diff options
Diffstat (limited to 'compiler/semfold.nim')
-rw-r--r-- | compiler/semfold.nim | 532 |
1 files changed, 299 insertions, 233 deletions
diff --git a/compiler/semfold.nim b/compiler/semfold.nim index d2d36140d..daf9ce983 100644 --- a/compiler/semfold.nim +++ b/compiler/semfold.nim @@ -13,24 +13,18 @@ import strutils, options, ast, astalgo, trees, treetab, nimsets, times, nversion, platform, math, msgs, os, condsyms, idents, renderer, types, - commands, magicsys, saturate + commands, magicsys, modulegraphs, strtabs -proc getConstExpr*(m: PSym, n: PNode): PNode - # evaluates the constant expression or returns nil if it is no constant - # expression -proc evalOp*(m: TMagic, n, a, b, c: PNode): PNode -proc leValueConv*(a, b: PNode): bool -proc newIntNodeT*(intVal: BiggestInt, n: PNode): PNode -proc newFloatNodeT(floatVal: BiggestFloat, n: PNode): PNode -proc newStrNodeT*(strVal: string, n: PNode): PNode - -# implementation - -proc newIntNodeT(intVal: BiggestInt, n: PNode): PNode = +proc newIntNodeT*(intVal: BiggestInt, n: PNode; g: ModuleGraph): PNode = case skipTypes(n.typ, abstractVarRange).kind of tyInt: result = newIntNode(nkIntLit, intVal) - result.typ = getIntLitType(result) + # See bug #6989. 'pred' et al only produce an int literal type if the + # original type was 'int', not a distinct int etc. + if n.typ.kind == tyInt: + result.typ = getIntLitType(g, result) + else: + result.typ = n.typ # hrm, this is not correct: 1 + high(int) shouldn't produce tyInt64 ... #setIntLitType(result) of tyChar: @@ -41,20 +35,82 @@ proc newIntNodeT(intVal: BiggestInt, n: PNode): PNode = result.typ = n.typ result.info = n.info -proc newFloatNodeT(floatVal: BiggestFloat, n: PNode): PNode = +proc newFloatNodeT*(floatVal: BiggestFloat, n: PNode; g: ModuleGraph): PNode = result = newFloatNode(nkFloatLit, floatVal) if skipTypes(n.typ, abstractVarRange).kind == tyFloat: - result.typ = getFloatLitType(result) + result.typ = getFloatLitType(g, result) else: result.typ = n.typ result.info = n.info -proc newStrNodeT(strVal: string, n: PNode): PNode = +proc newStrNodeT*(strVal: string, n: PNode; g: ModuleGraph): PNode = result = newStrNode(nkStrLit, strVal) result.typ = n.typ result.info = n.info -proc ordinalValToString*(a: PNode): string = +proc getConstExpr*(m: PSym, n: PNode; g: ModuleGraph): PNode + # evaluates the constant expression or returns nil if it is no constant + # expression +proc evalOp*(m: TMagic, n, a, b, c: PNode; g: ModuleGraph): PNode + +proc checkInRange(n: PNode, res: BiggestInt): bool = + if res in firstOrd(n.typ)..lastOrd(n.typ): + result = true + +proc foldAdd(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode = + let res = a +% b + if ((res xor a) >= 0'i64 or (res xor b) >= 0'i64) and + checkInRange(n, res): + result = newIntNodeT(res, n, g) + +proc foldSub*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode = + let res = a -% b + if ((res xor a) >= 0'i64 or (res xor not b) >= 0'i64) and + checkInRange(n, res): + result = newIntNodeT(res, n, g) + +proc foldAbs*(a: BiggestInt, n: PNode; g: ModuleGraph): PNode = + if a != firstOrd(n.typ): + result = newIntNodeT(a, n, g) + +proc foldMod*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode = + if b != 0'i64: + result = newIntNodeT(a mod b, n, g) + +proc foldModU*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode = + if b != 0'i64: + result = newIntNodeT(a %% b, n, g) + +proc foldDiv*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode = + if b != 0'i64 and (a != firstOrd(n.typ) or b != -1'i64): + result = newIntNodeT(a div b, n, g) + +proc foldDivU*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode = + if b != 0'i64: + result = newIntNodeT(a /% b, n, g) + +proc foldMul*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode = + let res = a *% b + let floatProd = toBiggestFloat(a) * toBiggestFloat(b) + let resAsFloat = toBiggestFloat(res) + + # Fast path for normal case: small multiplicands, and no info + # is lost in either method. + if resAsFloat == floatProd and checkInRange(n, res): + return newIntNodeT(res, n, g) + + # Somebody somewhere lost info. Close enough, or way off? Note + # that a != 0 and b != 0 (else resAsFloat == floatProd == 0). + # The difference either is or isn't significant compared to the + # true value (of which floatProd is a good approximation). + + # abs(diff)/abs(prod) <= 1/32 iff + # 32 * abs(diff) <= abs(prod) -- 5 good bits is "close enough" + if 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd) and + checkInRange(n, res): + return newIntNodeT(res, n, g) + +proc ordinalValToString*(a: PNode; g: ModuleGraph): string = # because $ has the param ordinal[T], `a` is not necessarily an enum, but an # ordinal var x = getInt(a) @@ -66,14 +122,14 @@ proc ordinalValToString*(a: PNode): string = of tyEnum: var n = t.n for i in countup(0, sonsLen(n) - 1): - if n.sons[i].kind != nkSym: internalError(a.info, "ordinalValToString") + if n.sons[i].kind != nkSym: internalError(g.config, a.info, "ordinalValToString") var field = n.sons[i].sym if field.position == x: if field.ast == nil: return field.name.s else: return field.ast.strVal - internalError(a.info, "no symbol for ordinal value: " & $x) + internalError(g.config, a.info, "no symbol for ordinal value: " & $x) else: result = $x @@ -92,12 +148,12 @@ proc pickIntRange(a, b: PType): PType = proc isIntRangeOrLit(t: PType): bool = result = isIntRange(t) or isIntLit(t) -proc makeRange(typ: PType, first, last: BiggestInt): PType = +proc makeRange(typ: PType, first, last: BiggestInt; g: ModuleGraph): PType = let minA = min(first, last) let maxA = max(first, last) let lowerNode = newIntNode(nkIntLit, minA) if typ.kind == tyInt and minA == maxA: - result = getIntLitType(lowerNode) + result = getIntLitType(g, lowerNode) elif typ.kind in {tyUint, tyUInt64}: # these are not ordinal types, so you get no subrange type for these: result = typ @@ -109,7 +165,7 @@ proc makeRange(typ: PType, first, last: BiggestInt): PType = result.n = n addSonSkipIntLit(result, skipTypes(typ, {tyRange})) -proc makeRangeF(typ: PType, first, last: BiggestFloat): PType = +proc makeRangeF(typ: PType, first, last: BiggestFloat; g: ModuleGraph): PType = var n = newNode(nkRange) addSon(n, newFloatNode(nkFloatLit, min(first.float, last.float))) addSon(n, newFloatNode(nkFloatLit, max(first.float, last.float))) @@ -119,9 +175,9 @@ proc makeRangeF(typ: PType, first, last: BiggestFloat): PType = proc evalIs(n, a: PNode): PNode = # XXX: This should use the standard isOpImpl - internalAssert a.kind == nkSym and a.sym.kind == skType - internalAssert n.sonsLen == 3 and - n[2].kind in {nkStrLit..nkTripleStrLit, nkType} + #internalAssert a.kind == nkSym and a.sym.kind == skType + #internalAssert n.sonsLen == 3 and + # n[2].kind in {nkStrLit..nkTripleStrLit, nkType} let t1 = a.sym.typ @@ -145,125 +201,113 @@ proc evalIs(n, a: PNode): PNode = result = newIntNode(nkIntLit, ord(match)) result.typ = n.typ -proc evalOp(m: TMagic, n, a, b, c: PNode): PNode = +proc evalOp(m: TMagic, n, a, b, c: PNode; g: ModuleGraph): PNode = # b and c may be nil result = nil case m - of mOrd: result = newIntNodeT(getOrdValue(a), n) - of mChr: result = newIntNodeT(getInt(a), n) - of mUnaryMinusI, mUnaryMinusI64: result = newIntNodeT(- getInt(a), n) - of mUnaryMinusF64: result = newFloatNodeT(- getFloat(a), n) - of mNot: result = newIntNodeT(1 - getInt(a), n) - of mCard: result = newIntNodeT(nimsets.cardSet(a), n) - of mBitnotI: result = newIntNodeT(not getInt(a), n) - of mLengthArray: result = newIntNodeT(lengthOrd(a.typ), n) + of mOrd: result = newIntNodeT(getOrdValue(a), n, g) + of mChr: result = newIntNodeT(getInt(a), n, g) + of mUnaryMinusI, mUnaryMinusI64: result = newIntNodeT(- getInt(a), n, g) + of mUnaryMinusF64: result = newFloatNodeT(- getFloat(a), n, g) + of mNot: result = newIntNodeT(1 - getInt(a), n, g) + of mCard: result = newIntNodeT(nimsets.cardSet(a), n, g) + of mBitnotI: result = newIntNodeT(not getInt(a), n, g) + of mLengthArray: result = newIntNodeT(lengthOrd(a.typ), n, g) of mLengthSeq, mLengthOpenArray, mXLenSeq, mLengthStr, mXLenStr: if a.kind == nkNilLit: - result = newIntNodeT(0, n) + result = newIntNodeT(0, n, g) elif a.kind in {nkStrLit..nkTripleStrLit}: - result = newIntNodeT(len a.strVal, n) + result = newIntNodeT(len a.strVal, n, g) else: - result = newIntNodeT(sonsLen(a), n) # BUGFIX + result = newIntNodeT(sonsLen(a), n, g) of mUnaryPlusI, mUnaryPlusF64: result = a # throw `+` away of mToFloat, mToBiggestFloat: - result = newFloatNodeT(toFloat(int(getInt(a))), n) - of mToInt, mToBiggestInt: result = newIntNodeT(system.toInt(getFloat(a)), n) - of mAbsF64: result = newFloatNodeT(abs(getFloat(a)), n) - of mAbsI: - if getInt(a) >= 0: result = a - else: result = newIntNodeT(- getInt(a), n) + result = newFloatNodeT(toFloat(int(getInt(a))), n, g) + # XXX: Hides overflow/underflow + of mToInt, mToBiggestInt: result = newIntNodeT(system.toInt(getFloat(a)), n, g) + of mAbsF64: result = newFloatNodeT(abs(getFloat(a)), n, g) + of mAbsI: result = foldAbs(getInt(a), n, g) of mZe8ToI, mZe8ToI64, mZe16ToI, mZe16ToI64, mZe32ToI64, mZeIToI64: # byte(-128) = 1...1..1000_0000'64 --> 0...0..1000_0000'64 - result = newIntNodeT(getInt(a) and (`shl`(1, getSize(a.typ) * 8) - 1), n) - of mToU8: result = newIntNodeT(getInt(a) and 0x000000FF, n) - of mToU16: result = newIntNodeT(getInt(a) and 0x0000FFFF, n) - of mToU32: result = newIntNodeT(getInt(a) and 0x00000000FFFFFFFF'i64, n) - of mUnaryLt: result = newIntNodeT(getOrdValue(a) |-| 1, n) - of mSucc: result = newIntNodeT(getOrdValue(a) |+| getInt(b), n) - of mPred: result = newIntNodeT(getOrdValue(a) |-| getInt(b), n) - of mAddI: result = newIntNodeT(getInt(a) |+| getInt(b), n) - of mSubI: result = newIntNodeT(getInt(a) |-| getInt(b), n) - of mMulI: result = newIntNodeT(getInt(a) |*| getInt(b), n) + result = newIntNodeT(getInt(a) and (`shl`(1, getSize(a.typ) * 8) - 1), n, g) + of mToU8: result = newIntNodeT(getInt(a) and 0x000000FF, n, g) + of mToU16: result = newIntNodeT(getInt(a) and 0x0000FFFF, n, g) + of mToU32: result = newIntNodeT(getInt(a) and 0x00000000FFFFFFFF'i64, n, g) + of mUnaryLt: result = foldSub(getOrdValue(a), 1, n, g) + of mSucc: result = foldAdd(getOrdValue(a), getInt(b), n, g) + of mPred: result = foldSub(getOrdValue(a), getInt(b), n, g) + of mAddI: result = foldAdd(getInt(a), getInt(b), n, g) + of mSubI: result = foldSub(getInt(a), getInt(b), n, g) + of mMulI: result = foldMul(getInt(a), getInt(b), n, g) of mMinI: - if getInt(a) > getInt(b): result = newIntNodeT(getInt(b), n) - else: result = newIntNodeT(getInt(a), n) + if getInt(a) > getInt(b): result = newIntNodeT(getInt(b), n, g) + else: result = newIntNodeT(getInt(a), n, g) of mMaxI: - if getInt(a) > getInt(b): result = newIntNodeT(getInt(a), n) - else: result = newIntNodeT(getInt(b), n) + if getInt(a) > getInt(b): result = newIntNodeT(getInt(a), n, g) + else: result = newIntNodeT(getInt(b), n, g) of mShlI: case skipTypes(n.typ, abstractRange).kind - of tyInt8: result = newIntNodeT(int8(getInt(a)) shl int8(getInt(b)), n) - of tyInt16: result = newIntNodeT(int16(getInt(a)) shl int16(getInt(b)), n) - of tyInt32: result = newIntNodeT(int32(getInt(a)) shl int32(getInt(b)), n) + of tyInt8: result = newIntNodeT(int8(getInt(a)) shl int8(getInt(b)), n, g) + of tyInt16: result = newIntNodeT(int16(getInt(a)) shl int16(getInt(b)), n, g) + of tyInt32: result = newIntNodeT(int32(getInt(a)) shl int32(getInt(b)), n, g) of tyInt64, tyInt, tyUInt..tyUInt64: - result = newIntNodeT(`shl`(getInt(a), getInt(b)), n) - else: internalError(n.info, "constant folding for shl") + result = newIntNodeT(`shl`(getInt(a), getInt(b)), n, g) + else: internalError(g.config, n.info, "constant folding for shl") of mShrI: case skipTypes(n.typ, abstractRange).kind - of tyInt8: result = newIntNodeT(int8(getInt(a)) shr int8(getInt(b)), n) - of tyInt16: result = newIntNodeT(int16(getInt(a)) shr int16(getInt(b)), n) - of tyInt32: result = newIntNodeT(int32(getInt(a)) shr int32(getInt(b)), n) + of tyInt8: result = newIntNodeT(int8(getInt(a)) shr int8(getInt(b)), n, g) + of tyInt16: result = newIntNodeT(int16(getInt(a)) shr int16(getInt(b)), n, g) + of tyInt32: result = newIntNodeT(int32(getInt(a)) shr int32(getInt(b)), n, g) of tyInt64, tyInt, tyUInt..tyUInt64: - result = newIntNodeT(`shr`(getInt(a), getInt(b)), n) - else: internalError(n.info, "constant folding for shr") - of mDivI: - let y = getInt(b) - if y != 0: - result = newIntNodeT(`|div|`(getInt(a), y), n) - of mModI: - let y = getInt(b) - if y != 0: - result = newIntNodeT(`|mod|`(getInt(a), y), n) - of mAddF64: result = newFloatNodeT(getFloat(a) + getFloat(b), n) - of mSubF64: result = newFloatNodeT(getFloat(a) - getFloat(b), n) - of mMulF64: result = newFloatNodeT(getFloat(a) * getFloat(b), n) + result = newIntNodeT(`shr`(getInt(a), getInt(b)), n, g) + else: internalError(g.config, n.info, "constant folding for shr") + of mDivI: result = foldDiv(getInt(a), getInt(b), n, g) + of mModI: result = foldMod(getInt(a), getInt(b), n, g) + of mAddF64: result = newFloatNodeT(getFloat(a) + getFloat(b), n, g) + of mSubF64: result = newFloatNodeT(getFloat(a) - getFloat(b), n, g) + of mMulF64: result = newFloatNodeT(getFloat(a) * getFloat(b), n, g) of mDivF64: if getFloat(b) == 0.0: - if getFloat(a) == 0.0: result = newFloatNodeT(NaN, n) - else: result = newFloatNodeT(Inf, n) + if getFloat(a) == 0.0: result = newFloatNodeT(NaN, n, g) + elif getFloat(b).classify == fcNegZero: result = newFloatNodeT(-Inf, n, g) + else: result = newFloatNodeT(Inf, n, g) else: - result = newFloatNodeT(getFloat(a) / getFloat(b), n) + result = newFloatNodeT(getFloat(a) / getFloat(b), n, g) of mMaxF64: - if getFloat(a) > getFloat(b): result = newFloatNodeT(getFloat(a), n) - else: result = newFloatNodeT(getFloat(b), n) + if getFloat(a) > getFloat(b): result = newFloatNodeT(getFloat(a), n, g) + else: result = newFloatNodeT(getFloat(b), n, g) of mMinF64: - if getFloat(a) > getFloat(b): result = newFloatNodeT(getFloat(b), n) - else: result = newFloatNodeT(getFloat(a), n) - of mIsNil: result = newIntNodeT(ord(a.kind == nkNilLit), n) + if getFloat(a) > getFloat(b): result = newFloatNodeT(getFloat(b), n, g) + else: result = newFloatNodeT(getFloat(a), n, g) + of mIsNil: result = newIntNodeT(ord(a.kind == nkNilLit), n, g) of mLtI, mLtB, mLtEnum, mLtCh: - result = newIntNodeT(ord(getOrdValue(a) < getOrdValue(b)), n) + result = newIntNodeT(ord(getOrdValue(a) < getOrdValue(b)), n, g) of mLeI, mLeB, mLeEnum, mLeCh: - result = newIntNodeT(ord(getOrdValue(a) <= getOrdValue(b)), n) + result = newIntNodeT(ord(getOrdValue(a) <= getOrdValue(b)), n, g) of mEqI, mEqB, mEqEnum, mEqCh: - result = newIntNodeT(ord(getOrdValue(a) == getOrdValue(b)), n) - of mLtF64: result = newIntNodeT(ord(getFloat(a) < getFloat(b)), n) - of mLeF64: result = newIntNodeT(ord(getFloat(a) <= getFloat(b)), n) - of mEqF64: result = newIntNodeT(ord(getFloat(a) == getFloat(b)), n) - of mLtStr: result = newIntNodeT(ord(getStr(a) < getStr(b)), n) - of mLeStr: result = newIntNodeT(ord(getStr(a) <= getStr(b)), n) - of mEqStr: result = newIntNodeT(ord(getStr(a) == getStr(b)), n) + result = newIntNodeT(ord(getOrdValue(a) == getOrdValue(b)), n, g) + of mLtF64: result = newIntNodeT(ord(getFloat(a) < getFloat(b)), n, g) + of mLeF64: result = newIntNodeT(ord(getFloat(a) <= getFloat(b)), n, g) + of mEqF64: result = newIntNodeT(ord(getFloat(a) == getFloat(b)), n, g) + of mLtStr: result = newIntNodeT(ord(getStr(a) < getStr(b)), n, g) + of mLeStr: result = newIntNodeT(ord(getStr(a) <= getStr(b)), n, g) + of mEqStr: result = newIntNodeT(ord(getStr(a) == getStr(b)), n, g) of mLtU, mLtU64: - result = newIntNodeT(ord(`<%`(getOrdValue(a), getOrdValue(b))), n) + result = newIntNodeT(ord(`<%`(getOrdValue(a), getOrdValue(b))), n, g) of mLeU, mLeU64: - result = newIntNodeT(ord(`<=%`(getOrdValue(a), getOrdValue(b))), n) - of mBitandI, mAnd: result = newIntNodeT(a.getInt and b.getInt, n) - of mBitorI, mOr: result = newIntNodeT(getInt(a) or getInt(b), n) - of mBitxorI, mXor: result = newIntNodeT(a.getInt xor b.getInt, n) - of mAddU: result = newIntNodeT(`+%`(getInt(a), getInt(b)), n) - of mSubU: result = newIntNodeT(`-%`(getInt(a), getInt(b)), n) - of mMulU: result = newIntNodeT(`*%`(getInt(a), getInt(b)), n) - of mModU: - let y = getInt(b) - if y != 0: - result = newIntNodeT(`%%`(getInt(a), y), n) - of mDivU: - let y = getInt(b) - if y != 0: - result = newIntNodeT(`/%`(getInt(a), y), n) - of mLeSet: result = newIntNodeT(ord(containsSets(a, b)), n) - of mEqSet: result = newIntNodeT(ord(equalSets(a, b)), n) + result = newIntNodeT(ord(`<=%`(getOrdValue(a), getOrdValue(b))), n, g) + of mBitandI, mAnd: result = newIntNodeT(a.getInt and b.getInt, n, g) + of mBitorI, mOr: result = newIntNodeT(getInt(a) or getInt(b), n, g) + of mBitxorI, mXor: result = newIntNodeT(a.getInt xor b.getInt, n, g) + of mAddU: result = newIntNodeT(`+%`(getInt(a), getInt(b)), n, g) + of mSubU: result = newIntNodeT(`-%`(getInt(a), getInt(b)), n, g) + of mMulU: result = newIntNodeT(`*%`(getInt(a), getInt(b)), n, g) + of mModU: result = foldModU(getInt(a), getInt(b), n, g) + of mDivU: result = foldDivU(getInt(a), getInt(b), n, g) + of mLeSet: result = newIntNodeT(ord(containsSets(a, b)), n, g) + of mEqSet: result = newIntNodeT(ord(equalSets(a, b)), n, g) of mLtSet: - result = newIntNodeT(ord(containsSets(a, b) and not equalSets(a, b)), n) + result = newIntNodeT(ord(containsSets(a, b) and not equalSets(a, b)), n, g) of mMulSet: result = nimsets.intersectSets(a, b) result.info = n.info @@ -276,120 +320,125 @@ proc evalOp(m: TMagic, n, a, b, c: PNode): PNode = of mSymDiffSet: result = nimsets.symdiffSets(a, b) result.info = n.info - of mConStrStr: result = newStrNodeT(getStrOrChar(a) & getStrOrChar(b), n) - of mInSet: result = newIntNodeT(ord(inSet(a, b)), n) + of mConStrStr: result = newStrNodeT(getStrOrChar(a) & getStrOrChar(b), n, g) + of mInSet: result = newIntNodeT(ord(inSet(a, b)), n, g) of mRepr: # BUGFIX: we cannot eval mRepr here for reasons that I forgot. discard - of mIntToStr, mInt64ToStr: result = newStrNodeT($(getOrdValue(a)), n) + of mIntToStr, mInt64ToStr: result = newStrNodeT($(getOrdValue(a)), n, g) of mBoolToStr: - if getOrdValue(a) == 0: result = newStrNodeT("false", n) - else: result = newStrNodeT("true", n) - of mCopyStr: result = newStrNodeT(substr(getStr(a), int(getOrdValue(b))), n) + if getOrdValue(a) == 0: result = newStrNodeT("false", n, g) + else: result = newStrNodeT("true", n, g) + of mCopyStr: result = newStrNodeT(substr(getStr(a), int(getOrdValue(b))), n, g) of mCopyStrLast: result = newStrNodeT(substr(getStr(a), int(getOrdValue(b)), - int(getOrdValue(c))), n) - of mFloatToStr: result = newStrNodeT($getFloat(a), n) + int(getOrdValue(c))), n, g) + of mFloatToStr: result = newStrNodeT($getFloat(a), n, g) of mCStrToStr, mCharToStr: if a.kind == nkBracket: var s = "" for b in a.sons: s.add b.getStrOrChar - result = newStrNodeT(s, n) + result = newStrNodeT(s, n, g) else: - result = newStrNodeT(getStrOrChar(a), n) + result = newStrNodeT(getStrOrChar(a), n, g) of mStrToStr: result = a - of mEnumToStr: result = newStrNodeT(ordinalValToString(a), n) + of mEnumToStr: result = newStrNodeT(ordinalValToString(a, g), n, g) of mArrToSeq: result = copyTree(a) result.typ = n.typ of mCompileOption: - result = newIntNodeT(ord(commands.testCompileOption(a.getStr, n.info)), n) + result = newIntNodeT(ord(commands.testCompileOption(g.config, a.getStr, n.info)), n, g) of mCompileOptionArg: result = newIntNodeT(ord( - testCompileOptionArg(getStr(a), getStr(b), n.info)), n) + testCompileOptionArg(g.config, getStr(a), getStr(b), n.info)), n, g) of mEqProc: result = newIntNodeT(ord( - exprStructuralEquivalent(a, b, strictSymEquality=true)), n) + exprStructuralEquivalent(a, b, strictSymEquality=true)), n, g) else: discard -proc getConstIfExpr(c: PSym, n: PNode): PNode = +proc getConstIfExpr(c: PSym, n: PNode; g: ModuleGraph): PNode = result = nil for i in countup(0, sonsLen(n) - 1): var it = n.sons[i] if it.len == 2: - var e = getConstExpr(c, it.sons[0]) + var e = getConstExpr(c, it.sons[0], g) if e == nil: return nil if getOrdValue(e) != 0: if result == nil: - result = getConstExpr(c, it.sons[1]) + result = getConstExpr(c, it.sons[1], g) if result == nil: return elif it.len == 1: - if result == nil: result = getConstExpr(c, it.sons[0]) - else: internalError(it.info, "getConstIfExpr()") + if result == nil: result = getConstExpr(c, it.sons[0], g) + else: internalError(g.config, it.info, "getConstIfExpr()") -proc leValueConv(a, b: PNode): bool = +proc leValueConv*(a, b: PNode): bool = result = false case a.kind of nkCharLit..nkUInt64Lit: case b.kind of nkCharLit..nkUInt64Lit: result = a.intVal <= b.intVal of nkFloatLit..nkFloat128Lit: result = a.intVal <= round(b.floatVal).int - else: internalError(a.info, "leValueConv") + else: result = false #internalError(a.info, "leValueConv") of nkFloatLit..nkFloat128Lit: case b.kind of nkFloatLit..nkFloat128Lit: result = a.floatVal <= b.floatVal of nkCharLit..nkUInt64Lit: result = a.floatVal <= toFloat(int(b.intVal)) - else: internalError(a.info, "leValueConv") - else: internalError(a.info, "leValueConv") + else: result = false # internalError(a.info, "leValueConv") + else: result = false # internalError(a.info, "leValueConv") -proc magicCall(m: PSym, n: PNode): PNode = +proc magicCall(m: PSym, n: PNode; g: ModuleGraph): PNode = if sonsLen(n) <= 1: return var s = n.sons[0].sym - var a = getConstExpr(m, n.sons[1]) + var a = getConstExpr(m, n.sons[1], g) var b, c: PNode if a == nil: return if sonsLen(n) > 2: - b = getConstExpr(m, n.sons[2]) + b = getConstExpr(m, n.sons[2], g) if b == nil: return if sonsLen(n) > 3: - c = getConstExpr(m, n.sons[3]) + c = getConstExpr(m, n.sons[3], g) if c == nil: return - result = evalOp(s.magic, n, a, b, c) - -proc getAppType(n: PNode): PNode = - if gGlobalOptions.contains(optGenDynLib): - result = newStrNodeT("lib", n) - elif gGlobalOptions.contains(optGenStaticLib): - result = newStrNodeT("staticlib", n) - elif gGlobalOptions.contains(optGenGuiApp): - result = newStrNodeT("gui", n) + result = evalOp(s.magic, n, a, b, c, g) + +proc getAppType(n: PNode; g: ModuleGraph): PNode = + if g.config.globalOptions.contains(optGenDynLib): + result = newStrNodeT("lib", n, g) + elif g.config.globalOptions.contains(optGenStaticLib): + result = newStrNodeT("staticlib", n, g) + elif g.config.globalOptions.contains(optGenGuiApp): + result = newStrNodeT("gui", n, g) else: - result = newStrNodeT("console", n) + result = newStrNodeT("console", n, g) -proc rangeCheck(n: PNode, value: BiggestInt) = - if value < firstOrd(n.typ) or value > lastOrd(n.typ): - localError(n.info, errGenerated, "cannot convert " & $value & +proc rangeCheck(n: PNode, value: BiggestInt; g: ModuleGraph) = + var err = false + if n.typ.skipTypes({tyRange}).kind in {tyUInt..tyUInt64}: + err = value <% firstOrd(n.typ) or value >% lastOrd(n.typ, fixedUnsigned=true) + else: + err = value < firstOrd(n.typ) or value > lastOrd(n.typ) + if err: + localError(g.config, n.info, "cannot convert " & $value & " to " & typeToString(n.typ)) -proc foldConv*(n, a: PNode; check = false): PNode = +proc foldConv*(n, a: PNode; g: ModuleGraph; check = false): PNode = # XXX range checks? case skipTypes(n.typ, abstractRange).kind of tyInt..tyInt64, tyUInt..tyUInt64: case skipTypes(a.typ, abstractRange).kind of tyFloat..tyFloat64: - result = newIntNodeT(int(getFloat(a)), n) - of tyChar: result = newIntNodeT(getOrdValue(a), n) + result = newIntNodeT(int(getFloat(a)), n, g) + of tyChar: result = newIntNodeT(getOrdValue(a), n, g) else: result = a result.typ = n.typ if check and result.kind in {nkCharLit..nkUInt64Lit}: - rangeCheck(n, result.intVal) + rangeCheck(n, result.intVal, g) of tyFloat..tyFloat64: case skipTypes(a.typ, abstractRange).kind of tyInt..tyInt64, tyEnum, tyBool, tyChar: - result = newFloatNodeT(toBiggestFloat(getOrdValue(a)), n) + result = newFloatNodeT(toBiggestFloat(getOrdValue(a)), n, g) else: result = a result.typ = n.typ @@ -399,47 +448,47 @@ proc foldConv*(n, a: PNode; check = false): PNode = result = a result.typ = n.typ -proc getArrayConstr(m: PSym, n: PNode): PNode = +proc getArrayConstr(m: PSym, n: PNode; g: ModuleGraph): PNode = if n.kind == nkBracket: result = n else: - result = getConstExpr(m, n) + result = getConstExpr(m, n, g) if result == nil: result = n -proc foldArrayAccess(m: PSym, n: PNode): PNode = - var x = getConstExpr(m, n.sons[0]) - if x == nil or x.typ.skipTypes({tyGenericInst, tyAlias}).kind == tyTypeDesc: +proc foldArrayAccess(m: PSym, n: PNode; g: ModuleGraph): PNode = + var x = getConstExpr(m, n.sons[0], g) + if x == nil or x.typ.skipTypes({tyGenericInst, tyAlias, tySink}).kind == tyTypeDesc: return - var y = getConstExpr(m, n.sons[1]) + var y = getConstExpr(m, n.sons[1], g) if y == nil: return var idx = getOrdValue(y) case x.kind - of nkPar: + of nkPar, nkTupleConstr: if idx >= 0 and idx < sonsLen(x): result = x.sons[int(idx)] if result.kind == nkExprColonExpr: result = result.sons[1] else: - localError(n.info, errIndexOutOfBounds) + localError(g.config, n.info, "index out of bounds: " & $n) of nkBracket: idx = idx - x.typ.firstOrd if idx >= 0 and idx < x.len: result = x.sons[int(idx)] - else: localError(n.info, errIndexOutOfBounds) + else: localError(g.config, n.info, "index out of bounds: " & $n) of nkStrLit..nkTripleStrLit: result = newNodeIT(nkCharLit, x.info, n.typ) if idx >= 0 and idx < len(x.strVal): result.intVal = ord(x.strVal[int(idx)]) - elif idx == len(x.strVal): + elif idx == len(x.strVal) and optLaxStrings in g.config.options: discard else: - localError(n.info, errIndexOutOfBounds) + localError(g.config, n.info, "index out of bounds: " & $n) else: discard -proc foldFieldAccess(m: PSym, n: PNode): PNode = +proc foldFieldAccess(m: PSym, n: PNode; g: ModuleGraph): PNode = # a real field access; proc calls have already been transformed - var x = getConstExpr(m, n.sons[0]) - if x == nil or x.kind notin {nkObjConstr, nkPar}: return + var x = getConstExpr(m, n.sons[0], g) + if x == nil or x.kind notin {nkObjConstr, nkPar, nkTupleConstr}: return var field = n.sons[1].sym for i in countup(ord(x.kind == nkObjConstr), sonsLen(x) - 1): @@ -452,13 +501,13 @@ proc foldFieldAccess(m: PSym, n: PNode): PNode = if it.sons[0].sym.name.id == field.name.id: result = x.sons[i].sons[1] return - localError(n.info, errFieldXNotFound, field.name.s) + localError(g.config, n.info, "field not found: " & field.name.s) -proc foldConStrStr(m: PSym, n: PNode): PNode = +proc foldConStrStr(m: PSym, n: PNode; g: ModuleGraph): PNode = result = newNodeIT(nkStrLit, n.info, n.typ) result.strVal = "" for i in countup(1, sonsLen(n) - 1): - let a = getConstExpr(m, n.sons[i]) + let a = getConstExpr(m, n.sons[i], g) if a == nil: return nil result.strVal.add(getStrOrChar(a)) @@ -470,37 +519,55 @@ proc newSymNodeTypeDesc*(s: PSym; info: TLineInfo): PNode = else: result.typ = s.typ -proc getConstExpr(m: PSym, n: PNode): PNode = +proc getConstExpr(m: PSym, n: PNode; g: ModuleGraph): PNode = result = nil + + proc getSrcTimestamp(): DateTime = + try: + result = utc(fromUnix(parseInt(getEnv("SOURCE_DATE_EPOCH", + "not a number")))) + except ValueError: + # Environment variable malformed. + # https://reproducible-builds.org/specs/source-date-epoch/: "If the + # value is malformed, the build process SHOULD exit with a non-zero + # error code", which this doesn't do. This uses local time, because + # that maintains compatibility with existing usage. + result = local(getTime()) + case n.kind of nkSym: var s = n.sym case s.kind of skEnumField: - result = newIntNodeT(s.position, n) + result = newIntNodeT(s.position, n, g) of skConst: case s.magic - of mIsMainModule: result = newIntNodeT(ord(sfMainModule in m.flags), n) - of mCompileDate: result = newStrNodeT(times.getDateStr(), n) - of mCompileTime: result = newStrNodeT(times.getClockStr(), n) - of mCpuEndian: result = newIntNodeT(ord(CPU[targetCPU].endian), n) - of mHostOS: result = newStrNodeT(toLowerAscii(platform.OS[targetOS].name), n) - of mHostCPU: result = newStrNodeT(platform.CPU[targetCPU].name.toLowerAscii, n) - of mBuildOS: result = newStrNodeT(toLowerAscii(platform.OS[platform.hostOS].name), n) - of mBuildCPU: result = newStrNodeT(platform.CPU[platform.hostCPU].name.toLowerAscii, n) - of mAppType: result = getAppType(n) - of mNaN: result = newFloatNodeT(NaN, n) - of mInf: result = newFloatNodeT(Inf, n) - of mNegInf: result = newFloatNodeT(NegInf, n) + of mIsMainModule: result = newIntNodeT(ord(sfMainModule in m.flags), n, g) + of mCompileDate: result = newStrNodeT(format(getSrcTimestamp(), + "yyyy-MM-dd"), n, g) + of mCompileTime: result = newStrNodeT(format(getSrcTimestamp(), + "HH:mm:ss"), n, g) + of mCpuEndian: result = newIntNodeT(ord(CPU[targetCPU].endian), n, g) + of mHostOS: result = newStrNodeT(toLowerAscii(platform.OS[targetOS].name), n, g) + of mHostCPU: result = newStrNodeT(platform.CPU[targetCPU].name.toLowerAscii, n, g) + of mBuildOS: result = newStrNodeT(toLowerAscii(platform.OS[platform.hostOS].name), n, g) + of mBuildCPU: result = newStrNodeT(platform.CPU[platform.hostCPU].name.toLowerAscii, n, g) + of mAppType: result = getAppType(n, g) + of mNaN: result = newFloatNodeT(NaN, n, g) + of mInf: result = newFloatNodeT(Inf, n, g) + of mNegInf: result = newFloatNodeT(NegInf, n, g) of mIntDefine: - if isDefined(s.name): - result = newIntNodeT(lookupSymbol(s.name).parseInt, n) + if isDefined(g.config, s.name.s): + try: + result = newIntNodeT(g.config.symbols[s.name.s].parseInt, n, g) + except ValueError: + localError(g.config, n.info, "expression is not an integer literal") of mStrDefine: - if isDefined(s.name): - result = newStrNodeT(lookupSymbol(s.name), n) + if isDefined(g.config, s.name.s): + result = newStrNodeT(g.config.symbols[s.name.s], n, g) else: result = copyTree(s.ast) - of {skProc, skFunc, skMethod}: + of skProc, skFunc, skMethod: result = n of skType: # XXX gensym'ed symbols can come here and cannot be resolved. This is @@ -520,7 +587,7 @@ proc getConstExpr(m: PSym, n: PNode): PNode = of nkCharLit..nkNilLit: result = copyNode(n) of nkIfExpr: - result = getConstIfExpr(m, n) + result = getConstIfExpr(m, n, g) of nkCallKinds: if n.sons[0].kind != nkSym: return var s = n.sons[0].sym @@ -533,68 +600,67 @@ proc getConstExpr(m: PSym, n: PNode): PNode = of mSizeOf: var a = n.sons[1] if computeSize(a.typ) < 0: - localError(a.info, errCannotEvalXBecauseIncompletelyDefined, - "sizeof") + localError(g.config, a.info, "cannot evaluate 'sizeof' because its type is not defined completely") result = nil elif skipTypes(a.typ, typedescInst+{tyRange}).kind in IntegralTypes+NilableTypes+{tySet}: #{tyArray,tyObject,tyTuple}: - result = newIntNodeT(getSize(a.typ), n) + result = newIntNodeT(getSize(a.typ), n, g) else: result = nil # XXX: size computation for complex types is still wrong of mLow: - result = newIntNodeT(firstOrd(n.sons[1].typ), n) + result = newIntNodeT(firstOrd(n.sons[1].typ), n, g) of mHigh: if skipTypes(n.sons[1].typ, abstractVar).kind notin {tySequence, tyString, tyCString, tyOpenArray, tyVarargs}: - result = newIntNodeT(lastOrd(skipTypes(n[1].typ, abstractVar)), n) + result = newIntNodeT(lastOrd(skipTypes(n[1].typ, abstractVar)), n, g) else: - var a = getArrayConstr(m, n.sons[1]) + var a = getArrayConstr(m, n.sons[1], g) if a.kind == nkBracket: # we can optimize it away: - result = newIntNodeT(sonsLen(a)-1, n) + result = newIntNodeT(sonsLen(a)-1, n, g) of mLengthOpenArray: - var a = getArrayConstr(m, n.sons[1]) + var a = getArrayConstr(m, n.sons[1], g) if a.kind == nkBracket: # we can optimize it away! This fixes the bug ``len(134)``. - result = newIntNodeT(sonsLen(a), n) + result = newIntNodeT(sonsLen(a), n, g) else: - result = magicCall(m, n) + result = magicCall(m, n, g) of mLengthArray: # It doesn't matter if the argument is const or not for mLengthArray. # This fixes bug #544. - result = newIntNodeT(lengthOrd(n.sons[1].typ), n) + result = newIntNodeT(lengthOrd(n.sons[1].typ), n, g) of mAstToStr: - result = newStrNodeT(renderTree(n[1], {renderNoComments}), n) + result = newStrNodeT(renderTree(n[1], {renderNoComments}), n, g) of mConStrStr: - result = foldConStrStr(m, n) + result = foldConStrStr(m, n, g) of mIs: - let a = getConstExpr(m, n[1]) + let a = getConstExpr(m, n[1], g) if a != nil and a.kind == nkSym and a.sym.kind == skType: result = evalIs(n, a) else: - result = magicCall(m, n) + result = magicCall(m, n, g) except OverflowError: - localError(n.info, errOverOrUnderflow) + localError(g.config, n.info, "over- or underflow") except DivByZeroError: - localError(n.info, errConstantDivisionByZero) + localError(g.config, n.info, "division by zero") of nkAddr: - var a = getConstExpr(m, n.sons[0]) + var a = getConstExpr(m, n.sons[0], g) if a != nil: result = n n.sons[0] = a of nkBracket: result = copyTree(n) for i in countup(0, sonsLen(n) - 1): - var a = getConstExpr(m, n.sons[i]) + var a = getConstExpr(m, n.sons[i], g) if a == nil: return nil result.sons[i] = a incl(result.flags, nfAllConst) of nkRange: - var a = getConstExpr(m, n.sons[0]) + var a = getConstExpr(m, n.sons[0], g) if a == nil: return - var b = getConstExpr(m, n.sons[1]) + var b = getConstExpr(m, n.sons[1], g) if b == nil: return result = copyNode(n) addSon(result, a) @@ -602,7 +668,7 @@ proc getConstExpr(m: PSym, n: PNode): PNode = of nkCurly: result = copyTree(n) for i in countup(0, sonsLen(n) - 1): - var a = getConstExpr(m, n.sons[i]) + var a = getConstExpr(m, n.sons[i], g) if a == nil: return nil result.sons[i] = a incl(result.flags, nfAllConst) @@ -613,50 +679,50 @@ proc getConstExpr(m: PSym, n: PNode): PNode = # if a == nil: return nil # result.sons[i].sons[1] = a # incl(result.flags, nfAllConst) - of nkPar: + of nkPar, nkTupleConstr: # tuple constructor result = copyTree(n) if (sonsLen(n) > 0) and (n.sons[0].kind == nkExprColonExpr): for i in countup(0, sonsLen(n) - 1): - var a = getConstExpr(m, n.sons[i].sons[1]) + var a = getConstExpr(m, n.sons[i].sons[1], g) if a == nil: return nil result.sons[i].sons[1] = a else: for i in countup(0, sonsLen(n) - 1): - var a = getConstExpr(m, n.sons[i]) + var a = getConstExpr(m, n.sons[i], g) if a == nil: return nil result.sons[i] = a incl(result.flags, nfAllConst) of nkChckRangeF, nkChckRange64, nkChckRange: - var a = getConstExpr(m, n.sons[0]) + var a = getConstExpr(m, n.sons[0], g) if a == nil: return if leValueConv(n.sons[1], a) and leValueConv(a, n.sons[2]): result = a # a <= x and x <= b result.typ = n.typ else: - localError(n.info, errGenerated, `%`( - msgKindToString(errIllegalConvFromXtoY), - [typeToString(n.sons[0].typ), typeToString(n.typ)])) + localError(g.config, n.info, + "conversion from $1 to $2 is invalid" % + [typeToString(n.sons[0].typ), typeToString(n.typ)]) of nkStringToCString, nkCStringToString: - var a = getConstExpr(m, n.sons[0]) + var a = getConstExpr(m, n.sons[0], g) if a == nil: return result = a result.typ = n.typ of nkHiddenStdConv, nkHiddenSubConv, nkConv: - var a = getConstExpr(m, n.sons[1]) + var a = getConstExpr(m, n.sons[1], g) if a == nil: return - result = foldConv(n, a, check=n.kind == nkHiddenStdConv) + result = foldConv(n, a, g, check=n.kind == nkHiddenStdConv) of nkCast: - var a = getConstExpr(m, n.sons[1]) + var a = getConstExpr(m, n.sons[1], g) if a == nil: return if n.typ != nil and n.typ.kind in NilableTypes: # we allow compile-time 'cast' for pointer types: result = a result.typ = n.typ - of nkBracketExpr: result = foldArrayAccess(m, n) - of nkDotExpr: result = foldFieldAccess(m, n) + of nkBracketExpr: result = foldArrayAccess(m, n, g) + of nkDotExpr: result = foldFieldAccess(m, n, g) of nkStmtListExpr: if n.len == 2 and n[0].kind == nkComesFrom: - result = getConstExpr(m, n[1]) + result = getConstExpr(m, n[1], g) else: discard |