summary refs log tree commit diff stats
path: root/lib/pure/algorithm.nim
diff options
context:
space:
mode:
Diffstat (limited to 'lib/pure/algorithm.nim')
-rw-r--r--lib/pure/algorithm.nim917
1 files changed, 917 insertions, 0 deletions
diff --git a/lib/pure/algorithm.nim b/lib/pure/algorithm.nim
new file mode 100644
index 000000000..b12ed7cdd
--- /dev/null
+++ b/lib/pure/algorithm.nim
@@ -0,0 +1,917 @@
+#
+#
+#            Nim's Runtime Library
+#        (c) Copyright 2015 Andreas Rumpf
+#
+#    See the file "copying.txt", included in this
+#    distribution, for details about the copyright.
+#
+
+## This module implements some common generic algorithms on `openArray`s.
+##
+## Basic usage
+## ===========
+##
+
+runnableExamples:
+  type People = tuple
+    year: int
+    name: string
+
+  var a: seq[People]
+
+  a.add((2000, "John"))
+  a.add((2005, "Marie"))
+  a.add((2010, "Jane"))
+
+  # Sorting with default system.cmp
+  a.sort()
+  assert a == @[(year: 2000, name: "John"), (year: 2005, name: "Marie"),
+                (year: 2010, name: "Jane")]
+
+  proc myCmp(x, y: People): int =
+    cmp(x.name, y.name)
+
+  # Sorting with custom proc
+  a.sort(myCmp)
+  assert a == @[(year: 2010, name: "Jane"), (year: 2000, name: "John"),
+                (year: 2005, name: "Marie")]
+
+## See also
+## ========
+## * `sequtils module<sequtils.html>`_ for working with the built-in seq type
+## * `tables module<tables.html>`_ for sorting tables
+
+import std/private/since
+
+when defined(nimPreviewSlimSystem):
+  import std/assertions
+
+
+type
+  SortOrder* = enum
+    Descending, Ascending
+
+proc `*`*(x: int, order: SortOrder): int {.inline.} =
+  ## Flips the sign of `x` if `order == Descending`.
+  ## If `order == Ascending` then `x` is returned.
+  ##
+  ## `x` is supposed to be the result of a comparator, i.e.
+  ## | `< 0` for *less than*,
+  ## | `== 0` for *equal*,
+  ## | `> 0` for *greater than*.
+  runnableExamples:
+    assert -123 * Descending == 123
+    assert 123 * Descending == -123
+    assert -123 * Ascending == -123
+    assert 123 * Ascending == 123
+  var y = order.ord - 1
+  result = (x xor y) - y
+
+template fillImpl[T](a: var openArray[T], first, last: int, value: T) =
+  var x = first
+  while x <= last:
+    a[x] = value
+    inc(x)
+
+proc fill*[T](a: var openArray[T], first, last: Natural, value: T) =
+  ## Assigns `value` to all elements of the slice `a[first..last]`.
+  ##
+  ## If an invalid range is passed, it raises `IndexDefect`.
+  runnableExamples:
+    var a: array[6, int]
+    a.fill(1, 3, 9)
+    assert a == [0, 9, 9, 9, 0, 0]
+    a.fill(3, 5, 7)
+    assert a == [0, 9, 9, 7, 7, 7]
+    doAssertRaises(IndexDefect, a.fill(1, 7, 9))
+  fillImpl(a, first, last, value)
+
+proc fill*[T](a: var openArray[T], value: T) =
+  ## Assigns `value` to all elements of the container `a`.
+  runnableExamples:
+    var a: array[6, int]
+    a.fill(9)
+    assert a == [9, 9, 9, 9, 9, 9]
+    a.fill(4)
+    assert a == [4, 4, 4, 4, 4, 4]
+  fillImpl(a, 0, a.high, value)
+
+
+proc reverse*[T](a: var openArray[T], first, last: Natural) =
+  ## Reverses the slice `a[first..last]`.
+  ##
+  ## If an invalid range is passed, it raises `IndexDefect`.
+  ##
+  ## **See also:**
+  ## * `reversed proc<#reversed,openArray[T],Natural,int>`_ reverse a slice and returns a `seq[T]`
+  ## * `reversed proc<#reversed,openArray[T]>`_ reverse and returns a `seq[T]`
+  runnableExamples:
+    var a = [1, 2, 3, 4, 5, 6]
+    a.reverse(1, 3)
+    assert a == [1, 4, 3, 2, 5, 6]
+    a.reverse(1, 3)
+    assert a == [1, 2, 3, 4, 5, 6]
+    doAssertRaises(IndexDefect, a.reverse(1, 7))
+  var x = first
+  var y = last
+  while x < y:
+    swap(a[x], a[y])
+    dec(y)
+    inc(x)
+
+proc reverse*[T](a: var openArray[T]) =
+  ## Reverses the contents of the container `a`.
+  ##
+  ## **See also:**
+  ## * `reversed proc<#reversed,openArray[T],Natural,int>`_ reverse a slice and returns a `seq[T]`
+  ## * `reversed proc<#reversed,openArray[T]>`_ reverse and returns a `seq[T]`
+  runnableExamples:
+    var a = [1, 2, 3, 4, 5, 6]
+    a.reverse()
+    assert a == [6, 5, 4, 3, 2, 1]
+    a.reverse()
+    assert a == [1, 2, 3, 4, 5, 6]
+  # the max is needed, since a.high is -1 if a is empty
+  reverse(a, 0, max(0, a.high))
+
+proc reversed*[T](a: openArray[T]): seq[T] {.inline.} =
+  ## Returns the elements of `a` in reverse order.
+  ##
+  ## **See also:**
+  ## * `reverse proc<#reverse,openArray[T]>`_
+  runnableExamples:
+    assert [10, 11, 12].reversed == @[12, 11, 10]
+    assert seq[string].default.reversed == @[]
+  let n = a.len
+  result.setLen(n)
+  for i in 0..<n: result[i] = a[n - (i + 1)]
+
+proc reversed*[T](a: openArray[T], first: Natural, last: int): seq[T]
+  {.inline, deprecated: "use: `reversed(toOpenArray(a, first, last))`".} =
+  reversed(toOpenArray(a, first, last))
+
+when defined(nimHasEffectsOf):
+  {.experimental: "strictEffects".}
+else:
+  {.pragma: effectsOf.}
+
+proc binarySearch*[T, K](a: openArray[T], key: K,
+                         cmp: proc (x: T, y: K): int {.closure.}): int {.effectsOf: cmp.} =
+  ## Binary search for `key` in `a`. Return the index of `key` or -1 if not found.
+  ## Assumes that `a` is sorted according to `cmp`.
+  ##
+  ## `cmp` is the comparator function to use, the expected return values are
+  ## the same as those of system.cmp.
+  runnableExamples:
+    assert binarySearch(["a", "b", "c", "d"], "d", system.cmp[string]) == 3
+    assert binarySearch(["a", "b", "c", "d"], "c", system.cmp[string]) == 2
+  let len = a.len
+
+  if len == 0:
+    return -1
+
+  if len == 1:
+    if cmp(a[0], key) == 0:
+      return 0
+    else:
+      return -1
+
+  result = 0
+  if (len and (len - 1)) == 0:
+    # when `len` is a power of 2, a faster shr can be used.
+    var step = len shr 1
+    var cmpRes: int
+    while step > 0:
+      let i = result or step
+      cmpRes = cmp(a[i], key)
+      if cmpRes == 0:
+        return i
+
+      if cmpRes < 0:
+        result = i
+      step = step shr 1
+    if cmp(a[result], key) != 0: result = -1
+  else:
+    var b = len
+    var cmpRes: int
+    while result < b:
+      var mid = (result + b) shr 1
+      cmpRes = cmp(a[mid], key)
+      if cmpRes == 0:
+        return mid
+
+      if cmpRes < 0:
+        result = mid + 1
+      else:
+        b = mid
+    if result >= len or cmp(a[result], key) != 0: result = -1
+
+proc binarySearch*[T](a: openArray[T], key: T): int =
+  ## Binary search for `key` in `a`. Return the index of `key` or -1 if not found.
+  ## Assumes that `a` is sorted.
+  runnableExamples:
+    assert binarySearch([0, 1, 2, 3, 4], 4) == 4
+    assert binarySearch([0, 1, 2, 3, 4], 2) == 2
+  binarySearch(a, key, cmp[T])
+
+const
+  onlySafeCode = true
+
+proc lowerBound*[T, K](a: openArray[T], key: K,
+                       cmp: proc(x: T, k: K): int {.closure.}): int {.effectsOf: cmp.} =
+  ## Returns the index of the first element in `a` that is not less than
+  ## (i.e. greater or equal to) `key`, or last if no such element is found.
+  ## In other words if you have a sorted sequence and you call
+  ## `insert(thing, elm, lowerBound(thing, elm))`
+  ## the sequence will still be sorted.
+  ## Assumes that `a` is sorted according to `cmp`.
+  ##
+  ## If an invalid range is passed, it raises `IndexDefect`.
+  ##
+  ## This version uses `cmp` to compare the elements.
+  ## The expected return values are the same as those of `system.cmp`.
+  ##
+  ## **See also:**
+  ## * `upperBound proc<#upperBound,openArray[T],K,proc(T,K)>`_ sorted by `cmp` in the specified order
+  ## * `upperBound proc<#upperBound,openArray[T],T>`_
+  runnableExamples:
+    var arr = @[1, 2, 3, 5, 6, 7, 8, 9]
+    assert arr.lowerBound(3, system.cmp[int]) == 2
+    assert arr.lowerBound(4, system.cmp[int]) == 3
+    assert arr.lowerBound(5, system.cmp[int]) == 3
+    arr.insert(4, arr.lowerBound(4, system.cmp[int]))
+    assert arr == [1, 2, 3, 4, 5, 6, 7, 8, 9]
+  result = a.low
+  var count = a.high - a.low + 1
+  var step, pos: int
+  while count != 0:
+    step = count shr 1
+    pos = result + step
+    if cmp(a[pos], key) < 0:
+      result = pos + 1
+      count -= step + 1
+    else:
+      count = step
+
+proc lowerBound*[T](a: openArray[T], key: T): int = lowerBound(a, key, cmp[T])
+  ## Returns the index of the first element in `a` that is not less than
+  ## (i.e. greater or equal to) `key`, or last if no such element is found.
+  ## In other words if you have a sorted sequence and you call
+  ## `insert(thing, elm, lowerBound(thing, elm))`
+  ## the sequence will still be sorted.
+  ## Assumes that `a` is sorted.
+  ##
+  ## This version uses the default comparison function `cmp`.
+  ##
+  ## **See also:**
+  ## * `upperBound proc<#upperBound,openArray[T],K,proc(T,K)>`_ sorted by `cmp` in the specified order
+  ## * `upperBound proc<#upperBound,openArray[T],T>`_
+
+proc upperBound*[T, K](a: openArray[T], key: K,
+                       cmp: proc(x: T, k: K): int {.closure.}): int {.effectsOf: cmp.} =
+  ## Returns the index of the first element in `a` that is greater than
+  ## `key`, or last if no such element is found.
+  ## In other words if you have a sorted sequence and you call
+  ## `insert(thing, elm, upperBound(thing, elm))`
+  ## the sequence will still be sorted.
+  ## Assumes that `a` is sorted according to `cmp`.
+  ##
+  ## If an invalid range is passed, it raises `IndexDefect`.
+  ##
+  ## This version uses `cmp` to compare the elements. The expected
+  ## return values are the same as those of `system.cmp`.
+  ##
+  ## **See also:**
+  ## * `lowerBound proc<#lowerBound,openArray[T],K,proc(T,K)>`_ sorted by `cmp` in the specified order
+  ## * `lowerBound proc<#lowerBound,openArray[T],T>`_
+  runnableExamples:
+    var arr = @[1, 2, 3, 5, 6, 7, 8, 9]
+    assert arr.upperBound(2, system.cmp[int]) == 2
+    assert arr.upperBound(3, system.cmp[int]) == 3
+    assert arr.upperBound(4, system.cmp[int]) == 3
+    arr.insert(4, arr.upperBound(3, system.cmp[int]))
+    assert arr == [1, 2, 3, 4, 5, 6, 7, 8, 9]
+  result = a.low
+  var count = a.high - a.low + 1
+  var step, pos: int
+  while count != 0:
+    step = count shr 1
+    pos = result + step
+    if cmp(a[pos], key) <= 0:
+      result = pos + 1
+      count -= step + 1
+    else:
+      count = step
+
+proc upperBound*[T](a: openArray[T], key: T): int = upperBound(a, key, cmp[T])
+  ## Returns the index of the first element in `a` that is greater than
+  ## `key`, or last if no such element is found.
+  ## In other words if you have a sorted sequence and you call
+  ## `insert(thing, elm, upperBound(thing, elm))`
+  ## the sequence will still be sorted.
+  ## Assumes that `a` is sorted.
+  ##
+  ## This version uses the default comparison function `cmp`.
+  ##
+  ## **See also:**
+  ## * `lowerBound proc<#lowerBound,openArray[T],K,proc(T,K)>`_ sorted by `cmp` in the specified order
+  ## * `lowerBound proc<#lowerBound,openArray[T],T>`_
+
+template `<-`(a, b) =
+  when defined(gcDestructors):
+    a = move b
+  elif onlySafeCode:
+    shallowCopy(a, b)
+  else:
+    copyMem(addr(a), addr(b), sizeof(T))
+
+proc mergeAlt[T](a, b: var openArray[T], lo, m, hi: int,
+              cmp: proc (x, y: T): int {.closure.}, order: SortOrder) {.effectsOf: cmp.} =
+  # Optimization: If max(left) <= min(right) there is nothing to do!
+  # 1 2 3 4 ## 5 6 7 8
+  # -> O(n) for sorted arrays.
+  # On random data this saves up to 40% of mergeAlt calls.
+  if cmp(a[m], a[m+1]) * order <= 0: return
+  var j = lo
+  # copy a[j..m] into b:
+  assert j <= m
+  when onlySafeCode:
+    var bb = 0
+    while j <= m:
+      b[bb] <- a[j]
+      inc(bb)
+      inc(j)
+  else:
+    copyMem(addr(b[0]), addr(a[j]), sizeof(T)*(m-j+1))
+    j = m+1
+  var i = 0
+  var k = lo
+  # copy proper element back:
+  while k < j and j <= hi:
+    if cmp(b[i], a[j]) * order <= 0:
+      a[k] <- b[i]
+      inc(i)
+    else:
+      a[k] <- a[j]
+      inc(j)
+    inc(k)
+  # copy rest of b:
+  when onlySafeCode:
+    while k < j:
+      a[k] <- b[i]
+      inc(k)
+      inc(i)
+  else:
+    if k < j: copyMem(addr(a[k]), addr(b[i]), sizeof(T)*(j-k))
+
+func sort*[T](a: var openArray[T],
+              cmp: proc (x, y: T): int {.closure.},
+              order = SortOrder.Ascending) {.effectsOf: cmp.} =
+  ## Default Nim sort (an implementation of merge sort). The sorting
+  ## is guaranteed to be stable (that is, equal elements stay in the same order)
+  ## and the worst case is guaranteed to be O(n log n).
+  ## Sorts by `cmp` in the specified `order`.
+  ##
+  ## The current implementation uses an iterative
+  ## mergesort to achieve this. It uses a temporary sequence of
+  ## length `a.len div 2`. If you do not wish to provide your own
+  ## `cmp`, you may use `system.cmp` or instead call the overloaded
+  ## version of `sort`, which uses `system.cmp`.
+  ##
+  ##   ```nim
+  ##   sort(myIntArray, system.cmp[int])
+  ##   # do not use cmp[string] here as we want to use the specialized
+  ##   # overload:
+  ##   sort(myStrArray, system.cmp)
+  ##   ```
+  ##
+  ## You can inline adhoc comparison procs with the `do notation
+  ## <manual.html#procedures-do-notation>`_. Example:
+  ##
+  ##   ```nim
+  ##   people.sort do (x, y: Person) -> int:
+  ##     result = cmp(x.surname, y.surname)
+  ##     if result == 0:
+  ##       result = cmp(x.name, y.name)
+  ##   ```
+  ##
+  ## **See also:**
+  ## * `sort proc<#sort,openArray[T]>`_
+  ## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by `cmp` in the specified order
+  ## * `sorted proc<#sorted,openArray[T]>`_
+  ## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_
+  runnableExamples:
+    var d = ["boo", "fo", "barr", "qux"]
+    proc myCmp(x, y: string): int =
+      if x.len() > y.len() or x.len() == y.len(): 1
+      else: -1
+    sort(d, myCmp)
+    assert d == ["fo", "qux", "boo", "barr"]
+  var n = a.len
+  var b = newSeq[T](n div 2)
+  var s = 1
+  while s < n:
+    var m = n-1-s
+    while m >= 0:
+      mergeAlt(a, b, max(m-s+1, 0), m, m+s, cmp, order)
+      dec(m, s*2)
+    s = s*2
+
+proc sort*[T](a: var openArray[T], order = SortOrder.Ascending) = sort[T](a,
+    system.cmp[T], order)
+  ## Shortcut version of `sort` that uses `system.cmp[T]` as the comparison function.
+  ##
+  ## **See also:**
+  ## * `sort func<#sort,openArray[T],proc(T,T)>`_
+  ## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by `cmp` in the specified order
+  ## * `sorted proc<#sorted,openArray[T]>`_
+  ## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_
+
+proc sorted*[T](a: openArray[T], cmp: proc(x, y: T): int {.closure.},
+                order = SortOrder.Ascending): seq[T] {.effectsOf: cmp.} =
+  ## Returns `a` sorted by `cmp` in the specified `order`.
+  ##
+  ## **See also:**
+  ## * `sort func<#sort,openArray[T],proc(T,T)>`_
+  ## * `sort proc<#sort,openArray[T]>`_
+  ## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_
+  runnableExamples:
+    let
+      a = [2, 3, 1, 5, 4]
+      b = sorted(a, system.cmp[int])
+      c = sorted(a, system.cmp[int], Descending)
+      d = sorted(["adam", "dande", "brian", "cat"], system.cmp[string])
+    assert b == @[1, 2, 3, 4, 5]
+    assert c == @[5, 4, 3, 2, 1]
+    assert d == @["adam", "brian", "cat", "dande"]
+  result = newSeq[T](a.len)
+  for i in 0 .. a.high:
+    result[i] = a[i]
+  sort(result, cmp, order)
+
+proc sorted*[T](a: openArray[T], order = SortOrder.Ascending): seq[T] =
+  ## Shortcut version of `sorted` that uses `system.cmp[T]` as the comparison function.
+  ##
+  ## **See also:**
+  ## * `sort func<#sort,openArray[T],proc(T,T)>`_
+  ## * `sort proc<#sort,openArray[T]>`_
+  ## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_
+  runnableExamples:
+    let
+      a = [2, 3, 1, 5, 4]
+      b = sorted(a)
+      c = sorted(a, Descending)
+      d = sorted(["adam", "dande", "brian", "cat"])
+    assert b == @[1, 2, 3, 4, 5]
+    assert c == @[5, 4, 3, 2, 1]
+    assert d == @["adam", "brian", "cat", "dande"]
+  sorted[T](a, system.cmp[T], order)
+
+template sortedByIt*(seq1, op: untyped): untyped =
+  ## Convenience template around the `sorted` proc to reduce typing.
+  ##
+  ## The template injects the `it` variable which you can use directly in an
+  ## expression.
+  ##
+  ## Because the underlying `cmp()` is defined for tuples you can also do
+  ## a nested sort.
+  ##
+  ## **See also:**
+  ## * `sort func<#sort,openArray[T],proc(T,T)>`_
+  ## * `sort proc<#sort,openArray[T]>`_
+  ## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by `cmp` in the specified order
+  ## * `sorted proc<#sorted,openArray[T]>`_
+  runnableExamples:
+    type Person = tuple[name: string, age: int]
+    var
+      p1: Person = (name: "p1", age: 60)
+      p2: Person = (name: "p2", age: 20)
+      p3: Person = (name: "p3", age: 30)
+      p4: Person = (name: "p4", age: 30)
+      people = @[p1, p2, p4, p3]
+
+    assert people.sortedByIt(it.name) == @[(name: "p1", age: 60), (name: "p2",
+        age: 20), (name: "p3", age: 30), (name: "p4", age: 30)]
+    # Nested sort
+    assert people.sortedByIt((it.age, it.name)) == @[(name: "p2", age: 20),
+       (name: "p3", age: 30), (name: "p4", age: 30), (name: "p1", age: 60)]
+  var result = sorted(seq1, proc(x, y: typeof(items(seq1), typeOfIter)): int =
+    var it {.inject.} = x
+    let a = op
+    it = y
+    let b = op
+    result = cmp(a, b))
+  result
+
+func isSorted*[T](a: openArray[T],
+                 cmp: proc(x, y: T): int {.closure.},
+                 order = SortOrder.Ascending): bool {.effectsOf: cmp.} =
+  ## Checks to see whether `a` is already sorted in `order`
+  ## using `cmp` for the comparison. The parameters are identical
+  ## to `sort`. Requires O(n) time.
+  ##
+  ## **See also:**
+  ## * `isSorted proc<#isSorted,openArray[T]>`_
+  runnableExamples:
+    let
+      a = [2, 3, 1, 5, 4]
+      b = [1, 2, 3, 4, 5]
+      c = [5, 4, 3, 2, 1]
+      d = ["adam", "brian", "cat", "dande"]
+      e = ["adam", "dande", "brian", "cat"]
+    assert isSorted(a) == false
+    assert isSorted(b) == true
+    assert isSorted(c) == false
+    assert isSorted(c, Descending) == true
+    assert isSorted(d) == true
+    assert isSorted(e) == false
+  result = true
+  for i in 0..<len(a)-1:
+    if cmp(a[i], a[i+1]) * order > 0:
+      return false
+
+proc isSorted*[T](a: openArray[T], order = SortOrder.Ascending): bool =
+  ## Shortcut version of `isSorted` that uses `system.cmp[T]` as the comparison function.
+  ##
+  ## **See also:**
+  ## * `isSorted func<#isSorted,openArray[T],proc(T,T)>`_
+  runnableExamples:
+    let
+      a = [2, 3, 1, 5, 4]
+      b = [1, 2, 3, 4, 5]
+      c = [5, 4, 3, 2, 1]
+      d = ["adam", "brian", "cat", "dande"]
+      e = ["adam", "dande", "brian", "cat"]
+    assert isSorted(a) == false
+    assert isSorted(b) == true
+    assert isSorted(c) == false
+    assert isSorted(c, Descending) == true
+    assert isSorted(d) == true
+    assert isSorted(e) == false
+  isSorted(a, system.cmp[T], order)
+
+proc merge*[T](
+  result: var seq[T],
+  x, y: openArray[T], cmp: proc(x, y: T): int {.closure.}
+) {.since: (1, 5, 1), effectsOf: cmp.} =
+  ## Merges two sorted `openArray`. `x` and `y` are assumed to be sorted.
+  ## If you do not wish to provide your own `cmp`,
+  ## you may use `system.cmp` or instead call the overloaded
+  ## version of `merge`, which uses `system.cmp`.
+  ##
+  ## .. note:: The original data of `result` is not cleared,
+  ##    new data is appended to `result`.
+  ##
+  ## **See also:**
+  ## * `merge proc<#merge,seq[T],openArray[T],openArray[T]>`_
+  runnableExamples:
+    let x = @[1, 3, 6]
+    let y = @[2, 3, 4]
+
+    block:
+      var merged = @[7] # new data is appended to merged sequence
+      merged.merge(x, y, system.cmp[int])
+      assert merged == @[7, 1, 2, 3, 3, 4, 6]
+
+    block:
+      var merged = @[7] # if you only want new data, clear merged sequence first
+      merged.setLen(0)
+      merged.merge(x, y, system.cmp[int])
+      assert merged.isSorted
+      assert merged == @[1, 2, 3, 3, 4, 6]
+
+    import std/sugar
+
+    var res: seq[(int, int)]
+    res.merge([(1, 1)], [(1, 2)], (a, b) => a[0] - b[0])
+    assert res == @[(1, 1), (1, 2)]
+
+    assert seq[int].default.dup(merge([1, 3], [2, 4])) == @[1, 2, 3, 4]
+
+  let
+    sizeX = x.len
+    sizeY = y.len
+    oldLen = result.len
+
+  result.setLen(oldLen + sizeX + sizeY)
+
+  var
+    ix = 0
+    iy = 0
+    i = oldLen
+
+  while true:
+    if ix == sizeX:
+      while iy < sizeY:
+        result[i] = y[iy]
+        inc i
+        inc iy
+      return
+
+    if iy == sizeY:
+      while ix < sizeX:
+        result[i] = x[ix]
+        inc i
+        inc ix
+      return
+
+    let itemX = x[ix]
+    let itemY = y[iy]
+
+    if cmp(itemX, itemY) > 0: # to have a stable sort
+      result[i] = itemY
+      inc iy
+    else:
+      result[i] = itemX
+      inc ix
+
+    inc i
+
+proc merge*[T](result: var seq[T], x, y: openArray[T]) {.inline, since: (1, 5, 1).} =
+  ## Shortcut version of `merge` that uses `system.cmp[T]` as the comparison function.
+  ##
+  ## **See also:**
+  ## * `merge proc<#merge,seq[T],openArray[T],openArray[T],proc(T,T)>`_
+  runnableExamples:
+    let x = [5, 10, 15, 20, 25]
+    let y = [50, 40, 30, 20, 10].sorted
+
+    var merged: seq[int]
+    merged.merge(x, y)
+    assert merged.isSorted
+    assert merged == @[5, 10, 10, 15, 20, 20, 25, 30, 40, 50]
+  merge(result, x, y, system.cmp)
+
+proc product*[T](x: openArray[seq[T]]): seq[seq[T]] =
+  ## Produces the Cartesian product of the array.
+  ## Every element of the result is a combination of one element from each seq in `x`,
+  ## with the ith element coming from `x[i]`.
+  ##
+  ## .. warning:: complexity may explode.
+  runnableExamples:
+    assert product(@[@[1], @[2]]) == @[@[1, 2]]
+    assert product(@[@["A", "K"], @["Q"]]) == @[@["K", "Q"], @["A", "Q"]]
+  let xLen = x.len
+  result = newSeq[seq[T]]()
+  if xLen == 0:
+    return
+  if xLen == 1:
+    result = @x
+    return
+  var
+    indices = newSeq[int](xLen)
+    initial = newSeq[int](xLen)
+    index = 0
+  var next = newSeq[T](xLen)
+  for i in 0 ..< xLen:
+    if len(x[i]) == 0: return
+    initial[i] = len(x[i]) - 1
+  indices = initial
+  while true:
+    while indices[index] == -1:
+      indices[index] = initial[index]
+      index += 1
+      if index == xLen: return
+      indices[index] -= 1
+    for ni, i in indices:
+      next[ni] = x[ni][i]
+    result.add(next)
+    index = 0
+    indices[index] -= 1
+
+proc nextPermutation*[T](x: var openArray[T]): bool {.discardable.} =
+  ## Calculates the next lexicographic permutation, directly modifying `x`.
+  ## The result is whether a permutation happened, otherwise we have reached
+  ## the last-ordered permutation.
+  ##
+  ## If you start with an unsorted array/seq, the repeated permutations
+  ## will **not** give you all permutations but stop with the last.
+  ##
+  ## **See also:**
+  ## * `prevPermutation proc<#prevPermutation,openArray[T]>`_
+  runnableExamples:
+    var v = @[0, 1, 2, 3]
+    assert v.nextPermutation() == true
+    assert v == @[0, 1, 3, 2]
+    assert v.nextPermutation() == true
+    assert v == @[0, 2, 1, 3]
+    assert v.prevPermutation() == true
+    assert v == @[0, 1, 3, 2]
+    v = @[3, 2, 1, 0]
+    assert v.nextPermutation() == false
+    assert v == @[3, 2, 1, 0]
+  if x.len < 2:
+    return false
+
+  var i = x.high
+  while i > 0 and x[i-1] >= x[i]:
+    dec i
+
+  if i == 0:
+    return false
+
+  var j = x.high
+  while j >= i and x[j] <= x[i-1]:
+    dec j
+
+  swap x[j], x[i-1]
+  x.reverse(i, x.high)
+
+  result = true
+
+proc prevPermutation*[T](x: var openArray[T]): bool {.discardable.} =
+  ## Calculates the previous lexicographic permutation, directly modifying
+  ## `x`. The result is whether a permutation happened, otherwise we have
+  ## reached the first-ordered permutation.
+  ##
+  ## **See also:**
+  ## * `nextPermutation proc<#nextPermutation,openArray[T]>`_
+  runnableExamples:
+    var v = @[0, 1, 2, 3]
+    assert v.prevPermutation() == false
+    assert v == @[0, 1, 2, 3]
+    assert v.nextPermutation() == true
+    assert v == @[0, 1, 3, 2]
+    assert v.prevPermutation() == true
+    assert v == @[0, 1, 2, 3]
+  if x.len < 2:
+    return false
+
+  var i = x.high
+  while i > 0 and x[i-1] <= x[i]:
+    dec i
+
+  if i == 0:
+    return false
+
+  x.reverse(i, x.high)
+
+  var j = x.high
+  while j >= i and x[j-1] < x[i-1]:
+    dec j
+
+  swap x[i-1], x[j]
+
+  result = true
+
+proc rotateInternal[T](arg: var openArray[T]; first, middle, last: int): int =
+  ## A port of std::rotate from C++.
+  ## Ported from [this reference](http://www.cplusplus.com/reference/algorithm/rotate/).
+  result = first + last - middle
+
+  if first == middle or middle == last:
+    return
+
+  assert first < middle
+  assert middle < last
+
+  # m prefix for mutable
+  var
+    mFirst = first
+    mMiddle = middle
+    next = middle
+
+  swap(arg[mFirst], arg[next])
+  mFirst += 1
+  next += 1
+  if mFirst == mMiddle:
+    mMiddle = next
+
+  while next != last:
+    swap(arg[mFirst], arg[next])
+    mFirst += 1
+    next += 1
+    if mFirst == mMiddle:
+      mMiddle = next
+
+  next = mMiddle
+  while next != last:
+    swap(arg[mFirst], arg[next])
+    mFirst += 1
+    next += 1
+    if mFirst == mMiddle:
+      mMiddle = next
+    elif next == last:
+      next = mMiddle
+
+proc rotatedInternal[T](arg: openArray[T]; first, middle, last: int): seq[T] =
+  let argLen = arg.len
+  result = newSeq[T](argLen)
+  for i in 0 ..< first:
+    result[i] = arg[i]
+  let n = last - middle
+  let m = middle - first
+  for i in 0 ..< n:
+    result[first+i] = arg[middle+i]
+  for i in 0 ..< m:
+    result[first+n+i] = arg[first+i]
+  for i in last ..< argLen:
+    result[i] = arg[i]
+
+proc rotateLeft*[T](arg: var openArray[T]; slice: HSlice[int, int];
+                    dist: int): int {.discardable.} =
+  ## Performs a left rotation on a range of elements. If you want to rotate
+  ## right, use a negative `dist`. Specifically, `rotateLeft` rotates
+  ## the elements at `slice` by `dist` positions.
+  ##
+  ## | The element at index `slice.a + dist` will be at index `slice.a`.
+  ## | The element at index `slice.b` will be at `slice.a + dist - 1`.
+  ## | The element at index `slice.a` will be at `slice.b + 1 - dist`.
+  ## | The element at index `slice.a + dist - 1` will be at `slice.b`.
+  ##
+  ## Elements outside of `slice` will be left unchanged.
+  ## The time complexity is linear to `slice.b - slice.a + 1`.
+  ## If an invalid range (`HSlice`) is passed, it raises `IndexDefect`.
+  ##
+  ## `slice`
+  ## : The indices of the element range that should be rotated.
+  ##
+  ## `dist`
+  ## : The distance in amount of elements that the data should be rotated.
+  ##   Can be negative, can be any number.
+  ##
+  ## **See also:**
+  ## * `rotateLeft proc<#rotateLeft,openArray[T],int>`_ for a version which rotates the whole container
+  ## * `rotatedLeft proc<#rotatedLeft,openArray[T],HSlice[int,int],int>`_ for a version which returns a `seq[T]`
+  runnableExamples:
+    var a = [0, 1, 2, 3, 4, 5]
+    a.rotateLeft(1 .. 4, 3)
+    assert a == [0, 4, 1, 2, 3, 5]
+    a.rotateLeft(1 .. 4, 3)
+    assert a == [0, 3, 4, 1, 2, 5]
+    a.rotateLeft(1 .. 4, -3)
+    assert a == [0, 4, 1, 2, 3, 5]
+    doAssertRaises(IndexDefect, a.rotateLeft(1 .. 7, 2))
+  let sliceLen = slice.b + 1 - slice.a
+  let distLeft = ((dist mod sliceLen) + sliceLen) mod sliceLen
+  arg.rotateInternal(slice.a, slice.a + distLeft, slice.b + 1)
+
+proc rotateLeft*[T](arg: var openArray[T]; dist: int): int {.discardable.} =
+  ## Same as `rotateLeft`, but with default arguments for slice,
+  ## so that this procedure operates on the entire
+  ## `arg`, and not just on a part of it.
+  ##
+  ## **See also:**
+  ## * `rotateLeft proc<#rotateLeft,openArray[T],HSlice[int,int],int>`_ for a version which rotates a range
+  ## * `rotatedLeft proc<#rotatedLeft,openArray[T],int>`_ for a version which returns a `seq[T]`
+  runnableExamples:
+    var a = [1, 2, 3, 4, 5]
+    a.rotateLeft(2)
+    assert a == [3, 4, 5, 1, 2]
+    a.rotateLeft(4)
+    assert a == [2, 3, 4, 5, 1]
+    a.rotateLeft(-6)
+    assert a == [1, 2, 3, 4, 5]
+  let argLen = arg.len
+  let distLeft = ((dist mod argLen) + argLen) mod argLen
+  arg.rotateInternal(0, distLeft, argLen)
+
+proc rotatedLeft*[T](arg: openArray[T]; slice: HSlice[int, int],
+                     dist: int): seq[T] =
+  ## Same as `rotateLeft`, just with the difference that it does
+  ## not modify the argument. It creates a new `seq` instead.
+  ##
+  ## Elements outside of `slice` will be left unchanged.
+  ## If an invalid range (`HSlice`) is passed, it raises `IndexDefect`.
+  ##
+  ## `slice`
+  ## : The indices of the element range that should be rotated.
+  ##
+  ## `dist`
+  ## : The distance in amount of elements that the data should be rotated.
+  ##   Can be negative, can be any number.
+  ##
+  ## **See also:**
+  ## * `rotateLeft proc<#rotateLeft,openArray[T],HSlice[int,int],int>`_ for the in-place version of this proc
+  ## * `rotatedLeft proc<#rotatedLeft,openArray[T],int>`_ for a version which rotates the whole container
+  runnableExamples:
+    var a = @[1, 2, 3, 4, 5]
+    a = rotatedLeft(a, 1 .. 4, 3)
+    assert a == @[1, 5, 2, 3, 4]
+    a = rotatedLeft(a, 1 .. 3, 2)
+    assert a == @[1, 3, 5, 2, 4]
+    a = rotatedLeft(a, 1 .. 3, -2)
+    assert a == @[1, 5, 2, 3, 4]
+  let sliceLen = slice.b + 1 - slice.a
+  let distLeft = ((dist mod sliceLen) + sliceLen) mod sliceLen
+  arg.rotatedInternal(slice.a, slice.a + distLeft, slice.b + 1)
+
+proc rotatedLeft*[T](arg: openArray[T]; dist: int): seq[T] =
+  ## Same as `rotateLeft`, just with the difference that it does
+  ## not modify the argument. It creates a new `seq` instead.
+  ##
+  ## **See also:**
+  ## * `rotateLeft proc<#rotateLeft,openArray[T],int>`_ for the in-place version of this proc
+  ## * `rotatedLeft proc<#rotatedLeft,openArray[T],HSlice[int,int],int>`_ for a version which rotates a range
+  runnableExamples:
+    var a = @[1, 2, 3, 4, 5]
+    a = rotatedLeft(a, 2)
+    assert a == @[3, 4, 5, 1, 2]
+    a = rotatedLeft(a, 4)
+    assert a == @[2, 3, 4, 5, 1]
+    a = rotatedLeft(a, -6)
+    assert a == @[1, 2, 3, 4, 5]
+  let argLen = arg.len
+  let distLeft = ((dist mod argLen) + argLen) mod argLen
+  arg.rotatedInternal(0, distLeft, argLen)