diff options
Diffstat (limited to 'lib/pure/basic3d.nim')
-rw-r--r-- | lib/pure/basic3d.nim | 438 |
1 files changed, 219 insertions, 219 deletions
diff --git a/lib/pure/basic3d.nim b/lib/pure/basic3d.nim index 18ebed67b..7fea54d58 100644 --- a/lib/pure/basic3d.nim +++ b/lib/pure/basic3d.nim @@ -16,34 +16,34 @@ import times ## Vectors are implemented as direction vectors, ie. when transformed with a matrix ## the translation part of matrix is ignored. The coordinate system used is ## right handed, because its compatible with 2d coordinate system (rotation around -## zaxis equals 2d rotation). +## zaxis equals 2d rotation). ## Operators `+` , `-` , `*` , `/` , `+=` , `-=` , `*=` and `/=` are implemented ## for vectors and scalars. ## ## ## Quick start example: -## +## ## # Create a matrix which first rotates, then scales and at last translates -## -## var m:TMatrix3d=rotate(PI,vector3d(1,1,2.5)) & scale(2.0) & move(100.0,200.0,300.0) -## +## +## var m:Matrix3d=rotate(PI,vector3d(1,1,2.5)) & scale(2.0) & move(100.0,200.0,300.0) +## ## # Create a 3d point at (100,150,200) and a vector (5,2,3) -## -## var pt:TPoint3d=point3d(100.0,150.0,200.0) -## -## var vec:TVector3d=vector3d(5.0,2.0,3.0) -## -## +## +## var pt:Point3d=point3d(100.0,150.0,200.0) +## +## var vec:Vector3d=vector3d(5.0,2.0,3.0) +## +## ## pt &= m # transforms pt in place -## -## var pt2:TPoint3d=pt & m #concatenates pt with m and returns a new point -## -## var vec2:TVector3d=vec & m #concatenates vec with m and returns a new vector +## +## var pt2:Point3d=pt & m #concatenates pt with m and returns a new point +## +## var vec2:Vector3d=vec & m #concatenates vec with m and returns a new vector -type - TMatrix3d* =object +type + Matrix3d* =object ## Implements a row major 3d matrix, which means ## transformations are applied the order they are concatenated. ## This matrix is stored as an 4x4 matrix: @@ -52,31 +52,31 @@ type ## [ cx cy cz cw ] ## [ tx ty tz tw ] ax*,ay*,az*,aw*, bx*,by*,bz*,bw*, cx*,cy*,cz*,cw*, tx*,ty*,tz*,tw*:float - TPoint3d* = object - ## Implements a non-homegeneous 2d point stored as + Point3d* = object + ## Implements a non-homogeneous 3d point stored as ## an `x` , `y` and `z` coordinate. x*,y*,z*:float - TVector3d* = object - ## Implements a 3d **direction vector** stored as - ## an `x` , `y` and `z` coordinate. Direction vector means, + Vector3d* = object + ## Implements a 3d **direction vector** stored as + ## an `x` , `y` and `z` coordinate. Direction vector means, ## that when transforming a vector with a matrix, the translational ## part of the matrix is ignored. x*,y*,z*:float - +{.deprecated: [TMatrix3d: Matrix3d, TPoint3d: Point3d, TVector3d: Vector3d].} # Some forward declarations -proc matrix3d*(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float):TMatrix3d {.noInit.} - ## Creates a new 4x4 3d transformation matrix. +proc matrix3d*(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float):Matrix3d {.noInit.} + ## Creates a new 4x4 3d transformation matrix. ## `ax` , `ay` , `az` is the local x axis. ## `bx` , `by` , `bz` is the local y axis. ## `cx` , `cy` , `cz` is the local z axis. ## `tx` , `ty` , `tz` is the translation. -proc vector3d*(x,y,z:float):TVector3d {.noInit,inline.} +proc vector3d*(x,y,z:float):Vector3d {.noInit,inline.} ## Returns a new 3d vector (`x`,`y`,`z`) -proc point3d*(x,y,z:float):TPoint3d {.noInit,inline.} +proc point3d*(x,y,z:float):Point3d {.noInit,inline.} ## Returns a new 4d point (`x`,`y`,`z`) -proc tryNormalize*(v:var TVector3d):bool +proc tryNormalize*(v:var Vector3d):bool ## Modifies `v` to have a length of 1.0, keeping its angle. ## If `v` has zero length (and thus no angle), it is left unmodified and false is ## returned, otherwise true is returned. @@ -84,19 +84,19 @@ proc tryNormalize*(v:var TVector3d):bool let - IDMATRIX*:TMatrix3d=matrix3d( - 1.0,0.0,0.0,0.0, + IDMATRIX*:Matrix3d=matrix3d( + 1.0,0.0,0.0,0.0, 0.0,1.0,0.0,0.0, 0.0,0.0,1.0,0.0, 0.0,0.0,0.0,1.0) ## Quick access to a 3d identity matrix - ORIGO*:TPoint3d=point3d(0.0,0.0,0.0) + ORIGO*:Point3d=point3d(0.0,0.0,0.0) ## Quick access to point (0,0) - XAXIS*:TVector3d=vector3d(1.0,0.0,0.0) + XAXIS*:Vector3d=vector3d(1.0,0.0,0.0) ## Quick access to an 3d x-axis unit vector - YAXIS*:TVector3d=vector3d(0.0,1.0,0.0) + YAXIS*:Vector3d=vector3d(0.0,1.0,0.0) ## Quick access to an 3d y-axis unit vector - ZAXIS*:TVector3d=vector3d(0.0,0.0,1.0) + ZAXIS*:Vector3d=vector3d(0.0,0.0,1.0) ## Quick access to an 3d z-axis unit vector @@ -114,29 +114,29 @@ proc safeArccos(v:float):float= ## due to rounding issues return arccos(clamp(v,-1.0,1.0)) -template makeBinOpVector(s:expr)= +template makeBinOpVector(s:expr)= ## implements binary operators + , - , * and / for vectors - proc s*(a,b:TVector3d):TVector3d {.inline,noInit.} = + proc s*(a,b:Vector3d):Vector3d {.inline,noInit.} = vector3d(s(a.x,b.x),s(a.y,b.y),s(a.z,b.z)) - proc s*(a:TVector3d,b:float):TVector3d {.inline,noInit.} = + proc s*(a:Vector3d,b:float):Vector3d {.inline,noInit.} = vector3d(s(a.x,b),s(a.y,b),s(a.z,b)) - proc s*(a:float,b:TVector3d):TVector3d {.inline,noInit.} = + proc s*(a:float,b:Vector3d):Vector3d {.inline,noInit.} = vector3d(s(a,b.x),s(a,b.y),s(a,b.z)) - -template makeBinOpAssignVector(s:expr)= + +template makeBinOpAssignVector(s:expr)= ## implements inplace binary operators += , -= , /= and *= for vectors - proc s*(a:var TVector3d,b:TVector3d) {.inline.} = + proc s*(a:var Vector3d,b:Vector3d) {.inline.} = s(a.x,b.x) ; s(a.y,b.y) ; s(a.z,b.z) - proc s*(a:var TVector3d,b:float) {.inline.} = + proc s*(a:var Vector3d,b:float) {.inline.} = s(a.x,b) ; s(a.y,b) ; s(a.z,b) # *************************************** -# TMatrix3d implementation +# Matrix3d implementation # *************************************** -proc setElements*(t:var TMatrix3d,ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float) {.inline.}= +proc setElements*(t:var Matrix3d,ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float) {.inline.}= ## Sets arbitrary elements in an exisitng matrix. t.ax=ax t.ay=ay @@ -155,10 +155,10 @@ proc setElements*(t:var TMatrix3d,ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,t t.tz=tz t.tw=tw -proc matrix3d*(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float):TMatrix3d = +proc matrix3d*(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float):Matrix3d = result.setElements(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw) -proc `&`*(a,b:TMatrix3d):TMatrix3d {.noinit.} = +proc `&`*(a,b:Matrix3d):Matrix3d {.noinit.} = ## Concatenates matrices returning a new matrix. result.setElements( a.aw*b.tx+a.az*b.cx+a.ay*b.bx+a.ax*b.ax, @@ -182,36 +182,36 @@ proc `&`*(a,b:TMatrix3d):TMatrix3d {.noinit.} = a.tw*b.tw+a.tz*b.cw+a.ty*b.bw+a.tx*b.aw) -proc scale*(s:float):TMatrix3d {.noInit.} = +proc scale*(s:float):Matrix3d {.noInit.} = ## Returns a new scaling matrix. result.setElements(s,0,0,0, 0,s,0,0, 0,0,s,0, 0,0,0,1) -proc scale*(s:float,org:TPoint3d):TMatrix3d {.noInit.} = +proc scale*(s:float,org:Point3d):Matrix3d {.noInit.} = ## Returns a new scaling matrix using, `org` as scale origin. - result.setElements(s,0,0,0, 0,s,0,0, 0,0,s,0, + result.setElements(s,0,0,0, 0,s,0,0, 0,0,s,0, org.x-s*org.x,org.y-s*org.y,org.z-s*org.z,1.0) -proc stretch*(sx,sy,sz:float):TMatrix3d {.noInit.} = +proc stretch*(sx,sy,sz:float):Matrix3d {.noInit.} = ## Returns new a stretch matrix, which is a ## scale matrix with non uniform scale in x,y and z. result.setElements(sx,0,0,0, 0,sy,0,0, 0,0,sz,0, 0,0,0,1) - -proc stretch*(sx,sy,sz:float,org:TPoint3d):TMatrix3d {.noInit.} = + +proc stretch*(sx,sy,sz:float,org:Point3d):Matrix3d {.noInit.} = ## Returns a new stretch matrix, which is a ## scale matrix with non uniform scale in x,y and z. ## `org` is used as stretch origin. result.setElements(sx,0,0,0, 0,sy,0,0, 0,0,sz,0, org.x-sx*org.x,org.y-sy*org.y,org.z-sz*org.z,1) - -proc move*(dx,dy,dz:float):TMatrix3d {.noInit.} = + +proc move*(dx,dy,dz:float):Matrix3d {.noInit.} = ## Returns a new translation matrix. result.setElements(1,0,0,0, 0,1,0,0, 0,0,1,0, dx,dy,dz,1) -proc move*(v:TVector3d):TMatrix3d {.noInit.} = +proc move*(v:Vector3d):Matrix3d {.noInit.} = ## Returns a new translation matrix from a vector. result.setElements(1,0,0,0, 0,1,0,0, 0,0,1,0, v.x,v.y,v.z,1) -proc rotate*(angle:float,axis:TVector3d):TMatrix3d {.noInit.}= +proc rotate*(angle:float,axis:Vector3d):Matrix3d {.noInit.}= ## Creates a rotation matrix that rotates `angle` radians over ## `axis`, which passes through origo. @@ -235,24 +235,24 @@ proc rotate*(angle:float,axis:TVector3d):TMatrix3d {.noInit.}= uvomc=normax.x*normax.y*omc uwomc=normax.x*normax.z*omc vwomc=normax.y*normax.z*omc - + result.setElements( u2+(1.0-u2)*cs, uvomc+wsi, uwomc-vsi, 0.0, uvomc-wsi, v2+(1.0-v2)*cs, vwomc+usi, 0.0, uwomc+vsi, vwomc-usi, w2+(1.0-w2)*cs, 0.0, 0.0,0.0,0.0,1.0) -proc rotate*(angle:float,org:TPoint3d,axis:TVector3d):TMatrix3d {.noInit.}= +proc rotate*(angle:float,org:Point3d,axis:Vector3d):Matrix3d {.noInit.}= ## Creates a rotation matrix that rotates `angle` radians over ## `axis`, which passes through `org`. # see PDF document http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.pdf # for how this is computed - + var normax=axis if not normax.tryNormalize: #simplifies matrix computation below a lot raise newException(DivByZeroError,"Cannot rotate around zero length axis") - + let u=normax.x v=normax.y @@ -272,7 +272,7 @@ proc rotate*(angle:float,org:TPoint3d,axis:TVector3d):TMatrix3d {.noInit.}= uvomc=normax.x*normax.y*omc uwomc=normax.x*normax.z*omc vwomc=normax.y*normax.z*omc - + result.setElements( u2+(v2+w2)*cs, uvomc+wsi, uwomc-vsi, 0.0, uvomc-wsi, v2+(u2+w2)*cs, vwomc+usi, 0.0, @@ -282,7 +282,7 @@ proc rotate*(angle:float,org:TPoint3d,axis:TVector3d):TMatrix3d {.noInit.}= (c*(u2+v2)-w*(a*u+b*v))*omc+(a*v-b*u)*si,1.0) -proc rotateX*(angle:float):TMatrix3d {.noInit.}= +proc rotateX*(angle:float):Matrix3d {.noInit.}= ## Creates a matrix that rotates around the x-axis with `angle` radians, ## which is also called a 'roll' matrix. let @@ -294,7 +294,7 @@ proc rotateX*(angle:float):TMatrix3d {.noInit.}= 0,-s,c,0, 0,0,0,1) -proc rotateY*(angle:float):TMatrix3d {.noInit.}= +proc rotateY*(angle:float):Matrix3d {.noInit.}= ## Creates a matrix that rotates around the y-axis with `angle` radians, ## which is also called a 'pitch' matrix. let @@ -305,8 +305,8 @@ proc rotateY*(angle:float):TMatrix3d {.noInit.}= 0,1,0,0, s,0,c,0, 0,0,0,1) - -proc rotateZ*(angle:float):TMatrix3d {.noInit.}= + +proc rotateZ*(angle:float):Matrix3d {.noInit.}= ## Creates a matrix that rotates around the z-axis with `angle` radians, ## which is also called a 'yaw' matrix. let @@ -317,19 +317,19 @@ proc rotateZ*(angle:float):TMatrix3d {.noInit.}= -s,c,0,0, 0,0,1,0, 0,0,0,1) - -proc isUniform*(m:TMatrix3d,tol=1.0e-6):bool= - ## Checks if the transform is uniform, that is + +proc isUniform*(m:Matrix3d,tol=1.0e-6):bool= + ## Checks if the transform is uniform, that is ## perpendicular axes of equal length, which means (for example) ## it cannot transform a sphere into an ellipsoid. - ## `tol` is used as tolerance for both equal length comparison + ## `tol` is used as tolerance for both equal length comparison ## and perpendicular comparison. - + #dot product=0 means perpendicular coord. system, check xaxis vs yaxis and xaxis vs zaxis if abs(m.ax*m.bx+m.ay*m.by+m.az*m.bz)<=tol and # x vs y abs(m.ax*m.cx+m.ay*m.cy+m.az*m.cz)<=tol and #x vs z abs(m.bx*m.cx+m.by*m.cy+m.bz*m.cz)<=tol: #y vs z - + #subtract squared lengths of axes to check if uniform scaling: let sqxlen=(m.ax*m.ax+m.ay*m.ay+m.az*m.az) @@ -340,16 +340,16 @@ proc isUniform*(m:TMatrix3d,tol=1.0e-6):bool= return false - -proc mirror*(planeperp:TVector3d):TMatrix3d {.noInit.}= + +proc mirror*(planeperp:Vector3d):Matrix3d {.noInit.}= ## Creates a matrix that mirrors over the plane that has `planeperp` as normal, ## and passes through origo. `planeperp` does not need to be normalized. - + # https://en.wikipedia.org/wiki/Transformation_matrix var n=planeperp if not n.tryNormalize: raise newException(DivByZeroError,"Cannot mirror over a plane with a zero length normal") - + let a=n.x b=n.y @@ -357,7 +357,7 @@ proc mirror*(planeperp:TVector3d):TMatrix3d {.noInit.}= ab=a*b ac=a*c bc=b*c - + result.setElements( 1-2*a*a , -2*ab,-2*ac,0, -2*ab , 1-2*b*b, -2*bc, 0, @@ -365,7 +365,7 @@ proc mirror*(planeperp:TVector3d):TMatrix3d {.noInit.}= 0,0,0,1) -proc mirror*(org:TPoint3d,planeperp:TVector3d):TMatrix3d {.noInit.}= +proc mirror*(org:Point3d,planeperp:Vector3d):Matrix3d {.noInit.}= ## Creates a matrix that mirrors over the plane that has `planeperp` as normal, ## and passes through `org`. `planeperp` does not need to be normalized. @@ -376,7 +376,7 @@ proc mirror*(org:TPoint3d,planeperp:TVector3d):TMatrix3d {.noInit.}= var n=planeperp if not n.tryNormalize: raise newException(DivByZeroError,"Cannot mirror over a plane with a zero length normal") - + let a=n.x b=n.y @@ -390,7 +390,7 @@ proc mirror*(org:TPoint3d,planeperp:TVector3d):TMatrix3d {.noInit.}= tx=org.x ty=org.y tz=org.z - + result.setElements( 1-2*aa , -2*ab,-2*ac,0, -2*ab , 1-2*bb, -2*bc, 0, @@ -400,10 +400,10 @@ proc mirror*(org:TPoint3d,planeperp:TVector3d):TMatrix3d {.noInit.}= 2*(cc*tz+bc*ty+ac*tx) ,1) -proc determinant*(m:TMatrix3d):float= +proc determinant*(m:Matrix3d):float= ## Computes the determinant of matrix `m`. - - # This computation is gotten from ratsimp(optimize(determinant(m))) + + # This computation is gotten from ratsimp(optimize(determinant(m))) # in maxima CAS let O1=m.cx*m.tw-m.cw*m.tx @@ -419,14 +419,14 @@ proc determinant*(m:TMatrix3d):float= (O3*m.az-O5*m.ay+O6*m.ax)*m.bw -proc inverse*(m:TMatrix3d):TMatrix3d {.noInit.}= +proc inverse*(m:Matrix3d):Matrix3d {.noInit.}= ## Computes the inverse of matrix `m`. If the matrix ## determinant is zero, thus not invertible, a EDivByZero ## will be raised. - + # this computation comes from optimize(invert(m)) in maxima CAS - - let + + let det=m.determinant O2=m.cy*m.tw-m.cw*m.ty O3=m.cz*m.tw-m.cw*m.tz @@ -461,10 +461,10 @@ proc inverse*(m:TMatrix3d):TMatrix3d {.noInit.}= (-m.ax*O7+m.ay*O14-m.az*O18)/det , (m.ax*O10-m.ay*O16+m.az*O19)/det) -proc equals*(m1:TMatrix3d,m2:TMatrix3d,tol=1.0e-6):bool= +proc equals*(m1:Matrix3d,m2:Matrix3d,tol=1.0e-6):bool= ## Checks if all elements of `m1`and `m2` is equal within ## a given tolerance `tol`. - return + return abs(m1.ax-m2.ax)<=tol and abs(m1.ay-m2.ay)<=tol and abs(m1.az-m2.az)<=tol and @@ -482,83 +482,83 @@ proc equals*(m1:TMatrix3d,m2:TMatrix3d,tol=1.0e-6):bool= abs(m1.tz-m2.tz)<=tol and abs(m1.tw-m2.tw)<=tol -proc `=~`*(m1,m2:TMatrix3d):bool= +proc `=~`*(m1,m2:Matrix3d):bool= ## Checks if `m1` and `m2` is approximately equal, using a ## tolerance of 1e-6. equals(m1,m2) - -proc transpose*(m:TMatrix3d):TMatrix3d {.noInit.}= + +proc transpose*(m:Matrix3d):Matrix3d {.noInit.}= ## Returns the transpose of `m` result.setElements(m.ax,m.bx,m.cx,m.tx,m.ay,m.by,m.cy,m.ty,m.az,m.bz,m.cz,m.tz,m.aw,m.bw,m.cw,m.tw) - -proc getXAxis*(m:TMatrix3d):TVector3d {.noInit.}= + +proc getXAxis*(m:Matrix3d):Vector3d {.noInit.}= ## Gets the local x axis of `m` result.x=m.ax result.y=m.ay result.z=m.az -proc getYAxis*(m:TMatrix3d):TVector3d {.noInit.}= +proc getYAxis*(m:Matrix3d):Vector3d {.noInit.}= ## Gets the local y axis of `m` result.x=m.bx result.y=m.by result.z=m.bz -proc getZAxis*(m:TMatrix3d):TVector3d {.noInit.}= +proc getZAxis*(m:Matrix3d):Vector3d {.noInit.}= ## Gets the local y axis of `m` result.x=m.cx result.y=m.cy result.z=m.cz - -proc `$`*(m:TMatrix3d):string= + +proc `$`*(m:Matrix3d):string= ## String representation of `m` - return rtos(m.ax) & "," & rtos(m.ay) & "," &rtos(m.az) & "," & rtos(m.aw) & - "\n" & rtos(m.bx) & "," & rtos(m.by) & "," &rtos(m.bz) & "," & rtos(m.bw) & - "\n" & rtos(m.cx) & "," & rtos(m.cy) & "," &rtos(m.cz) & "," & rtos(m.cw) & - "\n" & rtos(m.tx) & "," & rtos(m.ty) & "," &rtos(m.tz) & "," & rtos(m.tw) - -proc apply*(m:TMatrix3d, x,y,z:var float, translate=false)= + return rtos(m.ax) & "," & rtos(m.ay) & "," & rtos(m.az) & "," & rtos(m.aw) & + "\n" & rtos(m.bx) & "," & rtos(m.by) & "," & rtos(m.bz) & "," & rtos(m.bw) & + "\n" & rtos(m.cx) & "," & rtos(m.cy) & "," & rtos(m.cz) & "," & rtos(m.cw) & + "\n" & rtos(m.tx) & "," & rtos(m.ty) & "," & rtos(m.tz) & "," & rtos(m.tw) + +proc apply*(m:Matrix3d, x,y,z:var float, translate=false)= ## Applies transformation `m` onto `x` , `y` , `z` , optionally ## using the translation part of the matrix. - let + let oldx=x oldy=y oldz=z - + x=m.cx*oldz+m.bx*oldy+m.ax*oldx y=m.cy*oldz+m.by*oldy+m.ay*oldx z=m.cz*oldz+m.bz*oldy+m.az*oldx - + if translate: x+=m.tx y+=m.ty z+=m.tz # *************************************** -# TVector3d implementation +# Vector3d implementation # *************************************** -proc vector3d*(x,y,z:float):TVector3d= +proc vector3d*(x,y,z:float):Vector3d= result.x=x result.y=y result.z=z -proc len*(v:TVector3d):float= +proc len*(v:Vector3d):float= ## Returns the length of the vector `v`. sqrt(v.x*v.x+v.y*v.y+v.z*v.z) -proc `len=`*(v:var TVector3d,newlen:float) {.noInit.} = +proc `len=`*(v:var Vector3d,newlen:float) {.noInit.} = ## Sets the length of the vector, keeping its direction. ## If the vector has zero length before changing it's length, ## an arbitrary vector of the requested length is returned. let fac=newlen/v.len - + if newlen==0.0: v.x=0.0 v.y=0.0 v.z=0.0 return - + if fac==Inf or fac==NegInf: #to short for float accuracy #do as good as possible: @@ -571,12 +571,12 @@ proc `len=`*(v:var TVector3d,newlen:float) {.noInit.} = v.z*=fac -proc sqrLen*(v:TVector3d):float {.inline.}= +proc sqrLen*(v:Vector3d):float {.inline.}= ## Computes the squared length of the vector, which is ## faster than computing the absolute length. return v.x*v.x+v.y*v.y+v.z*v.z -proc `$` *(v:TVector3d):string= +proc `$` *(v:Vector3d):string= ## String representation of `v` result=rtos(v.x) result.add(",") @@ -584,11 +584,11 @@ proc `$` *(v:TVector3d):string= result.add(",") result.add(rtos(v.z)) -proc `&` *(v:TVector3d,m:TMatrix3d):TVector3d {.noInit.} = +proc `&` *(v:Vector3d,m:Matrix3d):Vector3d {.noInit.} = ## Concatenate vector `v` with a transformation matrix. ## Transforming a vector ignores the translational part ## of the matrix. - + # | AX AY AZ AW | # | X Y Z 1 | * | BX BY BZ BW | # | CX CY CZ CW | @@ -601,16 +601,16 @@ proc `&` *(v:TVector3d,m:TMatrix3d):TVector3d {.noInit.} = result.x=newx -proc `&=` *(v:var TVector3d,m:TMatrix3d) {.noInit.} = +proc `&=` *(v:var Vector3d,m:Matrix3d) {.noInit.} = ## Applies transformation `m` onto `v` in place. ## Transforming a vector ignores the translational part ## of the matrix. - + # | AX AY AZ AW | # | X Y Z 1 | * | BX BY BZ BW | # | CX CY CZ CW | # | 0 0 0 1 | - + let newx=m.cx*v.z+m.bx*v.y+m.ax*v.x newy=m.cy*v.z+m.by*v.y+m.ay*v.x @@ -618,40 +618,40 @@ proc `&=` *(v:var TVector3d,m:TMatrix3d) {.noInit.} = v.y=newy v.x=newx -proc transformNorm*(v:var TVector3d,m:TMatrix3d)= +proc transformNorm*(v:var Vector3d,m:Matrix3d)= ## Applies a normal direction transformation `m` onto `v` in place. - ## The resulting vector is *not* normalized. Transforming a vector ignores the - ## translational part of the matrix. If the matrix is not invertible + ## The resulting vector is *not* normalized. Transforming a vector ignores the + ## translational part of the matrix. If the matrix is not invertible ## (determinant=0), an EDivByZero will be raised. # transforming a normal is done by transforming # by the transpose of the inverse of the original matrix - + # Major reason this simple function is here is that this function can be optimized in the future, # (possibly by hardware) as well as having a consistent API with the 2d version. v&=transpose(inverse(m)) - -proc transformInv*(v:var TVector3d,m:TMatrix3d)= - ## Applies the inverse of `m` on vector `v`. Transforming a vector ignores - ## the translational part of the matrix. Transforming a vector ignores the + +proc transformInv*(v:var Vector3d,m:Matrix3d)= + ## Applies the inverse of `m` on vector `v`. Transforming a vector ignores + ## the translational part of the matrix. Transforming a vector ignores the ## translational part of the matrix. ## If the matrix is not invertible (determinant=0), an EDivByZero ## will be raised. - + # Major reason this simple function is here is that this function can be optimized in the future, # (possibly by hardware) as well as having a consistent API with the 2d version. v&=m.inverse - -proc transformNormInv*(vec:var TVector3d,m:TMatrix3d)= + +proc transformNormInv*(vec:var Vector3d,m:Matrix3d)= ## Applies an inverse normal direction transformation `m` onto `v` in place. - ## This is faster than creating an inverse - ## matrix and transformNorm(...) it. Transforming a vector ignores the + ## This is faster than creating an inverse + ## matrix and transformNorm(...) it. Transforming a vector ignores the ## translational part of the matrix. - + # see vector2d:s equivalent for a deeper look how/why this works vec&=m.transpose -proc tryNormalize*(v:var TVector3d):bool= +proc tryNormalize*(v:var Vector3d):bool= ## Modifies `v` to have a length of 1.0, keeping its angle. ## If `v` has zero length (and thus no angle), it is left unmodified and false is ## returned, otherwise true is returned. @@ -663,26 +663,26 @@ proc tryNormalize*(v:var TVector3d):bool= v.x/=mag v.y/=mag v.z/=mag - + return true -proc normalize*(v:var TVector3d) {.inline.}= +proc normalize*(v:var Vector3d) {.inline.}= ## Modifies `v` to have a length of 1.0, keeping its angle. ## If `v` has zero length, an EDivByZero will be raised. if not tryNormalize(v): raise newException(DivByZeroError,"Cannot normalize zero length vector") -proc rotate*(vec:var TVector3d,angle:float,axis:TVector3d)= - ## Rotates `vec` in place, with `angle` radians over `axis`, which passes +proc rotate*(vec:var Vector3d,angle:float,axis:Vector3d)= + ## Rotates `vec` in place, with `angle` radians over `axis`, which passes ## through origo. # see PDF document http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.pdf # for how this is computed - + var normax=axis if not normax.tryNormalize: raise newException(DivByZeroError,"Cannot rotate around zero length axis") - + let cs=cos(angle) si=sin(angle) @@ -694,31 +694,31 @@ proc rotate*(vec:var TVector3d,angle:float,axis:TVector3d)= y=vec.y z=vec.z uxyzomc=(u*x+v*y+w*z)*omc - + vec.x=u*uxyzomc+x*cs+(v*z-w*y)*si vec.y=v*uxyzomc+y*cs+(w*x-u*z)*si vec.z=w*uxyzomc+z*cs+(u*y-v*x)*si - -proc scale*(v:var TVector3d,s:float)= + +proc scale*(v:var Vector3d,s:float)= ## Scales the vector in place with factor `s` v.x*=s v.y*=s v.z*=s -proc stretch*(v:var TVector3d,sx,sy,sz:float)= +proc stretch*(v:var Vector3d,sx,sy,sz:float)= ## Scales the vector non uniformly with factors `sx` , `sy` , `sz` v.x*=sx v.y*=sy v.z*=sz -proc mirror*(v:var TVector3d,planeperp:TVector3d)= +proc mirror*(v:var Vector3d,planeperp:Vector3d)= ## Computes the mirrored vector of `v` over the plane - ## that has `planeperp` as normal direction. + ## that has `planeperp` as normal direction. ## `planeperp` does not need to be normalized. - + var n=planeperp n.normalize - + let x=v.x y=v.y @@ -729,18 +729,18 @@ proc mirror*(v:var TVector3d,planeperp:TVector3d)= ac=a*c ab=a*b bc=b*c - + v.x= -2*(ac*z+ab*y+a*a*x)+x v.y= -2*(bc*z+b*b*y+ab*x)+y v.z= -2*(c*c*z+bc*y+ac*x)+z -proc `-` *(v:TVector3d):TVector3d= +proc `-` *(v:Vector3d):Vector3d= ## Negates a vector result.x= -v.x result.y= -v.y result.z= -v.z - + # declare templated binary operators makeBinOpVector(`+`) makeBinOpVector(`-`) @@ -751,12 +751,12 @@ makeBinOpAssignVector(`-=`) makeBinOpAssignVector(`*=`) makeBinOpAssignVector(`/=`) -proc dot*(v1,v2:TVector3d):float {.inline.}= - ## Computes the dot product of two vectors. +proc dot*(v1,v2:Vector3d):float {.inline.}= + ## Computes the dot product of two vectors. ## Returns 0.0 if the vectors are perpendicular. return v1.x*v2.x+v1.y*v2.y+v1.z*v2.z -proc cross*(v1,v2:TVector3d):TVector3d {.inline.}= +proc cross*(v1,v2:Vector3d):Vector3d {.inline.}= ## Computes the cross product of two vectors. ## The result is a vector which is perpendicular ## to the plane of `v1` and `v2`, which means @@ -766,16 +766,16 @@ proc cross*(v1,v2:TVector3d):TVector3d {.inline.}= result.y = (v1.z * v2.x) - (v2.z * v1.x) result.z = (v1.x * v2.y) - (v2.x * v1.y) -proc equals*(v1,v2:TVector3d,tol=1.0e-6):bool= +proc equals*(v1,v2:Vector3d,tol=1.0e-6):bool= ## Checks if two vectors approximately equals with a tolerance. return abs(v2.x-v1.x)<=tol and abs(v2.y-v1.y)<=tol and abs(v2.z-v1.z)<=tol - -proc `=~` *(v1,v2:TVector3d):bool= - ## Checks if two vectors approximately equals with a + +proc `=~` *(v1,v2:Vector3d):bool= + ## Checks if two vectors approximately equals with a ## hardcoded tolerance 1e-6 equals(v1,v2) - -proc angleTo*(v1,v2:TVector3d):float= + +proc angleTo*(v1,v2:Vector3d):float= ## Returns the smallest angle between v1 and v2, ## which is in range 0-PI var @@ -785,13 +785,13 @@ proc angleTo*(v1,v2:TVector3d):float= return 0.0 # zero length vector has zero angle to any other vector return safeArccos(dot(nv1,nv2)) -proc arbitraryAxis*(norm:TVector3d):TMatrix3d {.noInit.}= +proc arbitraryAxis*(norm:Vector3d):Matrix3d {.noInit.}= ## Computes the rotation matrix that would transform ## world z vector into `norm`. The inverse of this matrix ## is useful to transform a planar 3d object to 2d space. ## This is the same algorithm used to interpret DXF and DWG files. const lim=1.0/64.0 - var ax,ay,az:TVector3d + var ax,ay,az:Vector3d if abs(norm.x)<lim and abs(norm.y)<lim: ax=cross(YAXIS,norm) else: @@ -801,30 +801,30 @@ proc arbitraryAxis*(norm:TVector3d):TMatrix3d {.noInit.}= ay=cross(norm,ax) ay.normalize() az=cross(ax,ay) - + result.setElements( ax.x,ax.y,ax.z,0.0, ay.x,ay.y,ay.z,0.0, az.x,az.y,az.z,0.0, 0.0,0.0,0.0,1.0) -proc bisect*(v1,v2:TVector3d):TVector3d {.noInit.}= +proc bisect*(v1,v2:Vector3d):Vector3d {.noInit.}= ## Computes the bisector between v1 and v2 as a normalized vector. ## If one of the input vectors has zero length, a normalized version - ## of the other is returned. If both input vectors has zero length, + ## of the other is returned. If both input vectors has zero length, ## an arbitrary normalized vector `v1` is returned. var vmag1=v1.len vmag2=v2.len - - # zero length vector equals arbitrary vector, just change + + # zero length vector equals arbitrary vector, just change # magnitude to one to avoid zero division - if vmag1==0.0: + if vmag1==0.0: if vmag2==0: #both are zero length return any normalized vector return XAXIS vmag1=1.0 - if vmag2==0.0: vmag2=1.0 - + if vmag2==0.0: vmag2=1.0 + let x1=v1.x/vmag1 y1=v1.y/vmag1 @@ -832,14 +832,14 @@ proc bisect*(v1,v2:TVector3d):TVector3d {.noInit.}= x2=v2.x/vmag2 y2=v2.y/vmag2 z2=v2.z/vmag2 - + result.x=(x1 + x2) * 0.5 result.y=(y1 + y2) * 0.5 result.z=(z1 + z2) * 0.5 - + if not result.tryNormalize(): # This can happen if vectors are colinear. In this special case - # there are actually inifinitely many bisectors, we select just + # there are actually inifinitely many bisectors, we select just # one of them. result=v1.cross(XAXIS) if result.sqrLen<1.0e-9: @@ -851,40 +851,40 @@ proc bisect*(v1,v2:TVector3d):TVector3d {.noInit.}= # *************************************** -# TPoint3d implementation +# Point3d implementation # *************************************** -proc point3d*(x,y,z:float):TPoint3d= +proc point3d*(x,y,z:float):Point3d= result.x=x result.y=y result.z=z - -proc sqrDist*(a,b:TPoint3d):float= + +proc sqrDist*(a,b:Point3d):float= ## Computes the squared distance between `a`and `b` let dx=b.x-a.x let dy=b.y-a.y let dz=b.z-a.z result=dx*dx+dy*dy+dz*dz - -proc dist*(a,b:TPoint3d):float {.inline.}= + +proc dist*(a,b:Point3d):float {.inline.}= ## Computes the absolute distance between `a`and `b` result=sqrt(sqrDist(a,b)) -proc `$` *(p:TPoint3d):string= +proc `$` *(p:Point3d):string= ## String representation of `p` result=rtos(p.x) result.add(",") result.add(rtos(p.y)) result.add(",") result.add(rtos(p.z)) - -proc `&`*(p:TPoint3d,m:TMatrix3d):TPoint3d= + +proc `&`*(p:Point3d,m:Matrix3d):Point3d= ## Concatenates a point `p` with a transform `m`, ## resulting in a new, transformed point. result.z=m.cz*p.z+m.bz*p.y+m.az*p.x+m.tz result.y=m.cy*p.z+m.by*p.y+m.ay*p.x+m.ty result.x=m.cx*p.z+m.bx*p.y+m.ax*p.x+m.tx -proc `&=` *(p:var TPoint3d,m:TMatrix3d)= +proc `&=` *(p:var Point3d,m:Matrix3d)= ## Applies transformation `m` onto `p` in place. let x=p.x @@ -893,77 +893,77 @@ proc `&=` *(p:var TPoint3d,m:TMatrix3d)= p.x=m.cx*z+m.bx*y+m.ax*x+m.tx p.y=m.cy*z+m.by*y+m.ay*x+m.ty p.z=m.cz*z+m.bz*y+m.az*x+m.tz - -proc transformInv*(p:var TPoint3d,m:TMatrix3d)= + +proc transformInv*(p:var Point3d,m:Matrix3d)= ## Applies the inverse of transformation `m` onto `p` in place. ## If the matrix is not invertable (determinant=0) , EDivByZero will ## be raised. - + # can possibly be more optimized in the future so use this function when possible p&=inverse(m) -proc `+`*(p:TPoint3d,v:TVector3d):TPoint3d {.noInit,inline.} = - ## Adds a vector `v` to a point `p`, resulting +proc `+`*(p:Point3d,v:Vector3d):Point3d {.noInit,inline.} = + ## Adds a vector `v` to a point `p`, resulting ## in a new point. result.x=p.x+v.x result.y=p.y+v.y result.z=p.z+v.z -proc `+=`*(p:var TPoint3d,v:TVector3d) {.noInit,inline.} = +proc `+=`*(p:var Point3d,v:Vector3d) {.noInit,inline.} = ## Adds a vector `v` to a point `p` in place. p.x+=v.x p.y+=v.y p.z+=v.z -proc `-`*(p:TPoint3d,v:TVector3d):TPoint3d {.noInit,inline.} = - ## Subtracts a vector `v` from a point `p`, resulting +proc `-`*(p:Point3d,v:Vector3d):Point3d {.noInit,inline.} = + ## Subtracts a vector `v` from a point `p`, resulting ## in a new point. result.x=p.x-v.x result.y=p.y-v.y result.z=p.z-v.z -proc `-`*(p1,p2:TPoint3d):TVector3d {.noInit,inline.} = +proc `-`*(p1,p2:Point3d):Vector3d {.noInit,inline.} = ## Subtracts `p2`from `p1` resulting in a difference vector. result.x=p1.x-p2.x result.y=p1.y-p2.y result.z=p1.z-p2.z -proc `-=`*(p:var TPoint3d,v:TVector3d) {.noInit,inline.} = +proc `-=`*(p:var Point3d,v:Vector3d) {.noInit,inline.} = ## Subtracts a vector `v` from a point `p` in place. p.x-=v.x p.y-=v.y - p.z-=v.z + p.z-=v.z -proc equals(p1,p2:TPoint3d,tol=1.0e-6):bool {.inline.}= +proc equals(p1,p2:Point3d,tol=1.0e-6):bool {.inline.}= ## Checks if two points approximately equals with a tolerance. return abs(p2.x-p1.x)<=tol and abs(p2.y-p1.y)<=tol and abs(p2.z-p1.z)<=tol -proc `=~`*(p1,p2:TPoint3d):bool {.inline.}= - ## Checks if two vectors approximately equals with a +proc `=~`*(p1,p2:Point3d):bool {.inline.}= + ## Checks if two vectors approximately equals with a ## hardcoded tolerance 1e-6 equals(p1,p2) -proc rotate*(p:var TPoint3d,rad:float,axis:TVector3d)= - ## Rotates point `p` in place `rad` radians about an axis +proc rotate*(p:var Point3d,rad:float,axis:Vector3d)= + ## Rotates point `p` in place `rad` radians about an axis ## passing through origo. - + var v=vector3d(p.x,p.y,p.z) v.rotate(rad,axis) # reuse this code here since doing the same thing and quite complicated p.x=v.x p.y=v.y p.z=v.z - -proc rotate*(p:var TPoint3d,angle:float,org:TPoint3d,axis:TVector3d)= - ## Rotates point `p` in place `rad` radians about an axis + +proc rotate*(p:var Point3d,angle:float,org:Point3d,axis:Vector3d)= + ## Rotates point `p` in place `rad` radians about an axis ## passing through `org` - + # see PDF document http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.pdf # for how this is computed - + var normax=axis normax.normalize - + let cs=cos(angle) omc=1.0-cs @@ -987,53 +987,53 @@ proc rotate*(p:var TPoint3d,angle:float,org:TPoint3d,axis:TVector3d)= bv=b*v cw=c*w uxmvymwz=ux-vy-wz - + p.x=(a*(vv+ww)-u*(bv+cw-uxmvymwz))*omc + x*cs + (b*w+v*z-c*v-w*y)*si p.y=(b*(uu+ww)-v*(au+cw-uxmvymwz))*omc + y*cs + (c*u-a*w+w*x-u*z)*si p.z=(c*(uu+vv)-w*(au+bv-uxmvymwz))*omc + z*cs + (a*v+u*y-b*u-v*x)*si - -proc scale*(p:var TPoint3d,fac:float) {.inline.}= + +proc scale*(p:var Point3d,fac:float) {.inline.}= ## Scales a point in place `fac` times with world origo as origin. p.x*=fac p.y*=fac p.z*=fac - -proc scale*(p:var TPoint3d,fac:float,org:TPoint3d){.inline.}= + +proc scale*(p:var Point3d,fac:float,org:Point3d){.inline.}= ## Scales the point in place `fac` times with `org` as origin. p.x=(p.x - org.x) * fac + org.x p.y=(p.y - org.y) * fac + org.y p.z=(p.z - org.z) * fac + org.z -proc stretch*(p:var TPoint3d,facx,facy,facz:float){.inline.}= - ## Scales a point in place non uniformly `facx` , `facy` , `facz` times +proc stretch*(p:var Point3d,facx,facy,facz:float){.inline.}= + ## Scales a point in place non uniformly `facx` , `facy` , `facz` times ## with world origo as origin. p.x*=facx p.y*=facy p.z*=facz -proc stretch*(p:var TPoint3d,facx,facy,facz:float,org:TPoint3d){.inline.}= +proc stretch*(p:var Point3d,facx,facy,facz:float,org:Point3d){.inline.}= ## Scales the point in place non uniformly `facx` , `facy` , `facz` times ## with `org` as origin. p.x=(p.x - org.x) * facx + org.x p.y=(p.y - org.y) * facy + org.y p.z=(p.z - org.z) * facz + org.z - -proc move*(p:var TPoint3d,dx,dy,dz:float){.inline.}= + +proc move*(p:var Point3d,dx,dy,dz:float){.inline.}= ## Translates a point `dx` , `dy` , `dz` in place. p.x+=dx p.y+=dy p.z+=dz -proc move*(p:var TPoint3d,v:TVector3d){.inline.}= +proc move*(p:var Point3d,v:Vector3d){.inline.}= ## Translates a point with vector `v` in place. p.x+=v.x p.y+=v.y p.z+=v.z -proc area*(a,b,c:TPoint3d):float {.inline.}= +proc area*(a,b,c:Point3d):float {.inline.}= ## Computes the area of the triangle thru points `a` , `b` and `c` - + # The area of a planar 3d quadliteral is the magnitude of the cross # product of two edge vectors. Taking this time 0.5 gives the triangle area. return cross(b-a,c-a).len*0.5 |