAssert x.kind in {nkObjConstr, nkPar, nkTupleConstr} +proc packObject(conf: ConfigRef, x: PNode, typ: PType, res: pointer) = + internalAssert conf, x.kind in {nkObjConstr, nkPar, nkTupleConstr} # compute the field's offsets: - discard typ.getSize - for i in countup(ord(x.kind == nkObjConstr), sonsLen(x) - 1): - var it = x.sons[i] + discard getSize(conf, typ) + for i in ord(x.kind == nkObjConstr)..<x.len: + var it = x[i] if it.kind == nkExprColonExpr: - internalAssert it.sons[0].kind == nkSym - let field = it.sons[0].sym - pack(it.sons[1], field.typ, res +! field.offset) + internalAssert conf, it[0].kind == nkSym + let field = it[0].sym + pack(conf, it[1], field.typ, res +! field.offset) elif typ.n != nil: - let field = getField(typ.n, i) - pack(it, field.typ, res +! field.offset) + let field = getField(conf, typ.n, i) + pack(conf, it, field.typ, res +! field.offset) else: # XXX: todo - globalError(x.info, "cannot pack unnamed tuple") + globalError(conf, x.info, "cannot pack unnamed tuple") const maxPackDepth = 20 var packRecCheck = 0 -proc pack(v: PNode, typ: PType, res: pointer) = - template awr(T, v: untyped): untyped = - wr(T, res, v) +proc pack(conf: ConfigRef, v: PNode, typ: PType, res: pointer) = + template awr(typ, v: untyped): untyped = + wr(typ, res, v) case typ.kind of tyBool: awr(bool, v.intVal != 0) @@ -188,18 +202,18 @@ proc pack(v: PNode, typ: PType, res: pointer) = of tyUInt32: awr(uint32, v.intVal.uint32) of tyUInt64: awr(uint64, v.intVal.uint64) of tyEnum, tySet: - case v.typ.getSize + case getSize(conf, v.typ) of 1: awr(uint8, v.intVal.uint8) of 2: awr(uint16, v.intVal.uint16) of 4: awr(int32, v.intVal.int32) of 8: awr(int64, v.intVal.int64) else: - globalError(v.info, "cannot map value to FFI (tyEnum, tySet)") + globalError(conf, v.info, "cannot map value to FFI (tyEnum, tySet)") of tyFloat: awr(float, v.floatVal) of tyFloat32: awr(float32, v.floatVal) of tyFloat64: awr(float64, v.floatVal) - of tyPointer, tyProc, tyCString, tyString: + of tyPointer, tyProc, tyCstring, tyString: if v.kind == nkNilLit: # nothing to do since the memory is 0 initialized anyway discard @@ -208,7 +222,7 @@ proc pack(v: PNode, typ: PType, res: pointer) = elif v.kind in {nkStrLit..nkTripleStrLit}: awr(cstring, cstring(v.strVal)) else: - globalError(v.info, "cannot map pointer/proc value to FFI") + globalError(conf, v.info, "cannot map pointer/proc value to FFI") of tyPtr, tyRef, tyVar, tyLent: if v.kind == nkNilLit: # nothing to do since the memory is 0 initialized anyway @@ -218,44 +232,44 @@ proc pack(v: PNode, typ: PType, res: pointer) = else: if packRecCheck > maxPackDepth: packRecCheck = 0 - globalError(v.info, "cannot map value to FFI " & typeToString(v.typ)) + globalError(conf, v.info, "cannot map value to FFI " & typeToString(v.typ)) inc packRecCheck - pack(v.sons[0], typ.lastSon, res +! sizeof(pointer)) + pack(conf, v[0], typ.elementType, res +! sizeof(pointer)) dec packRecCheck awr(pointer, res +! sizeof(pointer)) of tyArray: - let baseSize = typ.sons[1].getSize - for i in 0 ..< v.len: - pack(v.sons[i], typ.sons[1], res +! i * baseSize) + let baseSize = getSize(conf, typ.elementType) + for i in 0..<v.len: + pack(conf, v[i], typ.elementType, res +! i * baseSize) of tyObject, tyTuple: - packObject(v, typ, res) + packObject(conf, v, typ, res) of tyNil: discard of tyDistinct, tyGenericInst, tyAlias, tySink: - pack(v, typ.sons[0], res) + pack(conf, v, typ.skipModifier, res) else: - globalError(v.info, "cannot map value to FFI " & typeToString(v.typ)) + globalError(conf, v.info, "cannot map value to FFI " & typeToString(v.typ)) -proc unpack(x: pointer, typ: PType, n: PNode): PNode +proc unpack(conf: ConfigRef, x: pointer, typ: PType, n: PNode): PNode -proc unpackObjectAdd(x: pointer, n, result: PNode) = +proc unpackObjectAdd(conf: ConfigRef, x: pointer, n, result: PNode) = case n.kind of nkRecList: - for i in countup(0, sonsLen(n) - 1): - unpackObjectAdd(x, n.sons[i], result) + for i in 0..<n.len: + unpackObjectAdd(conf, x, n[i], result) of nkRecCase: - globalError(result.info, "case objects cannot be unpacked") + globalError(conf, result.info, "case objects cannot be unpacked") of nkSym: var pair = newNodeI(nkExprColonExpr, result.info, 2) - pair.sons[0] = n - pair.sons[1] = unpack(x +! n.sym.offset, n.sym.typ, nil) + pair[0] = n + pair[1] = unpack(conf, x +! n.sym.offset, n.sym.typ, nil) #echo "offset: ", n.sym.name.s, " ", n.sym.offset result.add pair else: discard -proc unpackObject(x: pointer, typ: PType, n: PNode): PNode = +proc unpackObject(conf: ConfigRef, x: pointer, typ: PType, n: PNode): PNode = # compute the field's offsets: - discard typ.getSize + discard getSize(conf, typ) # iterate over any actual field of 'n' ... if n is nil we need to create # the nkPar node: @@ -263,36 +277,36 @@ proc unpackObject(x: pointer, typ: PType, n: PNode): PNode = result = newNode(nkTupleConstr) result.typ = typ if typ.n.isNil: - internalError("cannot unpack unnamed tuple") - unpackObjectAdd(x, typ.n, result) + internalError(conf, "cannot unpack unnamed tuple") + unpackObjectAdd(conf, x, typ.n, result) else: result = n if result.kind notin {nkObjConstr, nkPar, nkTupleConstr}: - globalError(n.info, "cannot map value from FFI") + globalError(conf, n.info, "cannot map value from FFI") if typ.n.isNil: - globalError(n.info, "cannot unpack unnamed tuple") - for i in countup(ord(n.kind == nkObjConstr), sonsLen(n) - 1): - var it = n.sons[i] + globalError(conf, n.info, "cannot unpack unnamed tuple") + for i in ord(n.kind == nkObjConstr)..<n.len: + var it = n[i] if it.kind == nkExprColonExpr: - internalAssert it.sons[0].kind == nkSym - let field = it.sons[0].sym - it.sons[1] = unpack(x +! field.offset, field.typ, it.sons[1]) + internalAssert conf, it[0].kind == nkSym + let field = it[0].sym + it[1] = unpack(conf, x +! field.offset, field.typ, it[1]) else: - let field = getField(typ.n, i) - n.sons[i] = unpack(x +! field.offset, field.typ, it) + let field = getField(conf, typ.n, i) + n[i] = unpack(conf, x +! field.offset, field.typ, it) -proc unpackArray(x: pointer, typ: PType, n: PNode): PNode = +proc unpackArray(conf: ConfigRef, x: pointer, typ: PType, n: PNode): PNode = if n.isNil: result = newNode(nkBracket) result.typ = typ - newSeq(result.sons, lengthOrd(typ).int) + newSeq(result.sons, lengthOrd(conf, typ).toInt) else: result = n if result.kind != nkBracket: - globalError(n.info, "cannot map value from FFI") - let baseSize = typ.sons[1].getSize - for i in 0 ..< result.len: - result.sons[i] = unpack(x +! i * baseSize, typ.sons[1], result.sons[i]) + globalError(conf, n.info, "cannot map value from FFI") + let baseSize = getSize(conf, typ.elementType) + for i in 0..<result.len: + result[i] = unpack(conf, x +! i * baseSize, typ.elementType, result[i]) proc canonNodeKind(k: TNodeKind): TNodeKind = case k @@ -301,7 +315,7 @@ proc canonNodeKind(k: TNodeKind): TNodeKind = of nkStrLit..nkTripleStrLit: result = nkStrLit else: result = k -proc unpack(x: pointer, typ: PType, n: PNode): PNode = +proc unpack(conf: ConfigRef, x: pointer, typ: PType, n: PNode): PNode = template aw(k, v, field: untyped): untyped = if n.isNil: result = newNode(k) @@ -313,7 +327,7 @@ proc unpack(x: pointer, typ: PType, n: PNode): PNode = #echo "expected ", k, " but got ", result.kind #debug result return newNodeI(nkExceptBranch, n.info) - #globalError(n.info, "cannot map value from FFI") + #globalError(conf, n.info, "cannot map value from FFI") result.field = v template setNil() = @@ -323,7 +337,7 @@ proc unpack(x: pointer, typ: PType, n: PNode): PNode = else: reset n[] result = n - result.kind = nkNilLit + result[] = TNode(kind: nkNilLit) result.typ = typ template awi(kind, v: untyped): untyped = aw(kind, v, intVal) @@ -344,13 +358,14 @@ proc unpack(x: pointer, typ: PType, n: PNode): PNode = of tyUInt32: awi(nkUInt32Lit, rd(uint32, x).BiggestInt) of tyUInt64: awi(nkUInt64Lit, rd(uint64, x).BiggestInt) of tyEnum: - case typ.getSize + case getSize(conf, typ) of 1: awi(nkIntLit, rd(uint8, x).BiggestInt) of 2: awi(nkIntLit, rd(uint16, x).BiggestInt) of 4: awi(nkIntLit, rd(int32, x).BiggestInt) of 8: awi(nkIntLit, rd(int64, x).BiggestInt) else: - globalError(n.info, "cannot map value from FFI (tyEnum, tySet)") + result = nil + globalError(conf, n.info, "cannot map value from FFI (tyEnum, tySet)") of tyFloat: awf(nkFloatLit, rd(float, x)) of tyFloat32: awf(nkFloat32Lit, rd(float32, x)) of tyFloat64: awf(nkFloat64Lit, rd(float64, x)) @@ -363,24 +378,25 @@ proc unpack(x: pointer, typ: PType, n: PNode): PNode = # in their unboxed representation so nothing it to be unpacked: result = n else: - awi(nkPtrLit, cast[ByteAddress](p)) + awi(nkPtrLit, cast[int](p)) of tyPtr, tyRef, tyVar, tyLent: let p = rd(pointer, x) if p.isNil: setNil() elif n == nil or n.kind == nkPtrLit: - awi(nkPtrLit, cast[ByteAddress](p)) + awi(nkPtrLit, cast[int](p)) elif n != nil and n.len == 1: - internalAssert n.kind == nkRefTy - n.sons[0] = unpack(p, typ.lastSon, n.sons[0]) + internalAssert(conf, n.kind == nkRefTy) + n[0] = unpack(conf, p, typ.elementType, n[0]) result = n else: - globalError(n.info, "cannot map value from FFI " & typeToString(typ)) + result = nil + globalError(conf, n.info, "cannot map value from FFI " & typeToString(typ)) of tyObject, tyTuple: - result = unpackObject(x, typ, n) + result = unpackObject(conf, x, typ, n) of tyArray: - result = unpackArray(x, typ, n) - of tyCString, tyString: + result = unpackArray(conf, x, typ, n) + of tyCstring, tyString: let p = rd(cstring, x) if p.isNil: setNil() @@ -389,14 +405,15 @@ proc unpack(x: pointer, typ: PType, n: PNode): PNode = of tyNil: setNil() of tyDistinct, tyGenericInst, tyAlias, tySink: - result = unpack(x, typ.lastSon, n) + result = unpack(conf, x, typ.skipModifier, n) else: # XXX what to do with 'array' here? - globalError(n.info, "cannot map value from FFI " & typeToString(typ)) + result = nil + globalError(conf, n.info, "cannot map value from FFI " & typeToString(typ)) -proc fficast*(x: PNode, destTyp: PType): PNode = +proc fficast*(conf: ConfigRef, x: PNode, destTyp: PType): PNode = if x.kind == nkPtrLit and x.typ.kind in {tyPtr, tyRef, tyVar, tyLent, tyPointer, - tyProc, tyCString, tyString, + tyProc, tyCstring, tyString, tySequence}: result = newNodeIT(x.kind, x.info, destTyp) result.intVal = x.intVal @@ -404,93 +421,93 @@ proc fficast*(x: PNode, destTyp: PType): PNode = result = newNodeIT(x.kind, x.info, destTyp) else: # we play safe here and allocate the max possible size: - let size = max(packSize(x, x.typ), packSize(x, destTyp)) + let size = max(packSize(conf, x, x.typ), packSize(conf, x, destTyp)) var a = alloc0(size) - pack(x, x.typ, a) + pack(conf, x, x.typ, a) # cast through a pointer needs a new inner object: let y = if x.kind == nkRefTy: newNodeI(nkRefTy, x.info, 1) else: x.copyTree y.typ = x.typ - result = unpack(a, destTyp, y) + result = unpack(conf, a, destTyp, y) dealloc a -proc callForeignFunction*(call: PNode): PNode = - internalAssert call.sons[0].kind == nkPtrLit +proc callForeignFunction*(conf: ConfigRef, call: PNode): PNode = + internalAssert conf, call[0].kind == nkPtrLit - var cif: TCif - var sig: TParamList + var cif: TCif = default(TCif) + var sig: ParamList = default(ParamList) # use the arguments' types for varargs support: - for i in 1..call.len-1: - sig[i-1] = mapType(call.sons[i].typ) + for i in 1..<call.len: + sig[i-1] = mapType(conf, call[i].typ) if sig[i-1].isNil: - globalError(call.info, "cannot map FFI type") - - let typ = call.sons[0].typ - if prep_cif(cif, mapCallConv(typ.callConv, call.info), cuint(call.len-1), - mapType(typ.sons[0]), sig) != OK: - globalError(call.info, "error in FFI call") - - var args: TArgList - let fn = cast[pointer](call.sons[0].intVal) - for i in 1 .. call.len-1: - var t = call.sons[i].typ - args[i-1] = alloc0(packSize(call.sons[i], t)) - pack(call.sons[i], t, args[i-1]) - let retVal = if isEmptyType(typ.sons[0]): pointer(nil) - else: alloc(typ.sons[0].getSize.int) + globalError(conf, call.info, "cannot map FFI type") + + let typ = call[0].typ + if prep_cif(cif, mapCallConv(conf, typ.callConv, call.info), cuint(call.len-1), + mapType(conf, typ.returnType), sig) != OK: + globalError(conf, call.info, "error in FFI call") + + var args: ArgList = default(ArgList) + let fn = cast[pointer](call[0].intVal) + for i in 1..<call.len: + var t = call[i].typ + args[i-1] = alloc0(packSize(conf, call[i], t)) + pack(conf, call[i], t, args[i-1]) + let retVal = if isEmptyType(typ.returnType): pointer(nil) + else: alloc(getSize(conf, typ.returnType).int) libffi.call(cif, fn, retVal, args) if retVal.isNil: result = newNode(nkEmpty) else: - result = unpack(retVal, typ.sons[0], nil) + result = unpack(conf, retVal, typ.returnType, nil) result.info = call.info if retVal != nil: dealloc retVal - for i in 1 .. call.len-1: - call.sons[i] = unpack(args[i-1], typ.sons[i], call[i]) + for i in 1..<call.len: + call[i] = unpack(conf, args[i-1], typ[i], call[i]) dealloc args[i-1] -proc callForeignFunction*(fn: PNode, fntyp: PType, +proc callForeignFunction*(conf: ConfigRef, fn: PNode, fntyp: PType, args: var TNodeSeq, start, len: int, info: TLineInfo): PNode = - internalAssert fn.kind == nkPtrLit + internalAssert conf, fn.kind == nkPtrLit - var cif: TCif - var sig: TParamList + var cif: TCif = default(TCif) + var sig: ParamList = default(ParamList) for i in 0..len-1: var aTyp = args[i+start].typ if aTyp.isNil: - internalAssert i+1 < fntyp.len - aTyp = fntyp.sons[i+1] + internalAssert conf, i+1 < fntyp.len + aTyp = fntyp[i+1] args[i+start].typ = aTyp - sig[i] = mapType(aTyp) - if sig[i].isNil: globalError(info, "cannot map FFI type") + sig[i] = mapType(conf, aTyp) + if sig[i].isNil: globalError(conf, info, "cannot map FFI type") - if prep_cif(cif, mapCallConv(fntyp.callConv, info), cuint(len), - mapType(fntyp.sons[0]), sig) != OK: - globalError(info, "error in FFI call") + if prep_cif(cif, mapCallConv(conf, fntyp.callConv, info), cuint(len), + mapType(conf, fntyp[0]), sig) != OK: + globalError(conf, info, "error in FFI call") - var cargs: TArgList + var cargs: ArgList = default(ArgList) let fn = cast[pointer](fn.intVal) - for i in 0 .. len-1: + for i in 0..len-1: let t = args[i+start].typ - cargs[i] = alloc0(packSize(args[i+start], t)) - pack(args[i+start], t, cargs[i]) - let retVal = if isEmptyType(fntyp.sons[0]): pointer(nil) - else: alloc(fntyp.sons[0].getSize.int) + cargs[i] = alloc0(packSize(conf, args[i+start], t)) + pack(conf, args[i+start], t, cargs[i]) + let retVal = if isEmptyType(fntyp[0]): pointer(nil) + else: alloc(getSize(conf, fntyp[0]).int) libffi.call(cif, fn, retVal, cargs) if retVal.isNil: result = newNode(nkEmpty) else: - result = unpack(retVal, fntyp.sons[0], nil) + result = unpack(conf, retVal, fntyp[0], nil) result.info = info if retVal != nil: dealloc retVal - for i in 0 .. len-1: + for i in 0..len-1: let t = args[i+start].typ - args[i+start] = unpack(cargs[i], t, args[i+start]) + args[i+start] = unpack(conf, cargs[i], t, args[i+start]) dealloc cargs[i] |