diff options
Diffstat (limited to 'lib/pure/bitops.nim')
-rw-r--r-- | lib/pure/bitops.nim | 883 |
1 files changed, 883 insertions, 0 deletions
diff --git a/lib/pure/bitops.nim b/lib/pure/bitops.nim new file mode 100644 index 000000000..0d3351ee5 --- /dev/null +++ b/lib/pure/bitops.nim @@ -0,0 +1,883 @@ +# +# +# Nim's Runtime Library +# (c) Copyright 2017 Nim Authors +# +# See the file "copying.txt", included in this +# distribution, for details about the copyright. +# + +## This module implements a series of low level methods for bit manipulation. +## +## By default, compiler intrinsics are used where possible to improve performance +## on supported compilers: `GCC`, `LLVM_GCC`, `CLANG`, `VCC`, `ICC`. +## +## The module will fallback to pure nim procs in case the backend is not supported. +## You can also use the flag `noIntrinsicsBitOpts` to disable compiler intrinsics. +## +## This module is also compatible with other backends: `JavaScript`, `NimScript` +## as well as the `compiletime VM`. +## +## As a result of using optimized functions/intrinsics, some functions can return +## undefined results if the input is invalid. You can use the flag `noUndefinedBitOpts` +## to force predictable behaviour for all input, causing a small performance hit. +## +## At this time only `fastLog2`, `firstSetBit`, `countLeadingZeroBits` and `countTrailingZeroBits` +## may return undefined and/or platform dependent values if given invalid input. + +import std/macros +import std/private/since +from std/private/bitops_utils import forwardImpl, castToUnsigned + +func bitnot*[T: SomeInteger](x: T): T {.magic: "BitnotI".} + ## Computes the `bitwise complement` of the integer `x`. + +func internalBitand[T: SomeInteger](x, y: T): T {.magic: "BitandI".} + +func internalBitor[T: SomeInteger](x, y: T): T {.magic: "BitorI".} + +func internalBitxor[T: SomeInteger](x, y: T): T {.magic: "BitxorI".} + +macro bitand*[T: SomeInteger](x, y: T; z: varargs[T]): T = + ## Computes the `bitwise and` of all arguments collectively. + let fn = bindSym("internalBitand") + result = newCall(fn, x, y) + for extra in z: + result = newCall(fn, result, extra) + +macro bitor*[T: SomeInteger](x, y: T; z: varargs[T]): T = + ## Computes the `bitwise or` of all arguments collectively. + let fn = bindSym("internalBitor") + result = newCall(fn, x, y) + for extra in z: + result = newCall(fn, result, extra) + +macro bitxor*[T: SomeInteger](x, y: T; z: varargs[T]): T = + ## Computes the `bitwise xor` of all arguments collectively. + let fn = bindSym("internalBitxor") + result = newCall(fn, x, y) + for extra in z: + result = newCall(fn, result, extra) + + +type BitsRange*[T] = range[0..sizeof(T)*8-1] + ## A range with all bit positions for type `T`. + +template typeMasked[T: SomeInteger](x: T): T = + when defined(js): + T(x and ((0xffffffff_ffffffff'u shr (64 - sizeof(T) * 8)))) + else: + x + +func bitsliced*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} = + ## Returns an extracted (and shifted) slice of bits from `v`. + runnableExamples: + doAssert 0b10111.bitsliced(2 .. 4) == 0b101 + doAssert 0b11100.bitsliced(0 .. 2) == 0b100 + doAssert 0b11100.bitsliced(0 ..< 3) == 0b100 + + let + upmost = sizeof(T) * 8 - 1 + uv = v.castToUnsigned + ((uv shl (upmost - slice.b)).typeMasked shr (upmost - slice.b + slice.a)).T + +proc bitslice*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} = + ## Mutates `v` into an extracted (and shifted) slice of bits from `v`. + runnableExamples: + var x = 0b101110 + x.bitslice(2 .. 4) + doAssert x == 0b011 + + let + upmost = sizeof(T) * 8 - 1 + uv = v.castToUnsigned + v = ((uv shl (upmost - slice.b)).typeMasked shr (upmost - slice.b + slice.a)).T + +func toMask*[T: SomeInteger](slice: Slice[int]): T {.inline, since: (1, 3).} = + ## Creates a bitmask based on a slice of bits. + runnableExamples: + doAssert toMask[int32](1 .. 3) == 0b1110'i32 + doAssert toMask[int32](0 .. 3) == 0b1111'i32 + + let + upmost = sizeof(T) * 8 - 1 + bitmask = bitnot(0.T).castToUnsigned + ((bitmask shl (upmost - slice.b + slice.a)).typeMasked shr (upmost - slice.b)).T + +proc masked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} = + ## Returns `v`, with only the `1` bits from `mask` matching those of + ## `v` set to 1. + ## + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation. + runnableExamples: + let v = 0b0000_0011'u8 + doAssert v.masked(0b0000_1010'u8) == 0b0000_0010'u8 + + bitand(v, mask) + +func masked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} = + ## Returns `v`, with only the `1` bits in the range of `slice` + ## matching those of `v` set to 1. + ## + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation. + runnableExamples: + let v = 0b0000_1011'u8 + doAssert v.masked(1 .. 3) == 0b0000_1010'u8 + + bitand(v, toMask[T](slice)) + +proc mask*[T: SomeInteger](v: var T; mask: T) {.inline, since: (1, 3).} = + ## Mutates `v`, with only the `1` bits from `mask` matching those of + ## `v` set to 1. + ## + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation. + runnableExamples: + var v = 0b0000_0011'u8 + v.mask(0b0000_1010'u8) + doAssert v == 0b0000_0010'u8 + + v = bitand(v, mask) + +proc mask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} = + ## Mutates `v`, with only the `1` bits in the range of `slice` + ## matching those of `v` set to 1. + ## + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation. + runnableExamples: + var v = 0b0000_1011'u8 + v.mask(1 .. 3) + doAssert v == 0b0000_1010'u8 + + v = bitand(v, toMask[T](slice)) + +func setMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} = + ## Returns `v`, with all the `1` bits from `mask` set to 1. + ## + ## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation. + runnableExamples: + let v = 0b0000_0011'u8 + doAssert v.setMasked(0b0000_1010'u8) == 0b0000_1011'u8 + + bitor(v, mask) + +func setMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} = + ## Returns `v`, with all the `1` bits in the range of `slice` set to 1. + ## + ## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation. + runnableExamples: + let v = 0b0000_0011'u8 + doAssert v.setMasked(2 .. 3) == 0b0000_1111'u8 + + bitor(v, toMask[T](slice)) + +proc setMask*[T: SomeInteger](v: var T; mask: T) {.inline.} = + ## Mutates `v`, with all the `1` bits from `mask` set to 1. + ## + ## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation. + runnableExamples: + var v = 0b0000_0011'u8 + v.setMask(0b0000_1010'u8) + doAssert v == 0b0000_1011'u8 + + v = bitor(v, mask) + +proc setMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} = + ## Mutates `v`, with all the `1` bits in the range of `slice` set to 1. + ## + ## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation. + runnableExamples: + var v = 0b0000_0011'u8 + v.setMask(2 .. 3) + doAssert v == 0b0000_1111'u8 + + v = bitor(v, toMask[T](slice)) + +func clearMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} = + ## Returns `v`, with all the `1` bits from `mask` set to 0. + ## + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation + ## with an *inverted mask*. + runnableExamples: + let v = 0b0000_0011'u8 + doAssert v.clearMasked(0b0000_1010'u8) == 0b0000_0001'u8 + + bitand(v, bitnot(mask)) + +func clearMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} = + ## Returns `v`, with all the `1` bits in the range of `slice` set to 0. + ## + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation + ## with an *inverted mask*. + runnableExamples: + let v = 0b0000_0011'u8 + doAssert v.clearMasked(1 .. 3) == 0b0000_0001'u8 + + bitand(v, bitnot(toMask[T](slice))) + +proc clearMask*[T: SomeInteger](v: var T; mask: T) {.inline.} = + ## Mutates `v`, with all the `1` bits from `mask` set to 0. + ## + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation + ## with an *inverted mask*. + runnableExamples: + var v = 0b0000_0011'u8 + v.clearMask(0b0000_1010'u8) + doAssert v == 0b0000_0001'u8 + + v = bitand(v, bitnot(mask)) + +proc clearMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} = + ## Mutates `v`, with all the `1` bits in the range of `slice` set to 0. + ## + ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation + ## with an *inverted mask*. + runnableExamples: + var v = 0b0000_0011'u8 + v.clearMask(1 .. 3) + doAssert v == 0b0000_0001'u8 + + v = bitand(v, bitnot(toMask[T](slice))) + +func flipMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} = + ## Returns `v`, with all the `1` bits from `mask` flipped. + ## + ## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation. + runnableExamples: + let v = 0b0000_0011'u8 + doAssert v.flipMasked(0b0000_1010'u8) == 0b0000_1001'u8 + + bitxor(v, mask) + +func flipMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} = + ## Returns `v`, with all the `1` bits in the range of `slice` flipped. + ## + ## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation. + runnableExamples: + let v = 0b0000_0011'u8 + doAssert v.flipMasked(1 .. 3) == 0b0000_1101'u8 + + bitxor(v, toMask[T](slice)) + +proc flipMask*[T: SomeInteger](v: var T; mask: T) {.inline.} = + ## Mutates `v`, with all the `1` bits from `mask` flipped. + ## + ## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation. + runnableExamples: + var v = 0b0000_0011'u8 + v.flipMask(0b0000_1010'u8) + doAssert v == 0b0000_1001'u8 + + v = bitxor(v, mask) + +proc flipMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} = + ## Mutates `v`, with all the `1` bits in the range of `slice` flipped. + ## + ## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation. + runnableExamples: + var v = 0b0000_0011'u8 + v.flipMask(1 .. 3) + doAssert v == 0b0000_1101'u8 + + v = bitxor(v, toMask[T](slice)) + +proc setBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} = + ## Mutates `v`, with the bit at position `bit` set to 1. + runnableExamples: + var v = 0b0000_0011'u8 + v.setBit(5'u8) + doAssert v == 0b0010_0011'u8 + + v.setMask(1.T shl bit) + +proc clearBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} = + ## Mutates `v`, with the bit at position `bit` set to 0. + runnableExamples: + var v = 0b0000_0011'u8 + v.clearBit(1'u8) + doAssert v == 0b0000_0001'u8 + + v.clearMask(1.T shl bit) + +proc flipBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} = + ## Mutates `v`, with the bit at position `bit` flipped. + runnableExamples: + var v = 0b0000_0011'u8 + v.flipBit(1'u8) + doAssert v == 0b0000_0001'u8 + + v = 0b0000_0011'u8 + v.flipBit(2'u8) + doAssert v == 0b0000_0111'u8 + + v.flipMask(1.T shl bit) + +macro setBits*(v: typed; bits: varargs[typed]): untyped = + ## Mutates `v`, with the bits at positions `bits` set to 1. + runnableExamples: + var v = 0b0000_0011'u8 + v.setBits(3, 5, 7) + doAssert v == 0b1010_1011'u8 + + bits.expectKind(nnkBracket) + result = newStmtList() + for bit in bits: + result.add newCall("setBit", v, bit) + +macro clearBits*(v: typed; bits: varargs[typed]): untyped = + ## Mutates `v`, with the bits at positions `bits` set to 0. + runnableExamples: + var v = 0b1111_1111'u8 + v.clearBits(1, 3, 5, 7) + doAssert v == 0b0101_0101'u8 + + bits.expectKind(nnkBracket) + result = newStmtList() + for bit in bits: + result.add newCall("clearBit", v, bit) + +macro flipBits*(v: typed; bits: varargs[typed]): untyped = + ## Mutates `v`, with the bits at positions `bits` set to 0. + runnableExamples: + var v = 0b0000_1111'u8 + v.flipBits(1, 3, 5, 7) + doAssert v == 0b1010_0101'u8 + + bits.expectKind(nnkBracket) + result = newStmtList() + for bit in bits: + result.add newCall("flipBit", v, bit) + + +proc testBit*[T: SomeInteger](v: T; bit: BitsRange[T]): bool {.inline.} = + ## Returns true if the bit in `v` at positions `bit` is set to 1. + runnableExamples: + let v = 0b0000_1111'u8 + doAssert v.testBit(0) + doAssert not v.testBit(7) + + let mask = 1.T shl bit + return (v and mask) == mask + +# #### Pure Nim version #### + +func firstSetBitNim(x: uint32): int {.inline.} = + ## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero. + # https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup + const lookup: array[32, uint8] = [0'u8, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, + 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9] + let v = x.uint32 + let k = not v + 1 # get two's complement # cast[uint32](-cast[int32](v)) + result = 1 + lookup[uint32((v and k) * 0x077CB531'u32) shr 27].int + +func firstSetBitNim(x: uint64): int {.inline.} = + ## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero. + # https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup + let v = uint64(x) + var k = uint32(v and 0xFFFFFFFF'u32) + if k == 0: + k = uint32(v shr 32'u32) and 0xFFFFFFFF'u32 + result = 32 + else: + result = 0 + result += firstSetBitNim(k) + +func fastlog2Nim(x: uint32): int {.inline.} = + ## Quickly find the log base 2 of a 32-bit or less integer. + # https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn + # https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers + const lookup: array[32, uint8] = [0'u8, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, + 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31] + var v = x.uint32 + v = v or v shr 1 # first round down to one less than a power of 2 + v = v or v shr 2 + v = v or v shr 4 + v = v or v shr 8 + v = v or v shr 16 + result = lookup[uint32(v * 0x07C4ACDD'u32) shr 27].int + +func fastlog2Nim(x: uint64): int {.inline.} = + ## Quickly find the log base 2 of a 64-bit integer. + # https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn + # https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers + const lookup: array[64, uint8] = [0'u8, 58, 1, 59, 47, 53, 2, 60, 39, 48, 27, 54, + 33, 42, 3, 61, 51, 37, 40, 49, 18, 28, 20, 55, 30, 34, 11, 43, 14, 22, 4, 62, + 57, 46, 52, 38, 26, 32, 41, 50, 36, 17, 19, 29, 10, 13, 21, 56, 45, 25, 31, + 35, 16, 9, 12, 44, 24, 15, 8, 23, 7, 6, 5, 63] + var v = x.uint64 + v = v or v shr 1 # first round down to one less than a power of 2 + v = v or v shr 2 + v = v or v shr 4 + v = v or v shr 8 + v = v or v shr 16 + v = v or v shr 32 + result = lookup[(v * 0x03F6EAF2CD271461'u64) shr 58].int + +import system/countbits_impl + +const useBuiltinsRotate = (defined(amd64) or defined(i386)) and + (defined(gcc) or defined(clang) or defined(vcc) or + (defined(icl) and not defined(cpp))) and useBuiltins + +template parityImpl[T](value: T): int = + # formula id from: https://graphics.stanford.edu/%7Eseander/bithacks.html#ParityParallel + var v = value + when sizeof(T) == 8: + v = v xor (v shr 32) + when sizeof(T) >= 4: + v = v xor (v shr 16) + when sizeof(T) >= 2: + v = v xor (v shr 8) + v = v xor (v shr 4) + v = v and 0xf + ((0x6996'u shr v) and 1).int + + +when useGCC_builtins: + # Returns the bit parity in value + proc builtin_parity(x: cuint): cint {.importc: "__builtin_parity", cdecl.} + proc builtin_parityll(x: culonglong): cint {.importc: "__builtin_parityll", cdecl.} + + # Returns one plus the index of the least significant 1-bit of x, or if x is zero, returns zero. + proc builtin_ffs(x: cint): cint {.importc: "__builtin_ffs", cdecl.} + proc builtin_ffsll(x: clonglong): cint {.importc: "__builtin_ffsll", cdecl.} + + # Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined. + proc builtin_clz(x: cuint): cint {.importc: "__builtin_clz", cdecl.} + proc builtin_clzll(x: culonglong): cint {.importc: "__builtin_clzll", cdecl.} + + # Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined. + proc builtin_ctz(x: cuint): cint {.importc: "__builtin_ctz", cdecl.} + proc builtin_ctzll(x: culonglong): cint {.importc: "__builtin_ctzll", cdecl.} + +elif useVCC_builtins: + # Search the mask data from most significant bit (MSB) to least significant bit (LSB) for a set bit (1). + func bitScanReverse(index: ptr culong, mask: culong): uint8 {. + importc: "_BitScanReverse", header: "<intrin.h>".} + func bitScanReverse64(index: ptr culong, mask: uint64): uint8 {. + importc: "_BitScanReverse64", header: "<intrin.h>".} + + # Search the mask data from least significant bit (LSB) to the most significant bit (MSB) for a set bit (1). + func bitScanForward(index: ptr culong, mask: culong): uint8 {. + importc: "_BitScanForward", header: "<intrin.h>".} + func bitScanForward64(index: ptr culong, mask: uint64): uint8 {. + importc: "_BitScanForward64", header: "<intrin.h>".} + + template vcc_scan_impl(fnc: untyped; v: untyped): int = + var index {.inject.}: culong = 0 + discard fnc(index.addr, v) + index.int + +elif useICC_builtins: + # Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined. + func bitScanForward(p: ptr uint32, b: uint32): uint8 {. + importc: "_BitScanForward", header: "<immintrin.h>".} + func bitScanForward64(p: ptr uint32, b: uint64): uint8 {. + importc: "_BitScanForward64", header: "<immintrin.h>".} + + # Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined. + func bitScanReverse(p: ptr uint32, b: uint32): uint8 {. + importc: "_BitScanReverse", header: "<immintrin.h>".} + func bitScanReverse64(p: ptr uint32, b: uint64): uint8 {. + importc: "_BitScanReverse64", header: "<immintrin.h>".} + + template icc_scan_impl(fnc: untyped; v: untyped): int = + var index: uint32 + discard fnc(index.addr, v) + index.int + +func countSetBits*(x: SomeInteger): int {.inline.} = + ## Counts the set bits in an integer (also called `Hamming weight`:idx:). + runnableExamples: + doAssert countSetBits(0b0000_0011'u8) == 2 + doAssert countSetBits(0b1010_1010'u8) == 4 + + result = countSetBitsImpl(x) + +func popcount*(x: SomeInteger): int {.inline.} = + ## Alias for `countSetBits <#countSetBits,SomeInteger>`_ (Hamming weight). + result = countSetBits(x) + +func parityBits*(x: SomeInteger): int {.inline.} = + ## Calculate the bit parity in an integer. If the number of 1-bits + ## is odd, the parity is 1, otherwise 0. + runnableExamples: + doAssert parityBits(0b0000_0000'u8) == 0 + doAssert parityBits(0b0101_0001'u8) == 1 + doAssert parityBits(0b0110_1001'u8) == 0 + doAssert parityBits(0b0111_1111'u8) == 1 + + # Can be used a base if creating ASM version. + # https://stackoverflow.com/questions/21617970/how-to-check-if-value-has-even-parity-of-bits-or-odd + let x = x.castToUnsigned + when nimvm: + result = forwardImpl(parityImpl, x) + else: + when useGCC_builtins: + when sizeof(x) <= 4: result = builtin_parity(x.uint32).int + else: result = builtin_parityll(x.uint64).int + else: + when sizeof(x) <= 4: result = parityImpl(x.uint32) + else: result = parityImpl(x.uint64) + +func firstSetBit*(x: SomeInteger): int {.inline.} = + ## Returns the 1-based index of the least significant set bit of `x`. + ## If `x` is zero, when `noUndefinedBitOpts` is set, the result is 0, + ## otherwise the result is undefined. + runnableExamples: + doAssert firstSetBit(0b0000_0001'u8) == 1 + doAssert firstSetBit(0b0000_0010'u8) == 2 + doAssert firstSetBit(0b0000_0100'u8) == 3 + doAssert firstSetBit(0b0000_1000'u8) == 4 + doAssert firstSetBit(0b0000_1111'u8) == 1 + + # GCC builtin 'builtin_ffs' already handle zero input. + let x = x.castToUnsigned + when nimvm: + when noUndefined: + if x == 0: + return 0 + result = forwardImpl(firstSetBitNim, x) + else: + when noUndefined and not useGCC_builtins: + if x == 0: + return 0 + when useGCC_builtins: + when sizeof(x) <= 4: result = builtin_ffs(cast[cint](x.cuint)).int + else: result = builtin_ffsll(cast[clonglong](x.culonglong)).int + elif useVCC_builtins: + when sizeof(x) <= 4: + result = 1 + vcc_scan_impl(bitScanForward, x.culong) + elif arch64: + result = 1 + vcc_scan_impl(bitScanForward64, x.uint64) + else: + result = firstSetBitNim(x.uint64) + elif useICC_builtins: + when sizeof(x) <= 4: + result = 1 + icc_scan_impl(bitScanForward, x.uint32) + elif arch64: + result = 1 + icc_scan_impl(bitScanForward64, x.uint64) + else: + result = firstSetBitNim(x.uint64) + else: + when sizeof(x) <= 4: result = firstSetBitNim(x.uint32) + else: result = firstSetBitNim(x.uint64) + +func fastLog2*(x: SomeInteger): int {.inline.} = + ## Quickly find the log base 2 of an integer. + ## If `x` is zero, when `noUndefinedBitOpts` is set, the result is -1, + ## otherwise the result is undefined. + runnableExamples: + doAssert fastLog2(0b0000_0001'u8) == 0 + doAssert fastLog2(0b0000_0010'u8) == 1 + doAssert fastLog2(0b0000_0100'u8) == 2 + doAssert fastLog2(0b0000_1000'u8) == 3 + doAssert fastLog2(0b0000_1111'u8) == 3 + + let x = x.castToUnsigned + when noUndefined: + if x == 0: + return -1 + when nimvm: + result = forwardImpl(fastlog2Nim, x) + else: + when useGCC_builtins: + when sizeof(x) <= 4: result = 31 - builtin_clz(x.uint32).int + else: result = 63 - builtin_clzll(x.uint64).int + elif useVCC_builtins: + when sizeof(x) <= 4: + result = vcc_scan_impl(bitScanReverse, x.culong) + elif arch64: + result = vcc_scan_impl(bitScanReverse64, x.uint64) + else: + result = fastlog2Nim(x.uint64) + elif useICC_builtins: + when sizeof(x) <= 4: + result = icc_scan_impl(bitScanReverse, x.uint32) + elif arch64: + result = icc_scan_impl(bitScanReverse64, x.uint64) + else: + result = fastlog2Nim(x.uint64) + else: + when sizeof(x) <= 4: result = fastlog2Nim(x.uint32) + else: result = fastlog2Nim(x.uint64) + +func countLeadingZeroBits*(x: SomeInteger): int {.inline.} = + ## Returns the number of leading zero bits in an integer. + ## If `x` is zero, when `noUndefinedBitOpts` is set, the result is 0, + ## otherwise the result is undefined. + ## + ## **See also:** + ## * `countTrailingZeroBits proc <#countTrailingZeroBits,SomeInteger>`_ + runnableExamples: + doAssert countLeadingZeroBits(0b0000_0001'u8) == 7 + doAssert countLeadingZeroBits(0b0000_0010'u8) == 6 + doAssert countLeadingZeroBits(0b0000_0100'u8) == 5 + doAssert countLeadingZeroBits(0b0000_1000'u8) == 4 + doAssert countLeadingZeroBits(0b0000_1111'u8) == 4 + + let x = x.castToUnsigned + when noUndefined: + if x == 0: + return 0 + when nimvm: + result = sizeof(x)*8 - 1 - forwardImpl(fastlog2Nim, x) + else: + when useGCC_builtins: + when sizeof(x) <= 4: result = builtin_clz(x.uint32).int - (32 - sizeof(x)*8) + else: result = builtin_clzll(x.uint64).int + else: + when sizeof(x) <= 4: result = sizeof(x)*8 - 1 - fastlog2Nim(x.uint32) + else: result = sizeof(x)*8 - 1 - fastlog2Nim(x.uint64) + +func countTrailingZeroBits*(x: SomeInteger): int {.inline.} = + ## Returns the number of trailing zeros in an integer. + ## If `x` is zero, when `noUndefinedBitOpts` is set, the result is 0, + ## otherwise the result is undefined. + ## + ## **See also:** + ## * `countLeadingZeroBits proc <#countLeadingZeroBits,SomeInteger>`_ + runnableExamples: + doAssert countTrailingZeroBits(0b0000_0001'u8) == 0 + doAssert countTrailingZeroBits(0b0000_0010'u8) == 1 + doAssert countTrailingZeroBits(0b0000_0100'u8) == 2 + doAssert countTrailingZeroBits(0b0000_1000'u8) == 3 + doAssert countTrailingZeroBits(0b0000_1111'u8) == 0 + + let x = x.castToUnsigned + when noUndefined: + if x == 0: + return 0 + when nimvm: + result = firstSetBit(x) - 1 + else: + when useGCC_builtins: + when sizeof(x) <= 4: result = builtin_ctz(x.uint32).int + else: result = builtin_ctzll(x.uint64).int + else: + result = firstSetBit(x) - 1 + +when useBuiltinsRotate: + when defined(gcc): + # GCC was tested until version 4.8.1 and intrinsics were present. Not tested + # in previous versions. + func builtin_rotl8(value: uint8, shift: cint): uint8 + {.importc: "__rolb", header: "<x86intrin.h>".} + func builtin_rotl16(value: cushort, shift: cint): cushort + {.importc: "__rolw", header: "<x86intrin.h>".} + func builtin_rotl32(value: cuint, shift: cint): cuint + {.importc: "__rold", header: "<x86intrin.h>".} + when defined(amd64): + func builtin_rotl64(value: culonglong, shift: cint): culonglong + {.importc: "__rolq", header: "<x86intrin.h>".} + + func builtin_rotr8(value: uint8, shift: cint): uint8 + {.importc: "__rorb", header: "<x86intrin.h>".} + func builtin_rotr16(value: cushort, shift: cint): cushort + {.importc: "__rorw", header: "<x86intrin.h>".} + func builtin_rotr32(value: cuint, shift: cint): cuint + {.importc: "__rord", header: "<x86intrin.h>".} + when defined(amd64): + func builtin_rotr64(value: culonglong, shift: cint): culonglong + {.importc: "__rorq", header: "<x86intrin.h>".} + elif defined(clang): + # In CLANG, builtins have been present since version 8.0.0 and intrinsics + # since version 9.0.0. This implementation chose the builtins, as they have + # been around for longer. + # https://releases.llvm.org/8.0.0/tools/clang/docs/ReleaseNotes.html#non-comprehensive-list-of-changes-in-this-release + # https://releases.llvm.org/8.0.0/tools/clang/docs/LanguageExtensions.html#builtin-rotateleft + # source for correct declarations: https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/Builtins.def + func builtin_rotl8(value: uint8, shift: uint8): uint8 + {.importc: "__builtin_rotateleft8", nodecl.} + func builtin_rotl16(value: cushort, shift: cushort): cushort + {.importc: "__builtin_rotateleft16", nodecl.} + func builtin_rotl32(value: cuint, shift: cuint): cuint + {.importc: "__builtin_rotateleft32", nodecl.} + when defined(amd64): + func builtin_rotl64(value: culonglong, shift: culonglong): culonglong + {.importc: "__builtin_rotateleft64", nodecl.} + + func builtin_rotr8(value: uint8, shift: uint8): uint8 + {.importc: "__builtin_rotateright8", nodecl.} + func builtin_rotr16(value: cushort, shift: cushort): cushort + {.importc: "__builtin_rotateright16", nodecl.} + func builtin_rotr32(value: cuint, shift: cuint): cuint + {.importc: "__builtin_rotateright32", nodecl.} + when defined(amd64): + # shift is unsigned, refs https://github.com/llvm-mirror/clang/commit/892de415b7fde609dafc4e6c1643b7eaa0150a4d + func builtin_rotr64(value: culonglong, shift: culonglong): culonglong + {.importc: "__builtin_rotateright64", nodecl.} + elif defined(vcc): + # Tested on Microsoft (R) C/C++ Optimizing Compiler 19.28.29335 x64 and x86. + # Not tested in previous versions. + # https://docs.microsoft.com/en-us/cpp/intrinsics/rotl8-rotl16?view=msvc-160 + # https://docs.microsoft.com/en-us/cpp/intrinsics/rotr8-rotr16?view=msvc-160 + # https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/rotl-rotl64-rotr-rotr64?view=msvc-160 + func builtin_rotl8(value: uint8, shift: uint8): uint8 + {.importc: "_rotl8", header: "<intrin.h>".} + func builtin_rotl16(value: cushort, shift: uint8): cushort + {.importc: "_rotl16", header: "<intrin.h>".} + func builtin_rotl32(value: cuint, shift: cint): cuint + {.importc: "_rotl", header: "<stdlib.h>".} + when defined(amd64): + func builtin_rotl64(value: culonglong, shift: cint): culonglong + {.importc: "_rotl64", header: "<stdlib.h>".} + + func builtin_rotr8(value: uint8, shift: uint8): uint8 + {.importc: "_rotr8", header: "<intrin.h>".} + func builtin_rotr16(value: cushort, shift: uint8): cushort + {.importc: "_rotr16", header: "<intrin.h>".} + func builtin_rotr32(value: cuint, shift: cint): cuint + {.importc: "_rotr", header: "<stdlib.h>".} + when defined(amd64): + func builtin_rotr64(value: culonglong, shift: cint): culonglong + {.importc: "_rotr64", header: "<stdlib.h>".} + elif defined(icl): + # Tested on Intel(R) C++ Intel(R) 64 Compiler Classic Version 2021.1.2 Build + # 20201208_000000 x64 and x86. Not tested in previous versions. + func builtin_rotl8(value: uint8, shift: cint): uint8 + {.importc: "__rolb", header: "<immintrin.h>".} + func builtin_rotl16(value: cushort, shift: cint): cushort + {.importc: "__rolw", header: "<immintrin.h>".} + func builtin_rotl32(value: cuint, shift: cint): cuint + {.importc: "__rold", header: "<immintrin.h>".} + when defined(amd64): + func builtin_rotl64(value: culonglong, shift: cint): culonglong + {.importc: "__rolq", header: "<immintrin.h>".} + + func builtin_rotr8(value: uint8, shift: cint): uint8 + {.importc: "__rorb", header: "<immintrin.h>".} + func builtin_rotr16(value: cushort, shift: cint): cushort + {.importc: "__rorw", header: "<immintrin.h>".} + func builtin_rotr32(value: cuint, shift: cint): cuint + {.importc: "__rord", header: "<immintrin.h>".} + when defined(amd64): + func builtin_rotr64(value: culonglong, shift: cint): culonglong + {.importc: "__rorq", header: "<immintrin.h>".} + +func rotl[T: SomeUnsignedInt](value: T, rot: int32): T {.inline.} = + ## Left-rotate bits in a `value`. + # https://stackoverflow.com/a/776523 + const mask = 8 * sizeof(value) - 1 + let rot = rot and mask + (value shl rot) or (value shr ((-rot) and mask)) + +func rotr[T: SomeUnsignedInt](value: T, rot: int32): T {.inline.} = + ## Right-rotate bits in a `value`. + const mask = 8 * sizeof(value) - 1 + let rot = rot and mask + (value shr rot) or (value shl ((-rot) and mask)) + +func shiftTypeTo(size: static int, shift: int): auto {.inline.} = + ## Returns the `shift` for the rotation according to the compiler and the + ## `size`. + when (defined(vcc) and (size in [4, 8])) or defined(gcc) or defined(icl): + cint(shift) + elif (defined(vcc) and (size in [1, 2])) or (defined(clang) and size == 1): + uint8(shift) + elif defined(clang): + when size == 2: + cushort(shift) + elif size == 4: + cuint(shift) + elif size == 8: + culonglong(shift) + +func rotateLeftBits*[T: SomeUnsignedInt](value: T, shift: range[0..(sizeof(T) * 8)]): T {.inline.} = + ## Left-rotate bits in a `value`. + runnableExamples: + doAssert rotateLeftBits(0b0110_1001'u8, 4) == 0b1001_0110'u8 + doAssert rotateLeftBits(0b00111100_11000011'u16, 8) == + 0b11000011_00111100'u16 + doAssert rotateLeftBits(0b0000111111110000_1111000000001111'u32, 16) == + 0b1111000000001111_0000111111110000'u32 + doAssert rotateLeftBits(0b00000000111111111111111100000000_11111111000000000000000011111111'u64, 32) == + 0b11111111000000000000000011111111_00000000111111111111111100000000'u64 + when nimvm: + rotl(value, shift.int32) + else: + when useBuiltinsRotate: + const size = sizeof(T) + when size == 1: + builtin_rotl8(value.uint8, shiftTypeTo(size, shift)).T + elif size == 2: + builtin_rotl16(value.cushort, shiftTypeTo(size, shift)).T + elif size == 4: + builtin_rotl32(value.cuint, shiftTypeTo(size, shift)).T + elif size == 8 and arch64: + builtin_rotl64(value.culonglong, shiftTypeTo(size, shift)).T + else: + rotl(value, shift.int32) + else: + rotl(value, shift.int32) + +func rotateRightBits*[T: SomeUnsignedInt](value: T, shift: range[0..(sizeof(T) * 8)]): T {.inline.} = + ## Right-rotate bits in a `value`. + runnableExamples: + doAssert rotateRightBits(0b0110_1001'u8, 4) == 0b1001_0110'u8 + doAssert rotateRightBits(0b00111100_11000011'u16, 8) == + 0b11000011_00111100'u16 + doAssert rotateRightBits(0b0000111111110000_1111000000001111'u32, 16) == + 0b1111000000001111_0000111111110000'u32 + doAssert rotateRightBits(0b00000000111111111111111100000000_11111111000000000000000011111111'u64, 32) == + 0b11111111000000000000000011111111_00000000111111111111111100000000'u64 + when nimvm: + rotr(value, shift.int32) + else: + when useBuiltinsRotate: + const size = sizeof(T) + when size == 1: + builtin_rotr8(value.uint8, shiftTypeTo(size, shift)).T + elif size == 2: + builtin_rotr16(value.cushort, shiftTypeTo(size, shift)).T + elif size == 4: + builtin_rotr32(value.cuint, shiftTypeTo(size, shift)).T + elif size == 8 and arch64: + builtin_rotr64(value.culonglong, shiftTypeTo(size, shift)).T + else: + rotr(value, shift.int32) + else: + rotr(value, shift.int32) + +func repeatBits[T: SomeUnsignedInt](x: SomeUnsignedInt; retType: type[T]): T = + result = x + var i = 1 + while i != (sizeof(T) div sizeof(x)): + result = (result shl (sizeof(x)*8*i)) or result + i *= 2 + +func reverseBits*[T: SomeUnsignedInt](x: T): T = + ## Return the bit reversal of x. + runnableExamples: + doAssert reverseBits(0b10100100'u8) == 0b00100101'u8 + doAssert reverseBits(0xdd'u8) == 0xbb'u8 + doAssert reverseBits(0xddbb'u16) == 0xddbb'u16 + doAssert reverseBits(0xdeadbeef'u32) == 0xf77db57b'u32 + + template repeat(x: SomeUnsignedInt): T = repeatBits(x, T) + + result = x + result = + ((repeat(0x55u8) and result) shl 1) or + ((repeat(0xaau8) and result) shr 1) + result = + ((repeat(0x33u8) and result) shl 2) or + ((repeat(0xccu8) and result) shr 2) + when sizeof(T) == 1: + result = (result shl 4) or (result shr 4) + when sizeof(T) >= 2: + result = + ((repeat(0x0fu8) and result) shl 4) or + ((repeat(0xf0u8) and result) shr 4) + when sizeof(T) == 2: + result = (result shl 8) or (result shr 8) + when sizeof(T) >= 4: + result = + ((repeat(0x00ffu16) and result) shl 8) or + ((repeat(0xff00u16) and result) shr 8) + when sizeof(T) == 4: + result = (result shl 16) or (result shr 16) + when sizeof(T) == 8: + result = + ((repeat(0x0000ffffu32) and result) shl 16) or + ((repeat(0xffff0000u32) and result) shr 16) + result = (result shl 32) or (result shr 32) |