diff options
Diffstat (limited to 'lib/arithm.nim')
-rw-r--r-- | lib/arithm.nim | 316 |
1 files changed, 0 insertions, 316 deletions
diff --git a/lib/arithm.nim b/lib/arithm.nim deleted file mode 100644 index a0e8e3338..000000000 --- a/lib/arithm.nim +++ /dev/null @@ -1,316 +0,0 @@ -# -# -# Nimrod's Runtime Library -# (c) Copyright 2008 Andreas Rumpf -# -# See the file "copying.txt", included in this -# distribution, for details about the copyright. -# - - -# simple integer arithmetic with overflow checking - -proc raiseOverflow {.compilerproc, noinline.} = - # a single proc to reduce code size to a minimum - raise newException(EOverflow, "over- or underflow") - -proc raiseDivByZero {.compilerproc, noinline.} = - raise newException(EDivByZero, "divison by zero") - -proc addInt64(a, b: int64): int64 {.compilerProc, inline.} = - result = a +% b - if (result xor a) >= int64(0) or (result xor b) >= int64(0): - return result - raiseOverflow() - -proc subInt64(a, b: int64): int64 {.compilerProc, inline.} = - result = a -% b - if (result xor a) >= int64(0) or (result xor not b) >= int64(0): - return result - raiseOverflow() - -proc negInt64(a: int64): int64 {.compilerProc, inline.} = - if a != low(int64): return -a - raiseOverflow() - -proc absInt64(a: int64): int64 {.compilerProc, inline.} = - if a != low(int64): - if a >= 0: return a - else: return -a - raiseOverflow() - -proc divInt64(a, b: int64): int64 {.compilerProc, inline.} = - if b == int64(0): - raiseDivByZero() - if a == low(int64) and b == int64(-1): - raiseOverflow() - return a div b - -proc modInt64(a, b: int64): int64 {.compilerProc, inline.} = - if b == int64(0): - raiseDivByZero() - return a mod b - -# -# This code has been inspired by Python's source code. -# The native int product x*y is either exactly right or *way* off, being -# just the last n bits of the true product, where n is the number of bits -# in an int (the delivered product is the true product plus i*2**n for -# some integer i). -# -# The native float64 product x*y is subject to three -# rounding errors: on a sizeof(int)==8 box, each cast to double can lose -# info, and even on a sizeof(int)==4 box, the multiplication can lose info. -# But, unlike the native int product, it's not in *range* trouble: even -# if sizeof(int)==32 (256-bit ints), the product easily fits in the -# dynamic range of a float64. So the leading 50 (or so) bits of the float64 -# product are correct. -# -# We check these two ways against each other, and declare victory if they're -# approximately the same. Else, because the native int product is the only -# one that can lose catastrophic amounts of information, it's the native int -# product that must have overflowed. -# -proc mulInt64(a, b: int64): int64 {.compilerproc.} = - var - resAsFloat, floatProd: float64 - result = a *% b - floatProd = toBiggestFloat(a) # conversion - floatProd = floatProd * toBiggestFloat(b) - resAsFloat = toBiggestFloat(result) - - # Fast path for normal case: small multiplicands, and no info - # is lost in either method. - if resAsFloat == floatProd: return result - - # Somebody somewhere lost info. Close enough, or way off? Note - # that a != 0 and b != 0 (else resAsFloat == floatProd == 0). - # The difference either is or isn't significant compared to the - # true value (of which floatProd is a good approximation). - - # abs(diff)/abs(prod) <= 1/32 iff - # 32 * abs(diff) <= abs(prod) -- 5 good bits is "close enough" - if 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd): - return result - raiseOverflow() - - -proc absInt(a: int): int {.compilerProc, inline.} = - if a != low(int): - if a >= 0: return a - else: return -a - raiseOverflow() - -const - asmVersion = defined(I386) and (defined(vcc) or defined(wcc) or - defined(dmc) or defined(gcc) or defined(llvm_gcc)) - # my Version of Borland C++Builder does not have - # tasm32, which is needed for assembler blocks - # this is why Borland is not included in the 'when' - -when asmVersion and not defined(gcc) and not defined(llvm_gcc): - # assembler optimized versions for compilers that - # have an intel syntax assembler: - proc addInt(a, b: int): int {.compilerProc, pure.} = - # a in eax, and b in edx - asm """ - mov eax, `a` - add eax, `b` - jno theEnd - call `raiseOverflow` - theEnd: - """ - - proc subInt(a, b: int): int {.compilerProc, pure.} = - asm """ - mov eax, `a` - sub eax, `b` - jno theEnd - call `raiseOverflow` - theEnd: - """ - - proc negInt(a: int): int {.compilerProc, pure.} = - asm """ - mov eax, `a` - neg eax - jno theEnd - call `raiseOverflow` - theEnd: - """ - - proc divInt(a, b: int): int {.compilerProc, pure.} = - asm """ - mov eax, `a` - mov ecx, `b` - xor edx, edx - idiv ecx - jno theEnd - call `raiseOverflow` - theEnd: - """ - - proc modInt(a, b: int): int {.compilerProc, pure.} = - asm """ - mov eax, `a` - mov ecx, `b` - xor edx, edx - idiv ecx - jno theEnd - call `raiseOverflow` - theEnd: - mov eax, edx - """ - - proc mulInt(a, b: int): int {.compilerProc, pure.} = - asm """ - mov eax, `a` - mov ecx, `b` - xor edx, edx - imul ecx - jno theEnd - call `raiseOverflow` - theEnd: - """ - -elif false: # asmVersion and (defined(gcc) or defined(llvm_gcc)): - proc addInt(a, b: int): int {.compilerProc, inline.} = - # don't use a pure proc here! - asm """ - "addl %%ecx, %%eax\n" - "jno 1\n" - "call _raiseOverflow\n" - "1: \n" - :"=a"(`result`) - :"a"(`a`), "c"(`b`) - """ - - proc subInt(a, b: int): int {.compilerProc, inline.} = - asm """ "subl %%ecx,%%eax\n" - "jno 1\n" - "call _raiseOverflow\n" - "1: \n" - :"=a"(`result`) - :"a"(`a`), "c"(`b`) - """ - - proc mulInt(a, b: int): int {.compilerProc, inline.} = - asm """ "xorl %%edx, %%edx\n" - "imull %%ecx\n" - "jno 1\n" - "call _raiseOverflow\n" - "1: \n" - :"=a"(`result`) - :"a"(`a`), "c"(`b`) - :"%edx" - """ - - proc negInt(a: int): int {.compilerProc, inline.} = - asm """ "negl %%eax\n" - "jno 1\n" - "call _raiseOverflow\n" - "1: \n" - :"=a"(`result`) - :"a"(`a`) - """ - - proc divInt(a, b: int): int {.compilerProc, inline.} = - asm """ "xorl %%edx, %%edx\n" - "idivl %%ecx\n" - "jno 1\n" - "call _raiseOverflow\n" - "1: \n" - :"=a"(`result`) - :"a"(`a`), "c"(`b`) - :"%edx" - """ - - proc modInt(a, b: int): int {.compilerProc, inline.} = - asm """ "xorl %%edx, %%edx\n" - "idivl %%ecx\n" - "jno 1\n" - "call _raiseOverflow\n" - "1: \n" - "movl %%edx, %%eax" - :"=a"(`result`) - :"a"(`a`), "c"(`b`) - :"%edx" - """ - -# Platform independant versions of the above (slower!) -when not defined(addInt): - proc addInt(a, b: int): int {.compilerProc, inline.} = - result = a +% b - if (result xor a) >= 0 or (result xor b) >= 0: - return result - raiseOverflow() - -when not defined(subInt): - proc subInt(a, b: int): int {.compilerProc, inline.} = - result = a -% b - if (result xor a) >= 0 or (result xor not b) >= 0: - return result - raiseOverflow() - -when not defined(negInt): - proc negInt(a: int): int {.compilerProc, inline.} = - if a != low(int): return -a - raiseOverflow() - -when not defined(divInt): - proc divInt(a, b: int): int {.compilerProc, inline.} = - if b == 0: - raiseDivByZero() - if a == low(int) and b == -1: - raiseOverflow() - return a div b - -when not defined(modInt): - proc modInt(a, b: int): int {.compilerProc, inline.} = - if b == 0: - raiseDivByZero() - return a mod b - -when not defined(mulInt): - # - # This code has been inspired by Python's source code. - # The native int product x*y is either exactly right or *way* off, being - # just the last n bits of the true product, where n is the number of bits - # in an int (the delivered product is the true product plus i*2**n for - # some integer i). - # - # The native float64 product x*y is subject to three - # rounding errors: on a sizeof(int)==8 box, each cast to double can lose - # info, and even on a sizeof(int)==4 box, the multiplication can lose info. - # But, unlike the native int product, it's not in *range* trouble: even - # if sizeof(int)==32 (256-bit ints), the product easily fits in the - # dynamic range of a float64. So the leading 50 (or so) bits of the float64 - # product are correct. - # - # We check these two ways against each other, and declare victory if - # they're approximately the same. Else, because the native int product is - # the only one that can lose catastrophic amounts of information, it's the - # native int product that must have overflowed. - # - proc mulInt(a, b: int): int {.compilerProc.} = - var - resAsFloat, floatProd: float - - result = a *% b - floatProd = toFloat(a) * toFloat(b) - resAsFloat = toFloat(result) - - # Fast path for normal case: small multiplicands, and no info - # is lost in either method. - if resAsFloat == floatProd: return result - - # Somebody somewhere lost info. Close enough, or way off? Note - # that a != 0 and b != 0 (else resAsFloat == floatProd == 0). - # The difference either is or isn't significant compared to the - # true value (of which floatProd is a good approximation). - - # abs(diff)/abs(prod) <= 1/32 iff - # 32 * abs(diff) <= abs(prod) -- 5 good bits is "close enough" - if 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd): - return result - raiseOverflow() |