summary refs log tree commit diff stats
path: root/lib/pure/basic2d.nim
diff options
context:
space:
mode:
Diffstat (limited to 'lib/pure/basic2d.nim')
-rw-r--r--lib/pure/basic2d.nim855
1 files changed, 0 insertions, 855 deletions
diff --git a/lib/pure/basic2d.nim b/lib/pure/basic2d.nim
deleted file mode 100644
index 31b3814d6..000000000
--- a/lib/pure/basic2d.nim
+++ /dev/null
@@ -1,855 +0,0 @@
-#
-#
-#            Nim's Runtime Library
-#        (c) Copyright 2013 Robert Persson
-#
-#    See the file "copying.txt", included in this
-#    distribution, for details about the copyright.
-#
-
-import math
-import strutils
-
-
-## Basic 2d support with vectors, points, matrices and some basic utilities.
-## Vectors are implemented as direction vectors, ie. when transformed with a matrix
-## the translation part of matrix is ignored.
-## Operators `+` , `-` , `*` , `/` , `+=` , `-=` , `*=` and `/=` are implemented for vectors and scalars.
-##
-## Quick start example:
-##
-## .. code-block:: nim
-##
-##   # Create a matrix which first rotates, then scales and at last translates
-##
-##   var m:Matrix2d=rotate(DEG90) & scale(2.0) & move(100.0,200.0)
-##
-##   # Create a 2d point at (100,0) and a vector (5,2)
-##
-##   var pt:Point2d=point2d(100.0,0.0)
-##
-##   var vec:Vector2d=vector2d(5.0,2.0)
-##
-##
-##   pt &= m # transforms pt in place
-##
-##   var pt2:Point2d=pt & m #concatenates pt with m and returns a new point
-##
-##   var vec2:Vector2d=vec & m #concatenates vec with m and returns a new vector
-
-
-const
-  DEG360* = PI * 2.0
-    ## 360 degrees in radians.
-  DEG270* = PI * 1.5
-    ## 270 degrees in radians.
-  DEG180* = PI
-    ## 180 degrees in radians.
-  DEG90* = PI / 2.0
-    ## 90 degrees in radians.
-  DEG60* = PI / 3.0
-    ## 60 degrees in radians.
-  DEG45* = PI / 4.0
-    ## 45 degrees in radians.
-  DEG30* = PI / 6.0
-    ## 30 degrees in radians.
-  DEG15* = PI / 12.0
-    ## 15 degrees in radians.
-  RAD2DEGCONST = 180.0 / PI
-    ## used internally by DegToRad and RadToDeg
-
-type
-    Matrix2d* = object
-      ## Implements a row major 2d matrix, which means
-      ## transformations are applied the order they are concatenated.
-      ## The rightmost column of the 3x3 matrix is left out since normally
-      ## not used for geometric transformations in 2d.
-      ax*,ay*,bx*,by*,tx*,ty*:float
-    Point2d* = object
-      ## Implements a non-homogeneous 2d point stored as
-      ## an `x` coordinate and an `y` coordinate.
-      x*,y*:float
-    Vector2d* = object
-      ## Implements a 2d **direction vector** stored as
-      ## an `x` coordinate and an `y` coordinate. Direction vector means,
-      ## that when transforming a vector with a matrix, the translational
-      ## part of the matrix is ignored.
-      x*,y*:float
-{.deprecated: [TMatrix2d: Matrix2d, TPoint2d: Point2d, TVector2d: Vector2d].}
-
-
-# Some forward declarations...
-proc matrix2d*(ax,ay,bx,by,tx,ty:float):Matrix2d {.noInit.}
-  ## Creates a new matrix.
-  ## `ax`,`ay` is the local x axis
-  ## `bx`,`by` is the local y axis
-  ## `tx`,`ty` is the translation
-proc vector2d*(x,y:float):Vector2d {.noInit,inline.}
-  ## Returns a new vector (`x`,`y`)
-proc point2d*(x,y:float):Point2d {.noInit,inline.}
-  ## Returns a new point (`x`,`y`)
-
-
-
-let
-  IDMATRIX*:Matrix2d=matrix2d(1.0,0.0,0.0,1.0,0.0,0.0)
-    ## Quick access to an identity matrix
-  ORIGO*:Point2d=point2d(0.0,0.0)
-    ## Quick access to point (0,0)
-  XAXIS*:Vector2d=vector2d(1.0,0.0)
-    ## Quick access to an 2d x-axis unit vector
-  YAXIS*:Vector2d=vector2d(0.0,1.0)
-    ## Quick access to an 2d y-axis unit vector
-
-
-# ***************************************
-#     Private utils
-# ***************************************
-
-proc rtos(val:float):string=
-  return formatFloat(val,ffDefault,0)
-
-proc safeArccos(v:float):float=
-  ## assumes v is in range 0.0-1.0, but clamps
-  ## the value to avoid out of domain errors
-  ## due to rounding issues
-  return arccos(clamp(v,-1.0,1.0))
-
-
-template makeBinOpVector(s) =
-  ## implements binary operators ``+``, ``-``, ``*`` and ``/`` for vectors
-  proc s*(a,b:Vector2d):Vector2d {.inline,noInit.} = vector2d(s(a.x,b.x),s(a.y,b.y))
-  proc s*(a:Vector2d,b:float):Vector2d {.inline,noInit.}  = vector2d(s(a.x,b),s(a.y,b))
-  proc s*(a:float,b:Vector2d):Vector2d {.inline,noInit.}  = vector2d(s(a,b.x),s(a,b.y))
-
-template makeBinOpAssignVector(s)=
-  ## implements inplace binary operators ``+=``, ``-=``, ``/=`` and ``*=`` for vectors
-  proc s*(a:var Vector2d,b:Vector2d) {.inline.} = s(a.x,b.x) ; s(a.y,b.y)
-  proc s*(a:var Vector2d,b:float) {.inline.} = s(a.x,b) ; s(a.y,b)
-
-
-# ***************************************
-#     Matrix2d implementation
-# ***************************************
-
-proc setElements*(t:var Matrix2d,ax,ay,bx,by,tx,ty:float) {.inline.}=
-  ## Sets arbitrary elements in an existing matrix.
-  t.ax=ax
-  t.ay=ay
-  t.bx=bx
-  t.by=by
-  t.tx=tx
-  t.ty=ty
-
-proc matrix2d*(ax,ay,bx,by,tx,ty:float):Matrix2d =
-  result.setElements(ax,ay,bx,by,tx,ty)
-
-proc `&`*(a,b:Matrix2d):Matrix2d {.noInit.} = #concatenate matrices
-  ## Concatenates matrices returning a new matrix.
-
-  # | a.AX a.AY 0 |   | b.AX b.AY 0 |
-  # | a.BX a.BY 0 | * | b.BX b.BY 0 |
-  # | a.TX a.TY 1 |   | b.TX b.TY 1 |
-  result.setElements(
-    a.ax * b.ax + a.ay * b.bx,
-    a.ax * b.ay + a.ay * b.by,
-    a.bx * b.ax + a.by * b.bx,
-    a.bx * b.ay + a.by * b.by,
-    a.tx * b.ax + a.ty * b.bx + b.tx,
-    a.tx * b.ay + a.ty * b.by + b.ty)
-
-
-proc scale*(s:float):Matrix2d {.noInit.} =
-  ## Returns a new scale matrix.
-  result.setElements(s,0,0,s,0,0)
-
-proc scale*(s:float,org:Point2d):Matrix2d {.noInit.} =
-  ## Returns a new scale matrix using, `org` as scale origin.
-  result.setElements(s,0,0,s,org.x-s*org.x,org.y-s*org.y)
-
-proc stretch*(sx,sy:float):Matrix2d {.noInit.} =
-  ## Returns new a stretch matrix, which is a
-  ## scale matrix with non uniform scale in x and y.
-  result.setElements(sx,0,0,sy,0,0)
-
-proc stretch*(sx,sy:float,org:Point2d):Matrix2d {.noInit.} =
-  ## Returns a new stretch matrix, which is a
-  ## scale matrix with non uniform scale in x and y.
-  ## `org` is used as stretch origin.
-  result.setElements(sx,0,0,sy,org.x-sx*org.x,org.y-sy*org.y)
-
-proc move*(dx,dy:float):Matrix2d {.noInit.} =
-  ## Returns a new translation matrix.
-  result.setElements(1,0,0,1,dx,dy)
-
-proc move*(v:Vector2d):Matrix2d {.noInit.} =
-  ## Returns a new translation matrix from a vector.
-  result.setElements(1,0,0,1,v.x,v.y)
-
-proc rotate*(rad:float):Matrix2d {.noInit.} =
-  ## Returns a new rotation matrix, which
-  ## represents a rotation by `rad` radians
-  let
-    s=sin(rad)
-    c=cos(rad)
-  result.setElements(c,s,-s,c,0,0)
-
-proc rotate*(rad:float,org:Point2d):Matrix2d {.noInit.} =
-  ## Returns a new rotation matrix, which
-  ## represents a rotation by `rad` radians around
-  ## the origin `org`
-  let
-    s=sin(rad)
-    c=cos(rad)
-  result.setElements(c,s,-s,c,org.x+s*org.y-c*org.x,org.y-c*org.y-s*org.x)
-
-proc mirror*(v:Vector2d):Matrix2d {.noInit.} =
-  ## Returns a new mirror matrix, mirroring
-  ## around the line that passes through origo and
-  ## has the direction of `v`
-  let
-    sqx=v.x*v.x
-    sqy=v.y*v.y
-    nd=1.0/(sqx+sqy) #used to normalize invector
-    xy2=v.x*v.y*2.0*nd
-    sqd=nd*(sqx-sqy)
-
-  if nd==Inf or nd==NegInf:
-    return IDMATRIX #mirroring around a zero vector is arbitrary=>just use identity
-
-  result.setElements(
-    sqd,xy2,
-    xy2,-sqd,
-    0.0,0.0)
-
-proc mirror*(org:Point2d,v:Vector2d):Matrix2d {.noInit.} =
-  ## Returns a new mirror matrix, mirroring
-  ## around the line that passes through `org` and
-  ## has the direction of `v`
-  let
-    sqx=v.x*v.x
-    sqy=v.y*v.y
-    nd=1.0/(sqx+sqy) #used to normalize invector
-    xy2=v.x*v.y*2.0*nd
-    sqd=nd*(sqx-sqy)
-
-  if nd==Inf or nd==NegInf:
-    return IDMATRIX #mirroring around a zero vector is arbitrary=>just use identity
-
-  result.setElements(
-    sqd,xy2,
-    xy2,-sqd,
-    org.x-org.y*xy2-org.x*sqd,org.y-org.x*xy2+org.y*sqd)
-
-
-
-proc skew*(xskew,yskew:float):Matrix2d {.noInit.} =
-  ## Returns a new skew matrix, which has its
-  ## x axis rotated `xskew` radians from the local x axis, and
-  ## y axis rotated `yskew` radians from the local y axis
-  result.setElements(cos(yskew),sin(yskew),-sin(xskew),cos(xskew),0,0)
-
-
-proc `$`* (t:Matrix2d):string {.noInit.} =
-  ## Returns a string representation of the matrix
-  return rtos(t.ax) & "," & rtos(t.ay) &
-    "," & rtos(t.bx) & "," & rtos(t.by) &
-    "," & rtos(t.tx) & "," & rtos(t.ty)
-
-proc isUniform*(t:Matrix2d,tol=1.0e-6):bool=
-  ## Checks if the transform is uniform, that is
-  ## perpendicular axes of equal length, which means (for example)
-  ## it cannot transform a circle into an ellipse.
-  ## `tol` is used as tolerance for both equal length comparison
-  ## and perp. comparison.
-
-  #dot product=0 means perpendicular coord. system:
-  if abs(t.ax*t.bx+t.ay*t.by)<=tol:
-    #subtract squared lengths of axes to check if uniform scaling:
-    if abs((t.ax*t.ax+t.ay*t.ay)-(t.bx*t.bx+t.by*t.by))<=tol:
-      return true
-  return false
-
-proc determinant*(t:Matrix2d):float=
-  ## Computes the determinant of the matrix.
-
-  #NOTE: equivalent with perp.dot product for two 2d vectors
-  return t.ax*t.by-t.bx*t.ay
-
-proc isMirroring* (m:Matrix2d):bool=
-  ## Checks if the `m` is a mirroring matrix,
-  ## which means it will reverse direction of a curve transformed with it
-  return m.determinant<0.0
-
-proc inverse*(m:Matrix2d):Matrix2d {.noInit.} =
-  ## Returns a new matrix, which is the inverse of the matrix
-  ## If the matrix is not invertible (determinant=0), an EDivByZero
-  ## will be raised.
-  let d=m.determinant
-  if d==0.0:
-    raise newException(DivByZeroError,"Cannot invert a zero determinant matrix")
-
-  result.setElements(
-    m.by/d,-m.ay/d,
-    -m.bx/d,m.ax/d,
-    (m.bx*m.ty-m.by*m.tx)/d,
-    (m.ay*m.tx-m.ax*m.ty)/d)
-
-proc equals*(m1:Matrix2d,m2:Matrix2d,tol=1.0e-6):bool=
-  ## Checks if all elements of `m1`and `m2` is equal within
-  ## a given tolerance `tol`.
-  return
-    abs(m1.ax-m2.ax)<=tol and
-    abs(m1.ay-m2.ay)<=tol and
-    abs(m1.bx-m2.bx)<=tol and
-    abs(m1.by-m2.by)<=tol and
-    abs(m1.tx-m2.tx)<=tol and
-    abs(m1.ty-m2.ty)<=tol
-
-proc `=~`*(m1,m2:Matrix2d):bool=
-  ## Checks if `m1`and `m2` is approximately equal, using a
-  ## tolerance of 1e-6.
-  equals(m1,m2)
-
-proc isIdentity*(m:Matrix2d,tol=1.0e-6):bool=
-  ## Checks is a matrix is approximately an identity matrix,
-  ## using `tol` as tolerance for each element.
-  return equals(m,IDMATRIX,tol)
-
-proc apply*(m:Matrix2d,x,y:var float,translate=false)=
-  ## Applies transformation `m` onto `x`,`y`, optionally
-  ## using the translation part of the matrix.
-  if translate: # positional style transform
-    let newx=x*m.ax+y*m.bx+m.tx
-    y=x*m.ay+y*m.by+m.ty
-    x=newx
-  else: # delta style transform
-    let newx=x*m.ax+y*m.bx
-    y=x*m.ay+y*m.by
-    x=newx
-
-
-
-# ***************************************
-#     Vector2d implementation
-# ***************************************
-proc vector2d*(x,y:float):Vector2d = #forward decl.
-  result.x=x
-  result.y=y
-
-proc polarVector2d*(ang:float,len:float):Vector2d {.noInit.} =
-  ## Returns a new vector with angle `ang` and magnitude `len`
-  result.x=cos(ang)*len
-  result.y=sin(ang)*len
-
-proc slopeVector2d*(slope:float,len:float):Vector2d {.noInit.} =
-  ## Returns a new vector having slope (dy/dx) given by
-  ## `slope`, and a magnitude of `len`
-  let ang=arctan(slope)
-  result.x=cos(ang)*len
-  result.y=sin(ang)*len
-
-proc len*(v:Vector2d):float {.inline.}=
-  ## Returns the length of the vector.
-  sqrt(v.x*v.x+v.y*v.y)
-
-proc `len=`*(v:var Vector2d,newlen:float) {.noInit.} =
-  ## Sets the length of the vector, keeping its angle.
-  let fac=newlen/v.len
-
-  if newlen==0.0:
-    v.x=0.0
-    v.y=0.0
-    return
-
-  if fac==Inf or fac==NegInf:
-    #to short for float accuracy
-    #do as good as possible:
-    v.x=newlen
-    v.y=0.0
-  else:
-    v.x*=fac
-    v.y*=fac
-
-proc sqrLen*(v:Vector2d):float {.inline.}=
-  ## Computes the squared length of the vector, which is
-  ## faster than computing the absolute length.
-  v.x*v.x+v.y*v.y
-
-proc angle*(v:Vector2d):float=
-  ## Returns the angle of the vector.
-  ## (The counter clockwise plane angle between posetive x axis and `v`)
-  result=arctan2(v.y,v.x)
-  if result<0.0: result+=DEG360
-
-proc `$` *(v:Vector2d):string=
-  ## String representation of `v`
-  result=rtos(v.x)
-  result.add(",")
-  result.add(rtos(v.y))
-
-
-proc `&` *(v:Vector2d,m:Matrix2d):Vector2d {.noInit.} =
-  ## Concatenate vector `v` with a transformation matrix.
-  ## Transforming a vector ignores the translational part
-  ## of the matrix.
-
-  #             | AX AY 0 |
-  # | X Y 1 | * | BX BY 0 |
-  #             | 0  0  1 |
-  result.x=v.x*m.ax+v.y*m.bx
-  result.y=v.x*m.ay+v.y*m.by
-
-
-proc `&=`*(v:var Vector2d,m:Matrix2d) {.inline.}=
-  ## Applies transformation `m` onto `v` in place.
-  ## Transforming a vector ignores the translational part
-  ## of the matrix.
-
-  #             | AX AY 0 |
-  # | X Y 1 | * | BX BY 0 |
-  #             | 0  0  1 |
-  let newx=v.x*m.ax+v.y*m.bx
-  v.y=v.x*m.ay+v.y*m.by
-  v.x=newx
-
-
-proc tryNormalize*(v:var Vector2d):bool=
-  ## Modifies `v` to have a length of 1.0, keeping its angle.
-  ## If `v` has zero length (and thus no angle), it is left unmodified and
-  ## false is returned, otherwise true is returned.
-
-  let mag=v.len
-
-  if mag==0.0:
-    return false
-
-  v.x/=mag
-  v.y/=mag
-  return true
-
-
-proc normalize*(v:var Vector2d) {.inline.}=
-  ## Modifies `v` to have a length of 1.0, keeping its angle.
-  ## If  `v` has zero length, an EDivByZero will be raised.
-  if not tryNormalize(v):
-    raise newException(DivByZeroError,"Cannot normalize zero length vector")
-
-proc transformNorm*(v:var Vector2d,t:Matrix2d)=
-  ## Applies a normal direction transformation `t` onto `v` in place.
-  ## The resulting vector is *not* normalized.  Transforming a vector ignores the
-  ## translational part of the matrix. If the matrix is not invertible
-  ## (determinant=0), an EDivByZero will be raised.
-
-  # transforming a normal is done by transforming
-  # by the transpose of the inverse of the original matrix
-  # this can be heavily optimized by precompute and inline
-  #             | | AX AY 0 | ^-1| ^T
-  # | X Y 1 | * | | BX BY 0 |    |
-  #             | | 0  0  1 |    |
-  let d=t.determinant
-  if(d==0.0):
-    raise newException(DivByZeroError,"Matrix is not invertible")
-  let newx = (t.by*v.x-t.ay*v.y)/d
-  v.y = (t.ax*v.y-t.bx*v.x)/d
-  v.x = newx
-
-proc transformInv*(v:var Vector2d,t:Matrix2d)=
-  ## Applies inverse of a transformation `t` to `v` in place.
-  ## This is faster than creating an inverse matrix and apply() it.
-  ## Transforming a vector ignores the translational part
-  ## of the matrix. If the matrix is not invertible (determinant=0), an EDivByZero
-  ## will be raised.
-  let d=t.determinant
-
-  if(d==0.0):
-    raise newException(DivByZeroError,"Matrix is not invertible")
-
-  let newx=(t.by*v.x-t.bx*v.y)/d
-  v.y = (t.ax*v.y-t.ay*v.x)/d
-  v.x = newx
-
-proc transformNormInv*(v:var Vector2d,t:Matrix2d)=
-  ## Applies an inverse normal direction transformation `t` onto `v` in place.
-  ## This is faster than creating an inverse
-  ## matrix and transformNorm(...) it. Transforming a vector ignores the
-  ## translational part of the matrix.
-
-  # normal inverse transform is done by transforming
-  # by the inverse of the transpose of the inverse of the org. matrix
-  # which is equivalent with transforming with the transpose.
-  #             | | | AX AY 0 |^-1|^T|^-1                | AX BX 0 |
-  # | X Y 1 | * | | | BX BY 0 |   |  |    =  | X Y 1 | * | AY BY 0 |
-  #             | | | 0  0  1 |   |  |                   | 0  0  1 |
-  # This can be heavily reduced to:
-  let newx=t.ay*v.y+t.ax*v.x
-  v.y=t.by*v.y+t.bx*v.x
-  v.x=newx
-
-proc rotate90*(v:var Vector2d) {.inline.}=
-  ## Quickly rotates vector `v` 90 degrees counter clockwise,
-  ## without using any trigonometrics.
-  swap(v.x,v.y)
-  v.x= -v.x
-
-proc rotate180*(v:var Vector2d){.inline.}=
-  ## Quickly rotates vector `v` 180 degrees counter clockwise,
-  ## without using any trigonometrics.
-  v.x= -v.x
-  v.y= -v.y
-
-proc rotate270*(v:var Vector2d) {.inline.}=
-  ## Quickly rotates vector `v` 270 degrees counter clockwise,
-  ## without using any trigonometrics.
-  swap(v.x,v.y)
-  v.y= -v.y
-
-proc rotate*(v:var Vector2d,rad:float) =
-  ## Rotates vector `v` `rad` radians in place.
-  let
-    s=sin(rad)
-    c=cos(rad)
-    newx=c*v.x-s*v.y
-  v.y=c*v.y+s*v.x
-  v.x=newx
-
-proc scale*(v:var Vector2d,fac:float){.inline.}=
-  ## Scales vector `v` `rad` radians in place.
-  v.x*=fac
-  v.y*=fac
-
-proc stretch*(v:var Vector2d,facx,facy:float){.inline.}=
-  ## Stretches vector `v` `facx` times horizontally,
-  ## and `facy` times vertically.
-  v.x*=facx
-  v.y*=facy
-
-proc mirror*(v:var Vector2d,mirrvec:Vector2d)=
-  ## Mirrors vector `v` using `mirrvec` as mirror direction.
-  let
-    sqx=mirrvec.x*mirrvec.x
-    sqy=mirrvec.y*mirrvec.y
-    nd=1.0/(sqx+sqy) #used to normalize invector
-    xy2=mirrvec.x*mirrvec.y*2.0*nd
-    sqd=nd*(sqx-sqy)
-
-  if nd==Inf or nd==NegInf:
-    return #mirroring around a zero vector is arbitrary=>keep as is is fastest
-
-  let newx=xy2*v.y+sqd*v.x
-  v.y=v.x*xy2-sqd*v.y
-  v.x=newx
-
-
-proc `-` *(v:Vector2d):Vector2d=
-  ## Negates a vector
-  result.x= -v.x
-  result.y= -v.y
-
-# declare templated binary operators
-makeBinOpVector(`+`)
-makeBinOpVector(`-`)
-makeBinOpVector(`*`)
-makeBinOpVector(`/`)
-makeBinOpAssignVector(`+=`)
-makeBinOpAssignVector(`-=`)
-makeBinOpAssignVector(`*=`)
-makeBinOpAssignVector(`/=`)
-
-
-proc dot*(v1,v2:Vector2d):float=
-  ## Computes the dot product of two vectors.
-  ## Returns 0.0 if the vectors are perpendicular.
-  return v1.x*v2.x+v1.y*v2.y
-
-proc cross*(v1,v2:Vector2d):float=
-  ## Computes the cross product of two vectors, also called
-  ## the 'perpendicular dot product' in 2d. Returns 0.0 if the vectors
-  ## are parallel.
-  return v1.x*v2.y-v1.y*v2.x
-
-proc equals*(v1,v2:Vector2d,tol=1.0e-6):bool=
-  ## Checks if two vectors approximately equals with a tolerance.
-  return abs(v2.x-v1.x)<=tol and abs(v2.y-v1.y)<=tol
-
-proc `=~` *(v1,v2:Vector2d):bool=
-  ## Checks if two vectors approximately equals with a
-  ## hardcoded tolerance 1e-6
-  equals(v1,v2)
-
-proc angleTo*(v1,v2:Vector2d):float=
-  ## Returns the smallest of the two possible angles
-  ## between `v1` and `v2` in radians.
-  var
-    nv1=v1
-    nv2=v2
-  if not nv1.tryNormalize or not nv2.tryNormalize:
-    return 0.0 # zero length vector has zero angle to any other vector
-  return safeArccos(dot(nv1,nv2))
-
-proc angleCCW*(v1,v2:Vector2d):float=
-  ## Returns the counter clockwise plane angle from `v1` to `v2`,
-  ## in range 0 - 2*PI
-  let a=v1.angleTo(v2)
-  if v1.cross(v2)>=0.0:
-    return a
-  return DEG360-a
-
-proc angleCW*(v1,v2:Vector2d):float=
-  ## Returns the clockwise plane angle from `v1` to `v2`,
-  ## in range 0 - 2*PI
-  let a=v1.angleTo(v2)
-  if v1.cross(v2)<=0.0:
-    return a
-  return DEG360-a
-
-proc turnAngle*(v1,v2:Vector2d):float=
-  ## Returns the amount v1 should be rotated (in radians) to equal v2,
-  ## in range -PI to PI
-  let a=v1.angleTo(v2)
-  if v1.cross(v2)<=0.0:
-    return -a
-  return a
-
-proc bisect*(v1,v2:Vector2d):Vector2d {.noInit.}=
-  ## Computes the bisector between v1 and v2 as a normalized vector.
-  ## If one of the input vectors has zero length, a normalized version
-  ## of the other is returned. If both input vectors has zero length,
-  ## an arbitrary normalized vector is returned.
-  var
-    vmag1=v1.len
-    vmag2=v2.len
-
-  # zero length vector equals arbitrary vector, just change to magnitude to one to
-  # avoid zero division
-  if vmag1==0.0:
-    if vmag2==0: #both are zero length return any normalized vector
-      return XAXIS
-    vmag1=1.0
-  if vmag2==0.0: vmag2=1.0
-
-  let
-    x1=v1.x/vmag1
-    y1=v1.y/vmag1
-    x2=v2.x/vmag2
-    y2=v2.y/vmag2
-
-  result.x=(x1 + x2) * 0.5
-  result.y=(y1 + y2) * 0.5
-
-  if not result.tryNormalize():
-    # This can happen if vectors are colinear. In this special case
-    # there are actually two bisectors, we select just
-    # one of them (x1,y1 rotated 90 degrees ccw).
-    result.x = -y1
-    result.y = x1
-
-
-
-# ***************************************
-#     Point2d implementation
-# ***************************************
-
-proc point2d*(x,y:float):Point2d =
-  result.x=x
-  result.y=y
-
-proc sqrDist*(a,b:Point2d):float=
-  ## Computes the squared distance between `a` and `b`
-  let dx=b.x-a.x
-  let dy=b.y-a.y
-  result=dx*dx+dy*dy
-
-proc dist*(a,b:Point2d):float {.inline.}=
-  ## Computes the absolute distance between `a` and `b`
-  result=sqrt(sqrDist(a,b))
-
-proc angle*(a,b:Point2d):float=
-  ## Computes the angle of the vector `b`-`a`
-  let dx=b.x-a.x
-  let dy=b.y-a.y
-  result=arctan2(dy,dx)
-  if result<0:
-    result += DEG360
-
-proc `$` *(p:Point2d):string=
-  ## String representation of `p`
-  result=rtos(p.x)
-  result.add(",")
-  result.add(rtos(p.y))
-
-proc `&`*(p:Point2d,t:Matrix2d):Point2d {.noInit,inline.} =
-  ## Concatenates a point `p` with a transform `t`,
-  ## resulting in a new, transformed point.
-
-  #             | AX AY 0 |
-  # | X Y 1 | * | BX BY 0 |
-  #             | TX TY 1 |
-  result.x=p.x*t.ax+p.y*t.bx+t.tx
-  result.y=p.x*t.ay+p.y*t.by+t.ty
-
-proc `&=` *(p:var Point2d,t:Matrix2d) {.inline.}=
-  ## Applies transformation `t` onto `p` in place.
-  let newx=p.x*t.ax+p.y*t.bx+t.tx
-  p.y=p.x*t.ay+p.y*t.by+t.ty
-  p.x=newx
-
-
-proc transformInv*(p:var Point2d,t:Matrix2d){.inline.}=
-  ## Applies the inverse of transformation `t` onto `p` in place.
-  ## If the matrix is not invertable (determinant=0) , EDivByZero will
-  ## be raised.
-
-  #             | AX AY 0 | ^-1
-  # | X Y 1 | * | BX BY 0 |
-  #             | TX TY 1 |
-  let d=t.determinant
-  if d==0.0:
-    raise newException(DivByZeroError,"Cannot invert a zero determinant matrix")
-  let
-    newx= (t.bx*t.ty-t.by*t.tx+p.x*t.by-p.y*t.bx)/d
-  p.y = -(t.ax*t.ty-t.ay*t.tx+p.x*t.ay-p.y*t.ax)/d
-  p.x=newx
-
-
-proc `+`*(p:Point2d,v:Vector2d):Point2d {.noInit,inline.} =
-  ## Adds a vector `v` to a point `p`, resulting
-  ## in a new point.
-  result.x=p.x+v.x
-  result.y=p.y+v.y
-
-proc `+=`*(p:var Point2d,v:Vector2d) {.noInit,inline.} =
-  ## Adds a vector `v` to a point `p` in place.
-  p.x+=v.x
-  p.y+=v.y
-
-proc `-`*(p:Point2d,v:Vector2d):Point2d {.noInit,inline.} =
-  ## Subtracts a vector `v` from a point `p`, resulting
-  ## in a new point.
-  result.x=p.x-v.x
-  result.y=p.y-v.y
-
-proc `-`*(p1,p2:Point2d):Vector2d {.noInit,inline.} =
-  ## Subtracts `p2`from `p1` resulting in a difference vector.
-  result.x=p1.x-p2.x
-  result.y=p1.y-p2.y
-
-proc `-=`*(p:var Point2d,v:Vector2d) {.noInit,inline.} =
-  ## Subtracts a vector `v` from a point `p` in place.
-  p.x-=v.x
-  p.y-=v.y
-
-proc equals(p1,p2:Point2d,tol=1.0e-6):bool {.inline.}=
-  ## Checks if two points approximately equals with a tolerance.
-  return abs(p2.x-p1.x)<=tol and abs(p2.y-p1.y)<=tol
-
-proc `=~`*(p1,p2:Point2d):bool {.inline.}=
-  ## Checks if two vectors approximately equals with a
-  ## hardcoded tolerance 1e-6
-  equals(p1,p2)
-
-proc polar*(p:Point2d,ang,dist:float):Point2d {.noInit.} =
-  ## Returns a point with a given angle and distance away from `p`
-  result.x=p.x+cos(ang)*dist
-  result.y=p.y+sin(ang)*dist
-
-proc rotate*(p:var Point2d,rad:float)=
-  ## Rotates a point in place `rad` radians around origo.
-  let
-    c=cos(rad)
-    s=sin(rad)
-    newx=p.x*c-p.y*s
-  p.y=p.y*c+p.x*s
-  p.x=newx
-
-proc rotate*(p:var Point2d,rad:float,org:Point2d)=
-  ## Rotates a point in place `rad` radians using `org` as
-  ## center of rotation.
-  let
-    c=cos(rad)
-    s=sin(rad)
-    newx=(p.x - org.x) * c - (p.y - org.y) * s + org.x
-  p.y=(p.y - org.y) * c + (p.x - org.x) * s + org.y
-  p.x=newx
-
-proc scale*(p:var Point2d,fac:float) {.inline.}=
-  ## Scales a point in place `fac` times with world origo as origin.
-  p.x*=fac
-  p.y*=fac
-
-proc scale*(p:var Point2d,fac:float,org:Point2d){.inline.}=
-  ## Scales the point in place `fac` times with `org` as origin.
-  p.x=(p.x - org.x) * fac + org.x
-  p.y=(p.y - org.y) * fac + org.y
-
-proc stretch*(p:var Point2d,facx,facy:float){.inline.}=
-  ## Scales a point in place non uniformly `facx` and `facy` times with
-  ## world origo as origin.
-  p.x*=facx
-  p.y*=facy
-
-proc stretch*(p:var Point2d,facx,facy:float,org:Point2d){.inline.}=
-  ## Scales the point in place non uniformly `facx` and `facy` times with
-  ## `org` as origin.
-  p.x=(p.x - org.x) * facx + org.x
-  p.y=(p.y - org.y) * facy + org.y
-
-proc move*(p:var Point2d,dx,dy:float){.inline.}=
-  ## Translates a point `dx`, `dy` in place.
-  p.x+=dx
-  p.y+=dy
-
-proc move*(p:var Point2d,v:Vector2d){.inline.}=
-  ## Translates a point with vector `v` in place.
-  p.x+=v.x
-  p.y+=v.y
-
-proc sgnArea*(a,b,c:Point2d):float=
-  ## Computes the signed area of the triangle thru points `a`,`b` and `c`
-  ## result>0.0 for counter clockwise triangle
-  ## result<0.0 for clockwise triangle
-  ## This is commonly used to determinate side of a point with respect to a line.
-  return ((b.x - c.x) * (b.y - a.y)-(b.y - c.y) * (b.x - a.x))*0.5
-
-proc area*(a,b,c:Point2d):float=
-  ## Computes the area of the triangle thru points `a`,`b` and `c`
-  return abs(sgnArea(a,b,c))
-
-proc closestPoint*(p:Point2d,pts:varargs[Point2d]):Point2d=
-  ## Returns a point selected from `pts`, that has the closest
-  ## euclidean distance to `p`
-  assert(pts.len>0) # must have at least one point
-
-  var
-    bestidx=0
-    bestdist=p.sqrDist(pts[0])
-    curdist:float
-
-  for idx in 1..high(pts):
-    curdist=p.sqrDist(pts[idx])
-    if curdist<bestdist:
-      bestidx=idx
-      bestdist=curdist
-
-  result=pts[bestidx]
-
-
-# ***************************************
-#     Misc. math utilities that should
-#     probably be in another module.
-# ***************************************
-proc normAngle*(ang:float):float=
-  ## Returns an angle in radians, that is equal to `ang`,
-  ## but in the range 0 to <2*PI
-  if ang>=0.0 and ang<DEG360:
-    return ang
-
-  return ang mod DEG360
-
-proc degToRad*(deg:float):float {.inline.}=
-  ## converts `deg` degrees to radians
-  deg / RAD2DEGCONST
-
-proc radToDeg*(rad:float):float {.inline.}=
-  ## converts `rad` radians to degrees
-  rad * RAD2DEGCONST