summary refs log tree commit diff stats
path: root/doc/manual.txt
diff options
context:
space:
mode:
Diffstat (limited to 'doc/manual.txt')
-rw-r--r--doc/manual.txt11
1 files changed, 8 insertions, 3 deletions
diff --git a/doc/manual.txt b/doc/manual.txt
index 10fe78336..144a3b2c0 100644
--- a/doc/manual.txt
+++ b/doc/manual.txt
@@ -3671,8 +3671,8 @@ once for each tested type and any static code included within them will also be
 executed once.
 
 
-Return Type Inference
----------------------
+Type inference with type classes
+--------------------------------
 
 If a type class is used as the return type of a proc and it won't be bound to
 a concrete type by some of the proc params, Nim will infer the return type
@@ -3681,13 +3681,18 @@ from the proc body. This is usually used with the ``auto`` type class:
 .. code-block:: nim
   proc makePair(a, b): auto = (first: a, second: b)
 
-The return type will be treated as additional generic param and can be
+The return type will be treated as an additional generic param and can be
 explicitly specified at call sites as any other generic param.
 
 Future versions of Nim may also support overloading based on the return type
 of the overloads. In such settings, the expected result type at call sites may 
 also influence the inferred return type.
 
+Likewise, if a type class is used in another position where Nim expects a
+concrete type (e.g. a variable declaration or a type coercion), Nim will try to
+infer the concrete type by applying the sane matching algorithm also used in
+overload resolution.
+
 
 Symbol lookup in generics
 -------------------------
reas Rumpf <rumpf_a@web.de> 2019-04-17 11:54:51 +0200 remove shadow warning, fixes #10732 (#11039)' href='/ahoang/Nim/commit/compiler/lineinfos.nim?h=devel&id=43832f8e575b472907579b74dca0797f8130baa8'>43832f8e5 ^
be95f8fdf ^

299ddda5f ^

3f29911a9 ^
669a56449 ^
52c363322 ^


9e37e3e5e ^
9852cf804 ^
4137a4dbf ^
669a56449 ^

8c1083d3b ^
669a56449 ^

9ecb1aae8 ^
d07489abf ^
3573a4f9c ^

669a56449 ^











de7436221 ^
669a56449 ^





9faad7591 ^
669a56449 ^











9852cf804 ^
1b6c4ed2b ^

669a56449 ^
be95f8fdf ^


669a56449 ^


83547ec76 ^
299ddda5f ^
3f29911a9 ^
669a56449 ^

da29222f8 ^
669a56449 ^




1255b3c86 ^
2dea92037 ^
52c363322 ^
669a56449 ^
c35232971 ^
1f2042411 ^
ddee8a362 ^
e64f1c7ee ^
669a56449 ^











8c1083d3b ^
bd689849f ^
669a56449 ^

e5ae7ceaa ^
669a56449 ^




dd8a6ef3a ^
9ecb1aae8 ^
669a56449 ^
d07489abf ^

3573a4f9c ^
d07489abf ^
669a56449 ^









a6682de00 ^

be95f8fdf ^
299ddda5f ^
3f29911a9 ^
669a56449 ^
52c363322 ^

669a56449 ^
d07489abf ^
9e37e3e5e ^
9852cf804 ^
4137a4dbf ^
669a56449 ^
8c1083d3b ^
9ecb1aae8 ^
3573a4f9c ^
d07489abf ^
669a56449 ^










0d0ea3a11 ^





669a56449 ^







d07489abf ^
dae545094 ^

43832f8e5 ^
dae545094 ^
3573a4f9c ^
dae545094 ^
0a8762eb7 ^
669a56449 ^

d07489abf ^
669a56449 ^




86556ebfd ^

669a56449 ^





c640bd2d1 ^
669a56449 ^


c94647aec ^
669a56449 ^


c640bd2d1 ^
669a56449 ^






















a6682de00 ^
669a56449 ^


d7ccd82ea ^


cb9110c43 ^
b3c3a4631 ^

669a56449 ^
c94647aec ^
796aafe7e ^
669a56449 ^




3d88d06b3 ^



669a56449 ^

cae197385 ^
669a56449 ^
cae197385 ^

669a56449 ^

8fc7cecfa ^
669a56449 ^







796aafe7e ^
669a56449 ^


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312