diff options
Diffstat (limited to 'lib/pure/bitops.nim')
-rw-r--r-- | lib/pure/bitops.nim | 860 |
1 files changed, 609 insertions, 251 deletions
diff --git a/lib/pure/bitops.nim b/lib/pure/bitops.nim index 9ebdabb7b..0d3351ee5 100644 --- a/lib/pure/bitops.nim +++ b/lib/pure/bitops.nim @@ -8,140 +8,380 @@ # ## This module implements a series of low level methods for bit manipulation. - -## By default, this module use compiler intrinsics where possible to improve performance -## on supported compilers: ``GCC``, ``LLVM_GCC``, ``CLANG``, ``VCC``, ``ICC``. ## -## The module will fallback to pure nim procs incase the backend is not supported. +## By default, compiler intrinsics are used where possible to improve performance +## on supported compilers: `GCC`, `LLVM_GCC`, `CLANG`, `VCC`, `ICC`. +## +## The module will fallback to pure nim procs in case the backend is not supported. ## You can also use the flag `noIntrinsicsBitOpts` to disable compiler intrinsics. ## -## This module is also compatible with other backends: ``Javascript``, ``Nimscript`` -## as well as the ``compiletime VM``. +## This module is also compatible with other backends: `JavaScript`, `NimScript` +## as well as the `compiletime VM`. ## -## As a result of using optimized function/intrinsics some functions can return +## As a result of using optimized functions/intrinsics, some functions can return ## undefined results if the input is invalid. You can use the flag `noUndefinedBitOpts` ## to force predictable behaviour for all input, causing a small performance hit. ## -## At this time only `fastLog2`, `firstSetBit, `countLeadingZeroBits`, `countTrailingZeroBits` -## may return undefined and/or platform dependent value if given invalid input. +## At this time only `fastLog2`, `firstSetBit`, `countLeadingZeroBits` and `countTrailingZeroBits` +## may return undefined and/or platform dependent values if given invalid input. -proc bitnot*[T: SomeInteger](x: T): T {.magic: "BitnotI", noSideEffect.} +import std/macros +import std/private/since +from std/private/bitops_utils import forwardImpl, castToUnsigned + +func bitnot*[T: SomeInteger](x: T): T {.magic: "BitnotI".} ## Computes the `bitwise complement` of the integer `x`. -proc bitand*[T: SomeInteger](x, y: T): T {.magic: "BitandI", noSideEffect.} - ## Computes the `bitwise and` of numbers `x` and `y`. - -proc bitor*[T: SomeInteger](x, y: T): T {.magic: "BitorI", noSideEffect.} - ## Computes the `bitwise or` of numbers `x` and `y`. - -proc bitxor*[T: SomeInteger](x, y: T): T {.magic: "BitxorI", noSideEffect.} - ## Computes the `bitwise xor` of numbers `x` and `y`. - -const useBuiltins = not defined(noIntrinsicsBitOpts) -const noUndefined = defined(noUndefinedBitOpts) -const useGCC_builtins = (defined(gcc) or defined(llvm_gcc) or - defined(clang)) and useBuiltins -const useICC_builtins = defined(icc) and useBuiltins -const useVCC_builtins = defined(vcc) and useBuiltins -const arch64 = sizeof(int) == 8 - -template toUnsigned(x: int8): uint8 = cast[uint8](x) -template toUnsigned(x: int16): uint16 = cast[uint16](x) -template toUnsigned(x: int32): uint32 = cast[uint32](x) -template toUnsigned(x: int64): uint64 = cast[uint64](x) -template toUnsigned(x: int): uint = cast[uint](x) - -template forwardImpl(impl, arg) {.dirty.} = - when sizeof(x) <= 4: - when x is SomeSignedInt: - impl(cast[uint32](x.int32)) - else: - impl(x.uint32) +func internalBitand[T: SomeInteger](x, y: T): T {.magic: "BitandI".} + +func internalBitor[T: SomeInteger](x, y: T): T {.magic: "BitorI".} + +func internalBitxor[T: SomeInteger](x, y: T): T {.magic: "BitxorI".} + +macro bitand*[T: SomeInteger](x, y: T; z: varargs[T]): T = + ## Computes the `bitwise and` of all arguments collectively. + let fn = bindSym("internalBitand") + result = newCall(fn, x, y) + for extra in z: + result = newCall(fn, result, extra) + +macro bitor*[T: SomeInteger](x, y: T; z: varargs[T]): T = + ## Computes the `bitwise or` of all arguments collectively. + let fn = bindSym("internalBitor") + result = newCall(fn, x, y) + for extra in z: + result = newCall(fn, result, extra) + +macro bitxor*[T: SomeInteger](x, y: T; z: varargs[T]): T = + ## Computes the `bitwise xor` of all arguments collectively. + let fn = bindSym("internalBitxor") + result = newCall(fn, x, y) + for extra in z: + result = newCall(fn, result, extra) + + +type BitsRange*[T] = range[0..sizeof(T)*8-1] + ## A range with all bit positions for type `T`. + +template typeMasked[T: SomeInteger](x: T): T = + when defined(js): + T(x and ((0xffffffff_ffffffff'u shr (64 - sizeof(T) * 8)))) else: - when x is SomeSignedInt: - impl(cast[uint64](x.int64)) - else: - impl(x.uint64) + x + +func bitsliced*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} = + ## Returns an extracted (and shifted) slice of bits from `v`. + runnableExamples: + doAssert 0b10111.bitsliced(2 .. 4) == 0b101 + doAssert 0b11100.bitsliced(0 .. 2) == 0b100 + doAssert 0b11100.bitsliced(0 ..< 3) == 0b100 + + let + upmost = sizeof(T) * 8 - 1 + uv = v.castToUnsigned + ((uv shl (upmost - slice.b)).typeMasked shr (upmost - slice.b + slice.a)).T + +proc bitslice*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} = + ## Mutates `v` into an extracted (and shifted) slice of bits from `v`. + runnableExamples: + var x = 0b101110 + x.bitslice(2 .. 4) + doAssert x == 0b011 + + let + upmost = sizeof(T) * 8 - 1 + uv = v.castToUnsigned + v = ((uv shl (upmost - slice.b)).typeMasked shr (upmost - slice.b + slice.a)).T + +func toMask*[T: SomeInteger](slice: Slice[int]): T {.inline, since: (1, 3).} = + ## Creates a bitmask based on a slice of bits. + runnableExamples: + doAssert toMask[int32](1 .. 3) == 0b1110'i32 + doAssert toMask[int32](0 .. 3) == 0b1111'i32 + + let + upmost = sizeof(T) * 8 - 1 + bitmask = bitnot(0.T).castToUnsigned + ((bitmask shl (upmost - slice.b + slice.a)).typeMasked shr (upmost - slice.b)).T + +proc masked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} = + ## Returns `v`, with only the `1` bits from `mask` matching those of + ## `v` set to 1. + ## + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation. + runnableExamples: + let v = 0b0000_0011'u8 + doAssert v.masked(0b0000_1010'u8) == 0b0000_0010'u8 + + bitand(v, mask) + +func masked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} = + ## Returns `v`, with only the `1` bits in the range of `slice` + ## matching those of `v` set to 1. + ## + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation. + runnableExamples: + let v = 0b0000_1011'u8 + doAssert v.masked(1 .. 3) == 0b0000_1010'u8 + + bitand(v, toMask[T](slice)) + +proc mask*[T: SomeInteger](v: var T; mask: T) {.inline, since: (1, 3).} = + ## Mutates `v`, with only the `1` bits from `mask` matching those of + ## `v` set to 1. + ## + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation. + runnableExamples: + var v = 0b0000_0011'u8 + v.mask(0b0000_1010'u8) + doAssert v == 0b0000_0010'u8 + + v = bitand(v, mask) + +proc mask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} = + ## Mutates `v`, with only the `1` bits in the range of `slice` + ## matching those of `v` set to 1. + ## + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation. + runnableExamples: + var v = 0b0000_1011'u8 + v.mask(1 .. 3) + doAssert v == 0b0000_1010'u8 + + v = bitand(v, toMask[T](slice)) + +func setMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} = + ## Returns `v`, with all the `1` bits from `mask` set to 1. + ## + ## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation. + runnableExamples: + let v = 0b0000_0011'u8 + doAssert v.setMasked(0b0000_1010'u8) == 0b0000_1011'u8 + + bitor(v, mask) + +func setMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} = + ## Returns `v`, with all the `1` bits in the range of `slice` set to 1. + ## + ## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation. + runnableExamples: + let v = 0b0000_0011'u8 + doAssert v.setMasked(2 .. 3) == 0b0000_1111'u8 + + bitor(v, toMask[T](slice)) + +proc setMask*[T: SomeInteger](v: var T; mask: T) {.inline.} = + ## Mutates `v`, with all the `1` bits from `mask` set to 1. + ## + ## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation. + runnableExamples: + var v = 0b0000_0011'u8 + v.setMask(0b0000_1010'u8) + doAssert v == 0b0000_1011'u8 + + v = bitor(v, mask) + +proc setMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} = + ## Mutates `v`, with all the `1` bits in the range of `slice` set to 1. + ## + ## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation. + runnableExamples: + var v = 0b0000_0011'u8 + v.setMask(2 .. 3) + doAssert v == 0b0000_1111'u8 + + v = bitor(v, toMask[T](slice)) + +func clearMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} = + ## Returns `v`, with all the `1` bits from `mask` set to 0. + ## + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation + ## with an *inverted mask*. + runnableExamples: + let v = 0b0000_0011'u8 + doAssert v.clearMasked(0b0000_1010'u8) == 0b0000_0001'u8 + + bitand(v, bitnot(mask)) + +func clearMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} = + ## Returns `v`, with all the `1` bits in the range of `slice` set to 0. + ## + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation + ## with an *inverted mask*. + runnableExamples: + let v = 0b0000_0011'u8 + doAssert v.clearMasked(1 .. 3) == 0b0000_0001'u8 + + bitand(v, bitnot(toMask[T](slice))) + +proc clearMask*[T: SomeInteger](v: var T; mask: T) {.inline.} = + ## Mutates `v`, with all the `1` bits from `mask` set to 0. + ## + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation + ## with an *inverted mask*. + runnableExamples: + var v = 0b0000_0011'u8 + v.clearMask(0b0000_1010'u8) + doAssert v == 0b0000_0001'u8 + + v = bitand(v, bitnot(mask)) + +proc clearMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} = + ## Mutates `v`, with all the `1` bits in the range of `slice` set to 0. + ## + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation + ## with an *inverted mask*. + runnableExamples: + var v = 0b0000_0011'u8 + v.clearMask(1 .. 3) + doAssert v == 0b0000_0001'u8 + + v = bitand(v, bitnot(toMask[T](slice))) -when defined(nimHasalignOf): +func flipMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} = + ## Returns `v`, with all the `1` bits from `mask` flipped. + ## + ## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation. + runnableExamples: + let v = 0b0000_0011'u8 + doAssert v.flipMasked(0b0000_1010'u8) == 0b0000_1001'u8 + + bitxor(v, mask) + +func flipMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} = + ## Returns `v`, with all the `1` bits in the range of `slice` flipped. + ## + ## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation. + runnableExamples: + let v = 0b0000_0011'u8 + doAssert v.flipMasked(1 .. 3) == 0b0000_1101'u8 + + bitxor(v, toMask[T](slice)) + +proc flipMask*[T: SomeInteger](v: var T; mask: T) {.inline.} = + ## Mutates `v`, with all the `1` bits from `mask` flipped. + ## + ## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation. + runnableExamples: + var v = 0b0000_0011'u8 + v.flipMask(0b0000_1010'u8) + doAssert v == 0b0000_1001'u8 + + v = bitxor(v, mask) + +proc flipMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} = + ## Mutates `v`, with all the `1` bits in the range of `slice` flipped. + ## + ## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation. + runnableExamples: + var v = 0b0000_0011'u8 + v.flipMask(1 .. 3) + doAssert v == 0b0000_1101'u8 + + v = bitxor(v, toMask[T](slice)) + +proc setBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} = + ## Mutates `v`, with the bit at position `bit` set to 1. + runnableExamples: + var v = 0b0000_0011'u8 + v.setBit(5'u8) + doAssert v == 0b0010_0011'u8 + + v.setMask(1.T shl bit) - import macros +proc clearBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} = + ## Mutates `v`, with the bit at position `bit` set to 0. + runnableExamples: + var v = 0b0000_0011'u8 + v.clearBit(1'u8) + doAssert v == 0b0000_0001'u8 - type BitsRange*[T] = range[0..sizeof(T)*8-1] - ## Returns a range with all bit positions for type ``T`` + v.clearMask(1.T shl bit) - proc setMask*[T: SomeInteger](v: var T, mask: T) {.inline.} = - ## Returns ``v``, with all the ``1`` bits from ``mask`` set to 1 - v = v or mask +proc flipBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} = + ## Mutates `v`, with the bit at position `bit` flipped. + runnableExamples: + var v = 0b0000_0011'u8 + v.flipBit(1'u8) + doAssert v == 0b0000_0001'u8 - proc clearMask*[T: SomeInteger](v: var T, mask: T) {.inline.} = - ## Returns ``v``, with all the ``1`` bits from ``mask`` set to 0 - v = v and not mask + v = 0b0000_0011'u8 + v.flipBit(2'u8) + doAssert v == 0b0000_0111'u8 - proc flipMask*[T: SomeInteger](v: var T, mask: T) {.inline.} = - ## Returns ``v``, with all the ``1`` bits from ``mask`` flipped - v = v xor mask + v.flipMask(1.T shl bit) - proc setBit*[T: SomeInteger](v: var T, bit: BitsRange[T]) {.inline.} = - ## Returns ``v``, with the bit at position ``bit`` set to 1 - v.setMask(1.T shl bit) +macro setBits*(v: typed; bits: varargs[typed]): untyped = + ## Mutates `v`, with the bits at positions `bits` set to 1. + runnableExamples: + var v = 0b0000_0011'u8 + v.setBits(3, 5, 7) + doAssert v == 0b1010_1011'u8 - proc clearBit*[T: SomeInteger](v: var T, bit: BitsRange[T]) {.inline.} = - ## Returns ``v``, with the bit at position ``bit`` set to 0 - v.clearMask(1.T shl bit) + bits.expectKind(nnkBracket) + result = newStmtList() + for bit in bits: + result.add newCall("setBit", v, bit) - proc flipBit*[T: SomeInteger](v: var T, bit: BitsRange[T]) {.inline.} = - ## Returns ``v``, with the bit at position ``bit`` flipped - v.flipMask(1.T shl bit) +macro clearBits*(v: typed; bits: varargs[typed]): untyped = + ## Mutates `v`, with the bits at positions `bits` set to 0. + runnableExamples: + var v = 0b1111_1111'u8 + v.clearBits(1, 3, 5, 7) + doAssert v == 0b0101_0101'u8 + + bits.expectKind(nnkBracket) + result = newStmtList() + for bit in bits: + result.add newCall("clearBit", v, bit) + +macro flipBits*(v: typed; bits: varargs[typed]): untyped = + ## Mutates `v`, with the bits at positions `bits` set to 0. + runnableExamples: + var v = 0b0000_1111'u8 + v.flipBits(1, 3, 5, 7) + doAssert v == 0b1010_0101'u8 - macro setBits*(v: typed, bits: varargs[typed]): untyped = - ## Returns ``v``, with the bits at positions ``bits`` set to 1 - bits.expectKind(nnkBracket) - result = newStmtList() - for bit in bits: - result.add newCall("setBit", v, bit) + bits.expectKind(nnkBracket) + result = newStmtList() + for bit in bits: + result.add newCall("flipBit", v, bit) - macro clearBits*(v: typed, bits: varargs[typed]): untyped = - ## Returns ``v``, with the bits at positions ``bits`` set to 0 - bits.expectKind(nnkBracket) - result = newStmtList() - for bit in bits: - result.add newCall("clearBit", v, bit) - macro flipBits*(v: typed, bits: varargs[typed]): untyped = - ## Returns ``v``, with the bits at positions ``bits`` set to 0 - bits.expectKind(nnkBracket) - result = newStmtList() - for bit in bits: - result.add newCall("flipBit", v, bit) +proc testBit*[T: SomeInteger](v: T; bit: BitsRange[T]): bool {.inline.} = + ## Returns true if the bit in `v` at positions `bit` is set to 1. + runnableExamples: + let v = 0b0000_1111'u8 + doAssert v.testBit(0) + doAssert not v.testBit(7) - proc testBit*[T: SomeInteger](v: T, bit: BitsRange[T]): bool {.inline.} = - ## Returns true if the bit in ``v`` at positions ``bit`` is set to 1 - let mask = 1.T shl bit - return (v and mask) == mask + let mask = 1.T shl bit + return (v and mask) == mask # #### Pure Nim version #### -proc firstSetBitNim(x: uint32): int {.inline, noSideEffect.} = +func firstSetBitNim(x: uint32): int {.inline.} = ## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero. # https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup const lookup: array[32, uint8] = [0'u8, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9] - var v = x.uint32 - var k = not v + 1 # get two's complement # cast[uint32](-cast[int32](v)) + let v = x.uint32 + let k = not v + 1 # get two's complement # cast[uint32](-cast[int32](v)) result = 1 + lookup[uint32((v and k) * 0x077CB531'u32) shr 27].int -proc firstSetBitNim(x: uint64): int {.inline, noSideEffect.} = +func firstSetBitNim(x: uint64): int {.inline.} = ## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero. # https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup - var v = uint64(x) + let v = uint64(x) var k = uint32(v and 0xFFFFFFFF'u32) if k == 0: k = uint32(v shr 32'u32) and 0xFFFFFFFF'u32 result = 32 + else: + result = 0 result += firstSetBitNim(k) -proc fastlog2Nim(x: uint32): int {.inline, noSideEffect.} = +func fastlog2Nim(x: uint32): int {.inline.} = ## Quickly find the log base 2 of a 32-bit or less integer. # https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn # https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers @@ -155,7 +395,7 @@ proc fastlog2Nim(x: uint32): int {.inline, noSideEffect.} = v = v or v shr 16 result = lookup[uint32(v * 0x07C4ACDD'u32) shr 27].int -proc fastlog2Nim(x: uint64): int {.inline, noSideEffect.} = +func fastlog2Nim(x: uint64): int {.inline.} = ## Quickly find the log base 2 of a 64-bit integer. # https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn # https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers @@ -172,13 +412,11 @@ proc fastlog2Nim(x: uint64): int {.inline, noSideEffect.} = v = v or v shr 32 result = lookup[(v * 0x03F6EAF2CD271461'u64) shr 58].int -# sets.nim cannot import bitops, but bitops can use include -# system/sets to eliminate code duplication. sets.nim defines -# countBits32 and countBits64. -include system/sets +import system/countbits_impl -template countSetBitsNim(n: uint32): int = countBits32(n) -template countSetBitsNim(n: uint64): int = countBits64(n) +const useBuiltinsRotate = (defined(amd64) or defined(i386)) and + (defined(gcc) or defined(clang) or defined(vcc) or + (defined(icl) and not defined(cpp))) and useBuiltins template parityImpl[T](value: T): int = # formula id from: https://graphics.stanford.edu/%7Eseander/bithacks.html#ParityParallel @@ -195,11 +433,6 @@ template parityImpl[T](value: T): int = when useGCC_builtins: - # Returns the number of set 1-bits in value. - proc builtin_popcount(x: cuint): cint {.importc: "__builtin_popcount", cdecl.} - proc builtin_popcountll(x: culonglong): cint {. - importc: "__builtin_popcountll", cdecl.} - # Returns the bit parity in value proc builtin_parity(x: cuint): cint {.importc: "__builtin_parity", cdecl.} proc builtin_parityll(x: culonglong): cint {.importc: "__builtin_parityll", cdecl.} @@ -217,97 +450,65 @@ when useGCC_builtins: proc builtin_ctzll(x: culonglong): cint {.importc: "__builtin_ctzll", cdecl.} elif useVCC_builtins: - # Counts the number of one bits (population count) in a 16-, 32-, or 64-byte unsigned integer. - proc builtin_popcnt16(a2: uint16): uint16 {. - importc: "__popcnt16"header: "<intrin.h>", noSideEffect.} - proc builtin_popcnt32(a2: uint32): uint32 {. - importc: "__popcnt"header: "<intrin.h>", noSideEffect.} - proc builtin_popcnt64(a2: uint64): uint64 {. - importc: "__popcnt64"header: "<intrin.h>", noSideEffect.} - # Search the mask data from most significant bit (MSB) to least significant bit (LSB) for a set bit (1). - proc bitScanReverse(index: ptr culong, mask: culong): cuchar {. - importc: "_BitScanReverse", header: "<intrin.h>", noSideEffect.} - proc bitScanReverse64(index: ptr culong, mask: uint64): cuchar {. - importc: "_BitScanReverse64", header: "<intrin.h>", noSideEffect.} + func bitScanReverse(index: ptr culong, mask: culong): uint8 {. + importc: "_BitScanReverse", header: "<intrin.h>".} + func bitScanReverse64(index: ptr culong, mask: uint64): uint8 {. + importc: "_BitScanReverse64", header: "<intrin.h>".} # Search the mask data from least significant bit (LSB) to the most significant bit (MSB) for a set bit (1). - proc bitScanForward(index: ptr culong, mask: culong): cuchar {. - importc: "_BitScanForward", header: "<intrin.h>", noSideEffect.} - proc bitScanForward64(index: ptr culong, mask: uint64): cuchar {. - importc: "_BitScanForward64", header: "<intrin.h>", noSideEffect.} + func bitScanForward(index: ptr culong, mask: culong): uint8 {. + importc: "_BitScanForward", header: "<intrin.h>".} + func bitScanForward64(index: ptr culong, mask: uint64): uint8 {. + importc: "_BitScanForward64", header: "<intrin.h>".} template vcc_scan_impl(fnc: untyped; v: untyped): int = - var index: culong + var index {.inject.}: culong = 0 discard fnc(index.addr, v) index.int elif useICC_builtins: - - # Intel compiler intrinsics: http://fulla.fnal.gov/intel/compiler_c/main_cls/intref_cls/common/intref_allia_misc.htm - # see also: https://software.intel.com/en-us/node/523362 - # Count the number of bits set to 1 in an integer a, and return that count in dst. - proc builtin_popcnt32(a: cint): cint {. - importc: "_popcnt"header: "<immintrin.h>", noSideEffect.} - proc builtin_popcnt64(a: uint64): cint {. - importc: "_popcnt64"header: "<immintrin.h>", noSideEffect.} - # Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined. - proc bitScanForward(p: ptr uint32, b: uint32): cuchar {. - importc: "_BitScanForward", header: "<immintrin.h>", noSideEffect.} - proc bitScanForward64(p: ptr uint32, b: uint64): cuchar {. - importc: "_BitScanForward64", header: "<immintrin.h>", noSideEffect.} + func bitScanForward(p: ptr uint32, b: uint32): uint8 {. + importc: "_BitScanForward", header: "<immintrin.h>".} + func bitScanForward64(p: ptr uint32, b: uint64): uint8 {. + importc: "_BitScanForward64", header: "<immintrin.h>".} # Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined. - proc bitScanReverse(p: ptr uint32, b: uint32): cuchar {. - importc: "_BitScanReverse", header: "<immintrin.h>", noSideEffect.} - proc bitScanReverse64(p: ptr uint32, b: uint64): cuchar {. - importc: "_BitScanReverse64", header: "<immintrin.h>", noSideEffect.} + func bitScanReverse(p: ptr uint32, b: uint32): uint8 {. + importc: "_BitScanReverse", header: "<immintrin.h>".} + func bitScanReverse64(p: ptr uint32, b: uint64): uint8 {. + importc: "_BitScanReverse64", header: "<immintrin.h>".} template icc_scan_impl(fnc: untyped; v: untyped): int = var index: uint32 discard fnc(index.addr, v) index.int +func countSetBits*(x: SomeInteger): int {.inline.} = + ## Counts the set bits in an integer (also called `Hamming weight`:idx:). + runnableExamples: + doAssert countSetBits(0b0000_0011'u8) == 2 + doAssert countSetBits(0b1010_1010'u8) == 4 -proc countSetBits*(x: SomeInteger): int {.inline, noSideEffect.} = - ## Counts the set bits in integer. (also called `Hamming weight`:idx:.) - # TODO: figure out if ICC support _popcnt32/_popcnt64 on platform without POPCNT. - # like GCC and MSVC - when x is SomeSignedInt: - let x = x.toUnsigned - when nimvm: - result = forwardImpl(countSetBitsNim, x) - else: - when useGCC_builtins: - when sizeof(x) <= 4: result = builtin_popcount(x.cuint).int - else: result = builtin_popcountll(x.culonglong).int - elif useVCC_builtins: - when sizeof(x) <= 2: result = builtin_popcnt16(x.uint16).int - elif sizeof(x) <= 4: result = builtin_popcnt32(x.uint32).int - elif arch64: result = builtin_popcnt64(x.uint64).int - else: result = builtin_popcnt32((x.uint64 and 0xFFFFFFFF'u64).uint32).int + - builtin_popcnt32((x.uint64 shr 32'u64).uint32).int - elif useICC_builtins: - when sizeof(x) <= 4: result = builtin_popcnt32(x.cint).int - elif arch64: result = builtin_popcnt64(x.uint64).int - else: result = builtin_popcnt32((x.uint64 and 0xFFFFFFFF'u64).cint).int + - builtin_popcnt32((x.uint64 shr 32'u64).cint).int - else: - when sizeof(x) <= 4: result = countSetBitsNim(x.uint32) - else: result = countSetBitsNim(x.uint64) + result = countSetBitsImpl(x) -proc popcount*(x: SomeInteger): int {.inline, noSideEffect.} = - ## Alias for for countSetBits (Hamming weight.) +func popcount*(x: SomeInteger): int {.inline.} = + ## Alias for `countSetBits <#countSetBits,SomeInteger>`_ (Hamming weight). result = countSetBits(x) -proc parityBits*(x: SomeInteger): int {.inline, noSideEffect.} = - ## Calculate the bit parity in integer. If number of 1-bit - ## is odd parity is 1, otherwise 0. +func parityBits*(x: SomeInteger): int {.inline.} = + ## Calculate the bit parity in an integer. If the number of 1-bits + ## is odd, the parity is 1, otherwise 0. + runnableExamples: + doAssert parityBits(0b0000_0000'u8) == 0 + doAssert parityBits(0b0101_0001'u8) == 1 + doAssert parityBits(0b0110_1001'u8) == 0 + doAssert parityBits(0b0111_1111'u8) == 1 + # Can be used a base if creating ASM version. # https://stackoverflow.com/questions/21617970/how-to-check-if-value-has-even-parity-of-bits-or-odd - when x is SomeSignedInt: - let x = x.toUnsigned + let x = x.castToUnsigned when nimvm: result = forwardImpl(parityImpl, x) else: @@ -318,13 +519,19 @@ proc parityBits*(x: SomeInteger): int {.inline, noSideEffect.} = when sizeof(x) <= 4: result = parityImpl(x.uint32) else: result = parityImpl(x.uint64) -proc firstSetBit*(x: SomeInteger): int {.inline, noSideEffect.} = - ## Returns the 1-based index of the least significant set bit of x. - ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is 0, - ## otherwise result is undefined. +func firstSetBit*(x: SomeInteger): int {.inline.} = + ## Returns the 1-based index of the least significant set bit of `x`. + ## If `x` is zero, when `noUndefinedBitOpts` is set, the result is 0, + ## otherwise the result is undefined. + runnableExamples: + doAssert firstSetBit(0b0000_0001'u8) == 1 + doAssert firstSetBit(0b0000_0010'u8) == 2 + doAssert firstSetBit(0b0000_0100'u8) == 3 + doAssert firstSetBit(0b0000_1000'u8) == 4 + doAssert firstSetBit(0b0000_1111'u8) == 1 + # GCC builtin 'builtin_ffs' already handle zero input. - when x is SomeSignedInt: - let x = x.toUnsigned + let x = x.castToUnsigned when nimvm: when noUndefined: if x == 0: @@ -355,12 +562,18 @@ proc firstSetBit*(x: SomeInteger): int {.inline, noSideEffect.} = when sizeof(x) <= 4: result = firstSetBitNim(x.uint32) else: result = firstSetBitNim(x.uint64) -proc fastLog2*(x: SomeInteger): int {.inline, noSideEffect.} = +func fastLog2*(x: SomeInteger): int {.inline.} = ## Quickly find the log base 2 of an integer. - ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is -1, - ## otherwise result is undefined. - when x is SomeSignedInt: - let x = x.toUnsigned + ## If `x` is zero, when `noUndefinedBitOpts` is set, the result is -1, + ## otherwise the result is undefined. + runnableExamples: + doAssert fastLog2(0b0000_0001'u8) == 0 + doAssert fastLog2(0b0000_0010'u8) == 1 + doAssert fastLog2(0b0000_0100'u8) == 2 + doAssert fastLog2(0b0000_1000'u8) == 3 + doAssert fastLog2(0b0000_1111'u8) == 3 + + let x = x.castToUnsigned when noUndefined: if x == 0: return -1 @@ -388,12 +601,21 @@ proc fastLog2*(x: SomeInteger): int {.inline, noSideEffect.} = when sizeof(x) <= 4: result = fastlog2Nim(x.uint32) else: result = fastlog2Nim(x.uint64) -proc countLeadingZeroBits*(x: SomeInteger): int {.inline, noSideEffect.} = - ## Returns the number of leading zero bits in integer. - ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is 0, - ## otherwise result is undefined. - when x is SomeSignedInt: - let x = x.toUnsigned +func countLeadingZeroBits*(x: SomeInteger): int {.inline.} = + ## Returns the number of leading zero bits in an integer. + ## If `x` is zero, when `noUndefinedBitOpts` is set, the result is 0, + ## otherwise the result is undefined. + ## + ## **See also:** + ## * `countTrailingZeroBits proc <#countTrailingZeroBits,SomeInteger>`_ + runnableExamples: + doAssert countLeadingZeroBits(0b0000_0001'u8) == 7 + doAssert countLeadingZeroBits(0b0000_0010'u8) == 6 + doAssert countLeadingZeroBits(0b0000_0100'u8) == 5 + doAssert countLeadingZeroBits(0b0000_1000'u8) == 4 + doAssert countLeadingZeroBits(0b0000_1111'u8) == 4 + + let x = x.castToUnsigned when noUndefined: if x == 0: return 0 @@ -407,12 +629,21 @@ proc countLeadingZeroBits*(x: SomeInteger): int {.inline, noSideEffect.} = when sizeof(x) <= 4: result = sizeof(x)*8 - 1 - fastlog2Nim(x.uint32) else: result = sizeof(x)*8 - 1 - fastlog2Nim(x.uint64) -proc countTrailingZeroBits*(x: SomeInteger): int {.inline, noSideEffect.} = - ## Returns the number of trailing zeros in integer. - ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is 0, - ## otherwise result is undefined. - when x is SomeSignedInt: - let x = x.toUnsigned +func countTrailingZeroBits*(x: SomeInteger): int {.inline.} = + ## Returns the number of trailing zeros in an integer. + ## If `x` is zero, when `noUndefinedBitOpts` is set, the result is 0, + ## otherwise the result is undefined. + ## + ## **See also:** + ## * `countLeadingZeroBits proc <#countLeadingZeroBits,SomeInteger>`_ + runnableExamples: + doAssert countTrailingZeroBits(0b0000_0001'u8) == 0 + doAssert countTrailingZeroBits(0b0000_0010'u8) == 1 + doAssert countTrailingZeroBits(0b0000_0100'u8) == 2 + doAssert countTrailingZeroBits(0b0000_1000'u8) == 3 + doAssert countTrailingZeroBits(0b0000_1111'u8) == 0 + + let x = x.castToUnsigned when noUndefined: if x == 0: return 0 @@ -425,69 +656,196 @@ proc countTrailingZeroBits*(x: SomeInteger): int {.inline, noSideEffect.} = else: result = firstSetBit(x) - 1 +when useBuiltinsRotate: + when defined(gcc): + # GCC was tested until version 4.8.1 and intrinsics were present. Not tested + # in previous versions. + func builtin_rotl8(value: uint8, shift: cint): uint8 + {.importc: "__rolb", header: "<x86intrin.h>".} + func builtin_rotl16(value: cushort, shift: cint): cushort + {.importc: "__rolw", header: "<x86intrin.h>".} + func builtin_rotl32(value: cuint, shift: cint): cuint + {.importc: "__rold", header: "<x86intrin.h>".} + when defined(amd64): + func builtin_rotl64(value: culonglong, shift: cint): culonglong + {.importc: "__rolq", header: "<x86intrin.h>".} + + func builtin_rotr8(value: uint8, shift: cint): uint8 + {.importc: "__rorb", header: "<x86intrin.h>".} + func builtin_rotr16(value: cushort, shift: cint): cushort + {.importc: "__rorw", header: "<x86intrin.h>".} + func builtin_rotr32(value: cuint, shift: cint): cuint + {.importc: "__rord", header: "<x86intrin.h>".} + when defined(amd64): + func builtin_rotr64(value: culonglong, shift: cint): culonglong + {.importc: "__rorq", header: "<x86intrin.h>".} + elif defined(clang): + # In CLANG, builtins have been present since version 8.0.0 and intrinsics + # since version 9.0.0. This implementation chose the builtins, as they have + # been around for longer. + # https://releases.llvm.org/8.0.0/tools/clang/docs/ReleaseNotes.html#non-comprehensive-list-of-changes-in-this-release + # https://releases.llvm.org/8.0.0/tools/clang/docs/LanguageExtensions.html#builtin-rotateleft + # source for correct declarations: https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/Builtins.def + func builtin_rotl8(value: uint8, shift: uint8): uint8 + {.importc: "__builtin_rotateleft8", nodecl.} + func builtin_rotl16(value: cushort, shift: cushort): cushort + {.importc: "__builtin_rotateleft16", nodecl.} + func builtin_rotl32(value: cuint, shift: cuint): cuint + {.importc: "__builtin_rotateleft32", nodecl.} + when defined(amd64): + func builtin_rotl64(value: culonglong, shift: culonglong): culonglong + {.importc: "__builtin_rotateleft64", nodecl.} + + func builtin_rotr8(value: uint8, shift: uint8): uint8 + {.importc: "__builtin_rotateright8", nodecl.} + func builtin_rotr16(value: cushort, shift: cushort): cushort + {.importc: "__builtin_rotateright16", nodecl.} + func builtin_rotr32(value: cuint, shift: cuint): cuint + {.importc: "__builtin_rotateright32", nodecl.} + when defined(amd64): + # shift is unsigned, refs https://github.com/llvm-mirror/clang/commit/892de415b7fde609dafc4e6c1643b7eaa0150a4d + func builtin_rotr64(value: culonglong, shift: culonglong): culonglong + {.importc: "__builtin_rotateright64", nodecl.} + elif defined(vcc): + # Tested on Microsoft (R) C/C++ Optimizing Compiler 19.28.29335 x64 and x86. + # Not tested in previous versions. + # https://docs.microsoft.com/en-us/cpp/intrinsics/rotl8-rotl16?view=msvc-160 + # https://docs.microsoft.com/en-us/cpp/intrinsics/rotr8-rotr16?view=msvc-160 + # https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/rotl-rotl64-rotr-rotr64?view=msvc-160 + func builtin_rotl8(value: uint8, shift: uint8): uint8 + {.importc: "_rotl8", header: "<intrin.h>".} + func builtin_rotl16(value: cushort, shift: uint8): cushort + {.importc: "_rotl16", header: "<intrin.h>".} + func builtin_rotl32(value: cuint, shift: cint): cuint + {.importc: "_rotl", header: "<stdlib.h>".} + when defined(amd64): + func builtin_rotl64(value: culonglong, shift: cint): culonglong + {.importc: "_rotl64", header: "<stdlib.h>".} + + func builtin_rotr8(value: uint8, shift: uint8): uint8 + {.importc: "_rotr8", header: "<intrin.h>".} + func builtin_rotr16(value: cushort, shift: uint8): cushort + {.importc: "_rotr16", header: "<intrin.h>".} + func builtin_rotr32(value: cuint, shift: cint): cuint + {.importc: "_rotr", header: "<stdlib.h>".} + when defined(amd64): + func builtin_rotr64(value: culonglong, shift: cint): culonglong + {.importc: "_rotr64", header: "<stdlib.h>".} + elif defined(icl): + # Tested on Intel(R) C++ Intel(R) 64 Compiler Classic Version 2021.1.2 Build + # 20201208_000000 x64 and x86. Not tested in previous versions. + func builtin_rotl8(value: uint8, shift: cint): uint8 + {.importc: "__rolb", header: "<immintrin.h>".} + func builtin_rotl16(value: cushort, shift: cint): cushort + {.importc: "__rolw", header: "<immintrin.h>".} + func builtin_rotl32(value: cuint, shift: cint): cuint + {.importc: "__rold", header: "<immintrin.h>".} + when defined(amd64): + func builtin_rotl64(value: culonglong, shift: cint): culonglong + {.importc: "__rolq", header: "<immintrin.h>".} + + func builtin_rotr8(value: uint8, shift: cint): uint8 + {.importc: "__rorb", header: "<immintrin.h>".} + func builtin_rotr16(value: cushort, shift: cint): cushort + {.importc: "__rorw", header: "<immintrin.h>".} + func builtin_rotr32(value: cuint, shift: cint): cuint + {.importc: "__rord", header: "<immintrin.h>".} + when defined(amd64): + func builtin_rotr64(value: culonglong, shift: cint): culonglong + {.importc: "__rorq", header: "<immintrin.h>".} + +func rotl[T: SomeUnsignedInt](value: T, rot: int32): T {.inline.} = + ## Left-rotate bits in a `value`. + # https://stackoverflow.com/a/776523 + const mask = 8 * sizeof(value) - 1 + let rot = rot and mask + (value shl rot) or (value shr ((-rot) and mask)) + +func rotr[T: SomeUnsignedInt](value: T, rot: int32): T {.inline.} = + ## Right-rotate bits in a `value`. + const mask = 8 * sizeof(value) - 1 + let rot = rot and mask + (value shr rot) or (value shl ((-rot) and mask)) + +func shiftTypeTo(size: static int, shift: int): auto {.inline.} = + ## Returns the `shift` for the rotation according to the compiler and the + ## `size`. + when (defined(vcc) and (size in [4, 8])) or defined(gcc) or defined(icl): + cint(shift) + elif (defined(vcc) and (size in [1, 2])) or (defined(clang) and size == 1): + uint8(shift) + elif defined(clang): + when size == 2: + cushort(shift) + elif size == 4: + cuint(shift) + elif size == 8: + culonglong(shift) + +func rotateLeftBits*[T: SomeUnsignedInt](value: T, shift: range[0..(sizeof(T) * 8)]): T {.inline.} = + ## Left-rotate bits in a `value`. + runnableExamples: + doAssert rotateLeftBits(0b0110_1001'u8, 4) == 0b1001_0110'u8 + doAssert rotateLeftBits(0b00111100_11000011'u16, 8) == + 0b11000011_00111100'u16 + doAssert rotateLeftBits(0b0000111111110000_1111000000001111'u32, 16) == + 0b1111000000001111_0000111111110000'u32 + doAssert rotateLeftBits(0b00000000111111111111111100000000_11111111000000000000000011111111'u64, 32) == + 0b11111111000000000000000011111111_00000000111111111111111100000000'u64 + when nimvm: + rotl(value, shift.int32) + else: + when useBuiltinsRotate: + const size = sizeof(T) + when size == 1: + builtin_rotl8(value.uint8, shiftTypeTo(size, shift)).T + elif size == 2: + builtin_rotl16(value.cushort, shiftTypeTo(size, shift)).T + elif size == 4: + builtin_rotl32(value.cuint, shiftTypeTo(size, shift)).T + elif size == 8 and arch64: + builtin_rotl64(value.culonglong, shiftTypeTo(size, shift)).T + else: + rotl(value, shift.int32) + else: + rotl(value, shift.int32) + +func rotateRightBits*[T: SomeUnsignedInt](value: T, shift: range[0..(sizeof(T) * 8)]): T {.inline.} = + ## Right-rotate bits in a `value`. + runnableExamples: + doAssert rotateRightBits(0b0110_1001'u8, 4) == 0b1001_0110'u8 + doAssert rotateRightBits(0b00111100_11000011'u16, 8) == + 0b11000011_00111100'u16 + doAssert rotateRightBits(0b0000111111110000_1111000000001111'u32, 16) == + 0b1111000000001111_0000111111110000'u32 + doAssert rotateRightBits(0b00000000111111111111111100000000_11111111000000000000000011111111'u64, 32) == + 0b11111111000000000000000011111111_00000000111111111111111100000000'u64 + when nimvm: + rotr(value, shift.int32) + else: + when useBuiltinsRotate: + const size = sizeof(T) + when size == 1: + builtin_rotr8(value.uint8, shiftTypeTo(size, shift)).T + elif size == 2: + builtin_rotr16(value.cushort, shiftTypeTo(size, shift)).T + elif size == 4: + builtin_rotr32(value.cuint, shiftTypeTo(size, shift)).T + elif size == 8 and arch64: + builtin_rotr64(value.culonglong, shiftTypeTo(size, shift)).T + else: + rotr(value, shift.int32) + else: + rotr(value, shift.int32) -proc rotateLeftBits*(value: uint8; - amount: range[0..8]): uint8 {.inline, noSideEffect.} = - ## Left-rotate bits in a 8-bits value. - # using this form instead of the one below should handle any value - # out of range as well as negative values. - # result = (value shl amount) or (value shr (8 - amount)) - # taken from: https://en.wikipedia.org/wiki/Circular_shift#Implementing_circular_shifts - let amount = amount and 7 - result = (value shl amount) or (value shr ( (-amount) and 7)) - -proc rotateLeftBits*(value: uint16; - amount: range[0..16]): uint16 {.inline, noSideEffect.} = - ## Left-rotate bits in a 16-bits value. - let amount = amount and 15 - result = (value shl amount) or (value shr ( (-amount) and 15)) - -proc rotateLeftBits*(value: uint32; - amount: range[0..32]): uint32 {.inline, noSideEffect.} = - ## Left-rotate bits in a 32-bits value. - let amount = amount and 31 - result = (value shl amount) or (value shr ( (-amount) and 31)) - -proc rotateLeftBits*(value: uint64; - amount: range[0..64]): uint64 {.inline, noSideEffect.} = - ## Left-rotate bits in a 64-bits value. - let amount = amount and 63 - result = (value shl amount) or (value shr ( (-amount) and 63)) - - -proc rotateRightBits*(value: uint8; - amount: range[0..8]): uint8 {.inline, noSideEffect.} = - ## Right-rotate bits in a 8-bits value. - let amount = amount and 7 - result = (value shr amount) or (value shl ( (-amount) and 7)) - -proc rotateRightBits*(value: uint16; - amount: range[0..16]): uint16 {.inline, noSideEffect.} = - ## Right-rotate bits in a 16-bits value. - let amount = amount and 15 - result = (value shr amount) or (value shl ( (-amount) and 15)) - -proc rotateRightBits*(value: uint32; - amount: range[0..32]): uint32 {.inline, noSideEffect.} = - ## Right-rotate bits in a 32-bits value. - let amount = amount and 31 - result = (value shr amount) or (value shl ( (-amount) and 31)) - -proc rotateRightBits*(value: uint64; - amount: range[0..64]): uint64 {.inline, noSideEffect.} = - ## Right-rotate bits in a 64-bits value. - let amount = amount and 63 - result = (value shr amount) or (value shl ( (-amount) and 63)) - -proc repeatBits[T: SomeUnsignedInt](x: SomeUnsignedInt; retType: type[T]): T {. - noSideEffect.} = +func repeatBits[T: SomeUnsignedInt](x: SomeUnsignedInt; retType: type[T]): T = result = x var i = 1 while i != (sizeof(T) div sizeof(x)): result = (result shl (sizeof(x)*8*i)) or result i *= 2 -proc reverseBits*[T: SomeUnsignedInt](x: T): T {.noSideEffect.} = +func reverseBits*[T: SomeUnsignedInt](x: T): T = ## Return the bit reversal of x. runnableExamples: doAssert reverseBits(0b10100100'u8) == 0b00100101'u8 |