summary refs log tree commit diff stats
path: root/compiler/evalffi.nim
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/evalffi.nim')
-rw-r--r--compiler/evalffi.nim496
1 files changed, 0 insertions, 496 deletions
diff --git a/compiler/evalffi.nim b/compiler/evalffi.nim
deleted file mode 100644
index b1a23802d..000000000
--- a/compiler/evalffi.nim
+++ /dev/null
@@ -1,496 +0,0 @@
-#
-#
-#           The Nim Compiler
-#        (c) Copyright 2015 Andreas Rumpf
-#
-#    See the file "copying.txt", included in this
-#    distribution, for details about the copyright.
-#
-
-## This file implements the FFI part of the evaluator for Nim code.
-
-import ast, astalgo, ropes, types, options, tables, dynlib, libffi, msgs, os
-
-when defined(windows):
-  const libcDll = "msvcrt.dll"
-else:
-  const libcDll = "libc.so(.6|.5|)"
-
-type
-  TDllCache = tables.TTable[string, TLibHandle]
-var
-  gDllCache = initTable[string, TLibHandle]()
-
-when defined(windows):
-  var gExeHandle = loadLib(os.getAppFilename())
-else:
-  var gExeHandle = loadLib()
-
-proc getDll(cache: var TDllCache; dll: string; info: TLineInfo): pointer =
-  result = cache[dll]
-  if result.isNil:
-    var libs: seq[string] = @[]
-    libCandidates(dll, libs)
-    for c in libs:
-      result = loadLib(c)
-      if not result.isNil: break
-    if result.isNil:
-      globalError(info, "cannot load: " & dll)
-    cache[dll] = result
-
-const
-  nkPtrLit = nkIntLit # hopefully we can get rid of this hack soon
-
-var myerrno {.importc: "errno", header: "<errno.h>".}: cint ## error variable
-
-proc importcSymbol*(sym: PSym): PNode =
-  let name = ropeToStr(sym.loc.r)
-  
-  # the AST does not support untyped pointers directly, so we use an nkIntLit
-  # that contains the address instead:
-  result = newNodeIT(nkPtrLit, sym.info, sym.typ)
-  case name
-  of "stdin":  result.intVal = cast[TAddress](system.stdin)
-  of "stdout": result.intVal = cast[TAddress](system.stdout)
-  of "stderr": result.intVal = cast[TAddress](system.stderr)
-  of "vmErrnoWrapper": result.intVal = cast[TAddress](myerrno)
-  else:
-    let lib = sym.annex
-    if lib != nil and lib.path.kind notin {nkStrLit..nkTripleStrLit}:
-      globalError(sym.info, "dynlib needs to be a string lit for the REPL")
-    var theAddr: pointer
-    if lib.isNil and not gExehandle.isNil:
-      # first try this exe itself:
-      theAddr = gExehandle.symAddr(name)
-      # then try libc:
-      if theAddr.isNil:
-        let dllhandle = gDllCache.getDll(libcDll, sym.info)
-        theAddr = dllhandle.symAddr(name)
-    elif not lib.isNil:
-      let dllhandle = gDllCache.getDll(if lib.kind == libHeader: libcDll 
-                                       else: lib.path.strVal, sym.info)
-      theAddr = dllhandle.symAddr(name)
-    if theAddr.isNil: globalError(sym.info, "cannot import: " & sym.name.s)
-    result.intVal = cast[TAddress](theAddr)
-
-proc mapType(t: ast.PType): ptr libffi.TType =
-  if t == nil: return addr libffi.type_void
-  
-  case t.kind
-  of tyBool, tyEnum, tyChar, tyInt..tyInt64, tyUInt..tyUInt64, tySet:
-    case t.getSize
-    of 1: result = addr libffi.type_uint8
-    of 2: result = addr libffi.type_sint16
-    of 4: result = addr libffi.type_sint32
-    of 8: result = addr libffi.type_sint64
-    else: result = nil
-  of tyFloat, tyFloat64: result = addr libffi.type_double
-  of tyFloat32: result = addr libffi.type_float
-  of tyVar, tyPointer, tyPtr, tyRef, tyCString, tySequence, tyString, tyExpr,
-     tyStmt, tyTypeDesc, tyProc, tyArray, tyArrayConstr, tyStatic, tyNil:
-    result = addr libffi.type_pointer
-  of tyDistinct:
-    result = mapType(t.sons[0])
-  else:
-    result = nil
-  # too risky:
-  #of tyFloat128: result = addr libffi.type_longdouble
-
-proc mapCallConv(cc: TCallingConvention, info: TLineInfo): TABI =
-  case cc
-  of ccDefault: result = DEFAULT_ABI
-  of ccStdCall: result = when defined(windows): STDCALL else: DEFAULT_ABI
-  of ccCDecl: result = DEFAULT_ABI
-  else:
-    globalError(info, "cannot map calling convention to FFI")
-
-template rd(T, p: expr): expr {.immediate.} = (cast[ptr T](p))[]
-template wr(T, p, v: expr) {.immediate.} = (cast[ptr T](p))[] = v
-template `+!`(x, y: expr): expr {.immediate.} =
-  cast[pointer](cast[TAddress](x) + y)
-
-proc packSize(v: PNode, typ: PType): int =
-  ## computes the size of the blob
-  case typ.kind
-  of tyPtr, tyRef, tyVar:
-    if v.kind in {nkNilLit, nkPtrLit}:
-      result = sizeof(pointer)
-    else:
-      result = sizeof(pointer) + packSize(v.sons[0], typ.lastSon)
-  of tyDistinct, tyGenericInst:
-    result = packSize(v, typ.sons[0])
-  of tyArray, tyArrayConstr:
-    # consider: ptr array[0..1000_000, int] which is common for interfacing;
-    # we use the real length here instead
-    if v.kind in {nkNilLit, nkPtrLit}:
-      result = sizeof(pointer)
-    elif v.len != 0:
-      result = v.len * packSize(v.sons[0], typ.sons[1])
-  else:
-    result = typ.getSize.int
-
-proc pack(v: PNode, typ: PType, res: pointer)
-
-proc getField(n: PNode; position: int): PSym =
-  case n.kind
-  of nkRecList:
-    for i in countup(0, sonsLen(n) - 1):
-      result = getField(n.sons[i], position)
-      if result != nil: return 
-  of nkRecCase:
-    result = getField(n.sons[0], position)
-    if result != nil: return
-    for i in countup(1, sonsLen(n) - 1):
-      case n.sons[i].kind
-      of nkOfBranch, nkElse:
-        result = getField(lastSon(n.sons[i]), position)
-        if result != nil: return
-      else: internalError(n.info, "getField(record case branch)")
-  of nkSym:
-    if n.sym.position == position: result = n.sym
-  else: discard
-
-proc packObject(x: PNode, typ: PType, res: pointer) =
-  internalAssert x.kind in {nkObjConstr, nkPar}
-  # compute the field's offsets:
-  discard typ.getSize
-  for i in countup(ord(x.kind == nkObjConstr), sonsLen(x) - 1):
-    var it = x.sons[i]
-    if it.kind == nkExprColonExpr:
-      internalAssert it.sons[0].kind == nkSym
-      let field = it.sons[0].sym
-      pack(it.sons[1], field.typ, res +! field.offset)
-    elif typ.n != nil:
-      let field = getField(typ.n, i)
-      pack(it, field.typ, res +! field.offset)
-    else:
-      # XXX: todo
-      globalError(x.info, "cannot pack unnamed tuple")
-
-const maxPackDepth = 20
-var packRecCheck = 0
-
-proc pack(v: PNode, typ: PType, res: pointer) =
-  template awr(T, v: expr) {.immediate, dirty.} =
-    wr(T, res, v)
-
-  case typ.kind
-  of tyBool: awr(bool, v.intVal != 0)
-  of tyChar: awr(char, v.intVal.chr)
-  of tyInt:  awr(int, v.intVal.int)
-  of tyInt8: awr(int8, v.intVal.int8)
-  of tyInt16: awr(int16, v.intVal.int16)
-  of tyInt32: awr(int32, v.intVal.int32)
-  of tyInt64: awr(int64, v.intVal.int64)
-  of tyUInt: awr(uint, v.intVal.uint)
-  of tyUInt8: awr(uint8, v.intVal.uint8)
-  of tyUInt16: awr(uint16, v.intVal.uint16)
-  of tyUInt32: awr(uint32, v.intVal.uint32)
-  of tyUInt64: awr(uint64, v.intVal.uint64)
-  of tyEnum, tySet:
-    case v.typ.getSize
-    of 1: awr(uint8, v.intVal.uint8)
-    of 2: awr(uint16, v.intVal.uint16)
-    of 4: awr(int32, v.intVal.int32)
-    of 8: awr(int64, v.intVal.int64)
-    else:
-      globalError(v.info, "cannot map value to FFI (tyEnum, tySet)")
-  of tyFloat: awr(float, v.floatVal)
-  of tyFloat32: awr(float32, v.floatVal)
-  of tyFloat64: awr(float64, v.floatVal)
-  
-  of tyPointer, tyProc,  tyCString, tyString:
-    if v.kind == nkNilLit:
-      # nothing to do since the memory is 0 initialized anyway
-      discard
-    elif v.kind == nkPtrLit:
-      awr(pointer, cast[pointer](v.intVal))
-    elif v.kind in {nkStrLit..nkTripleStrLit}:
-      awr(cstring, cstring(v.strVal))
-    else:
-      globalError(v.info, "cannot map pointer/proc value to FFI")
-  of tyPtr, tyRef, tyVar:
-    if v.kind == nkNilLit:
-      # nothing to do since the memory is 0 initialized anyway
-      discard
-    elif v.kind == nkPtrLit:
-      awr(pointer, cast[pointer](v.intVal))
-    else:
-      if packRecCheck > maxPackDepth:
-        packRecCheck = 0
-        globalError(v.info, "cannot map value to FFI " & typeToString(v.typ))
-      inc packRecCheck
-      pack(v.sons[0], typ.lastSon, res +! sizeof(pointer))
-      dec packRecCheck
-      awr(pointer, res +! sizeof(pointer))
-  of tyArray, tyArrayConstr:
-    let baseSize = typ.sons[1].getSize
-    for i in 0 .. <v.len:
-      pack(v.sons[i], typ.sons[1], res +! i * baseSize)
-  of tyObject, tyTuple:
-    packObject(v, typ, res)
-  of tyNil:
-    discard
-  of tyDistinct, tyGenericInst:
-    pack(v, typ.sons[0], res)
-  else:
-    globalError(v.info, "cannot map value to FFI " & typeToString(v.typ))
-
-proc unpack(x: pointer, typ: PType, n: PNode): PNode
-
-proc unpackObjectAdd(x: pointer, n, result: PNode) =
-  case n.kind
-  of nkRecList:
-    for i in countup(0, sonsLen(n) - 1):
-      unpackObjectAdd(x, n.sons[i], result)
-  of nkRecCase:
-    globalError(result.info, "case objects cannot be unpacked")
-  of nkSym:
-    var pair = newNodeI(nkExprColonExpr, result.info, 2)
-    pair.sons[0] = n
-    pair.sons[1] = unpack(x +! n.sym.offset, n.sym.typ, nil)
-    #echo "offset: ", n.sym.name.s, " ", n.sym.offset
-    result.add pair
-  else: discard
-
-proc unpackObject(x: pointer, typ: PType, n: PNode): PNode =
-  # compute the field's offsets:
-  discard typ.getSize
-  
-  # iterate over any actual field of 'n' ... if n is nil we need to create
-  # the nkPar node:
-  if n.isNil:
-    result = newNode(nkPar)
-    result.typ = typ
-    if typ.n.isNil:
-      internalError("cannot unpack unnamed tuple")
-    unpackObjectAdd(x, typ.n, result)
-  else:
-    result = n
-    if result.kind notin {nkObjConstr, nkPar}:
-      globalError(n.info, "cannot map value from FFI")
-    if typ.n.isNil:
-      globalError(n.info, "cannot unpack unnamed tuple")
-    for i in countup(ord(n.kind == nkObjConstr), sonsLen(n) - 1):
-      var it = n.sons[i]
-      if it.kind == nkExprColonExpr:
-        internalAssert it.sons[0].kind == nkSym
-        let field = it.sons[0].sym
-        it.sons[1] = unpack(x +! field.offset, field.typ, it.sons[1])
-      else:
-        let field = getField(typ.n, i)
-        n.sons[i] = unpack(x +! field.offset, field.typ, it)
-
-proc unpackArray(x: pointer, typ: PType, n: PNode): PNode =
-  if n.isNil:
-    result = newNode(nkBracket)
-    result.typ = typ
-    newSeq(result.sons, lengthOrd(typ).int)
-  else:
-    result = n
-    if result.kind != nkBracket:
-      globalError(n.info, "cannot map value from FFI")
-  let baseSize = typ.sons[1].getSize
-  for i in 0 .. < result.len:
-    result.sons[i] = unpack(x +! i * baseSize, typ.sons[1], result.sons[i])
-
-proc canonNodeKind(k: TNodeKind): TNodeKind =
-  case k
-  of nkCharLit..nkUInt64Lit: result = nkIntLit
-  of nkFloatLit..nkFloat128Lit: result = nkFloatLit
-  of nkStrLit..nkTripleStrLit: result = nkStrLit
-  else: result = k
-
-proc unpack(x: pointer, typ: PType, n: PNode): PNode =
-  template aw(k, v, field: expr) {.immediate, dirty.} =
-    if n.isNil:
-      result = newNode(k)
-      result.typ = typ
-    else:
-      # check we have the right field:
-      result = n
-      if result.kind.canonNodeKind != k.canonNodeKind:
-        #echo "expected ", k, " but got ", result.kind
-        #debug result
-        return newNodeI(nkExceptBranch, n.info)
-        #globalError(n.info, "cannot map value from FFI")
-    result.field = v
-
-  template setNil() =
-    if n.isNil:
-      result = newNode(nkNilLit)
-      result.typ = typ
-    else:
-      reset n[]
-      result = n
-      result.kind = nkNilLit
-      result.typ = typ
-
-  template awi(kind, v: expr) {.immediate, dirty.} = aw(kind, v, intVal)
-  template awf(kind, v: expr) {.immediate, dirty.} = aw(kind, v, floatVal)
-  template aws(kind, v: expr) {.immediate, dirty.} = aw(kind, v, strVal)
-  
-  case typ.kind
-  of tyBool: awi(nkIntLit, rd(bool, x).ord)
-  of tyChar: awi(nkCharLit, rd(char, x).ord)
-  of tyInt:  awi(nkIntLit, rd(int, x))
-  of tyInt8: awi(nkInt8Lit, rd(int8, x))
-  of tyInt16: awi(nkInt16Lit, rd(int16, x))
-  of tyInt32: awi(nkInt32Lit, rd(int32, x))
-  of tyInt64: awi(nkInt64Lit, rd(int64, x))
-  of tyUInt: awi(nkUIntLit, rd(uint, x).BiggestInt)
-  of tyUInt8: awi(nkUInt8Lit, rd(uint8, x).BiggestInt)
-  of tyUInt16: awi(nkUInt16Lit, rd(uint16, x).BiggestInt)
-  of tyUInt32: awi(nkUInt32Lit, rd(uint32, x).BiggestInt)
-  of tyUInt64: awi(nkUInt64Lit, rd(uint64, x).BiggestInt)
-  of tyEnum:
-    case typ.getSize
-    of 1: awi(nkIntLit, rd(uint8, x).BiggestInt)
-    of 2: awi(nkIntLit, rd(uint16, x).BiggestInt)
-    of 4: awi(nkIntLit, rd(int32, x).BiggestInt)
-    of 8: awi(nkIntLit, rd(int64, x).BiggestInt)
-    else:
-      globalError(n.info, "cannot map value from FFI (tyEnum, tySet)")
-  of tyFloat: awf(nkFloatLit, rd(float, x))
-  of tyFloat32: awf(nkFloat32Lit, rd(float32, x))
-  of tyFloat64: awf(nkFloat64Lit, rd(float64, x))
-  of tyPointer, tyProc:
-    let p = rd(pointer, x)
-    if p.isNil:
-      setNil()
-    elif n != nil and n.kind == nkStrLit:
-      # we passed a string literal as a pointer; however strings are already
-      # in their unboxed representation so nothing it to be unpacked:
-      result = n
-    else:
-      awi(nkPtrLit, cast[TAddress](p))
-  of tyPtr, tyRef, tyVar:
-    let p = rd(pointer, x)
-    if p.isNil:
-      setNil()
-    elif n == nil or n.kind == nkPtrLit:
-      awi(nkPtrLit, cast[TAddress](p))
-    elif n != nil and n.len == 1:
-      internalAssert n.kind == nkRefTy
-      n.sons[0] = unpack(p, typ.lastSon, n.sons[0])
-      result = n
-    else:
-      globalError(n.info, "cannot map value from FFI " & typeToString(typ))
-  of tyObject, tyTuple:
-    result = unpackObject(x, typ, n)
-  of tyArray, tyArrayConstr:
-    result = unpackArray(x, typ, n)
-  of tyCString, tyString:
-    let p = rd(cstring, x)
-    if p.isNil:
-      setNil()
-    else:
-      aws(nkStrLit, $p)
-  of tyNil:
-    setNil()
-  of tyDistinct, tyGenericInst:
-    result = unpack(x, typ.sons[0], n)
-  else:
-    # XXX what to do with 'array' here?
-    globalError(n.info, "cannot map value from FFI " & typeToString(typ))
-
-proc fficast*(x: PNode, destTyp: PType): PNode =
-  if x.kind == nkPtrLit and x.typ.kind in {tyPtr, tyRef, tyVar, tyPointer, 
-                                           tyProc, tyCString, tyString, 
-                                           tySequence}:
-    result = newNodeIT(x.kind, x.info, destTyp)
-    result.intVal = x.intVal
-  elif x.kind == nkNilLit:
-    result = newNodeIT(x.kind, x.info, destTyp)
-  else:
-    # we play safe here and allocate the max possible size:
-    let size = max(packSize(x, x.typ), packSize(x, destTyp))
-    var a = alloc0(size)
-    pack(x, x.typ, a)
-    # cast through a pointer needs a new inner object:
-    let y = if x.kind == nkRefTy: newNodeI(nkRefTy, x.info, 1)
-            else: x.copyTree
-    y.typ = x.typ
-    result = unpack(a, destTyp, y)
-    dealloc a
-
-proc callForeignFunction*(call: PNode): PNode =
-  internalAssert call.sons[0].kind == nkPtrLit
-  
-  var cif: TCif
-  var sig: TParamList
-  # use the arguments' types for varargs support:
-  for i in 1..call.len-1:
-    sig[i-1] = mapType(call.sons[i].typ)
-    if sig[i-1].isNil:
-      globalError(call.info, "cannot map FFI type")
-  
-  let typ = call.sons[0].typ
-  if prep_cif(cif, mapCallConv(typ.callConv, call.info), cuint(call.len-1),
-              mapType(typ.sons[0]), sig) != OK:
-    globalError(call.info, "error in FFI call")
-  
-  var args: TArgList
-  let fn = cast[pointer](call.sons[0].intVal)
-  for i in 1 .. call.len-1:
-    var t = call.sons[i].typ
-    args[i-1] = alloc0(packSize(call.sons[i], t))
-    pack(call.sons[i], t, args[i-1])
-  let retVal = if isEmptyType(typ.sons[0]): pointer(nil)
-               else: alloc(typ.sons[0].getSize.int)
-
-  libffi.call(cif, fn, retVal, args)
-  
-  if retVal.isNil: 
-    result = emptyNode
-  else:
-    result = unpack(retVal, typ.sons[0], nil)
-    result.info = call.info
-
-  if retVal != nil: dealloc retVal
-  for i in 1 .. call.len-1:
-    call.sons[i] = unpack(args[i-1], typ.sons[i], call[i])
-    dealloc args[i-1]
-
-proc callForeignFunction*(fn: PNode, fntyp: PType,
-                          args: var TNodeSeq, start, len: int,
-                          info: TLineInfo): PNode =
-  internalAssert fn.kind == nkPtrLit
-  
-  var cif: TCif
-  var sig: TParamList
-  for i in 0..len-1:
-    var aTyp = args[i+start].typ
-    if aTyp.isNil:
-      internalAssert i+1 < fntyp.len
-      aTyp = fntyp.sons[i+1]
-      args[i+start].typ = aTyp
-    sig[i] = mapType(aTyp)
-    if sig[i].isNil: globalError(info, "cannot map FFI type")
-  
-  if prep_cif(cif, mapCallConv(fntyp.callConv, info), cuint(len),
-              mapType(fntyp.sons[0]), sig) != OK:
-    globalError(info, "error in FFI call")
-  
-  var cargs: TArgList
-  let fn = cast[pointer](fn.intVal)
-  for i in 0 .. len-1:
-    let t = args[i+start].typ
-    cargs[i] = alloc0(packSize(args[i+start], t))
-    pack(args[i+start], t, cargs[i])
-  let retVal = if isEmptyType(fntyp.sons[0]): pointer(nil)
-               else: alloc(fntyp.sons[0].getSize.int)
-
-  libffi.call(cif, fn, retVal, cargs)
-  
-  if retVal.isNil: 
-    result = emptyNode
-  else:
-    result = unpack(retVal, fntyp.sons[0], nil)
-    result.info = info
-
-  if retVal != nil: dealloc retVal
-  for i in 0 .. len-1:
-    let t = args[i+start].typ
-    args[i+start] = unpack(cargs[i], t, args[i+start])
-    dealloc cargs[i]