diff options
Diffstat (limited to 'lib/pure/collections/heapqueue.nim')
-rw-r--r-- | lib/pure/collections/heapqueue.nim | 319 |
1 files changed, 212 insertions, 107 deletions
diff --git a/lib/pure/collections/heapqueue.nim b/lib/pure/collections/heapqueue.nim index 60869142e..96f9b4430 100644 --- a/lib/pure/collections/heapqueue.nim +++ b/lib/pure/collections/heapqueue.nim @@ -1,4 +1,3 @@ - # # # Nim's Runtime Library @@ -7,155 +6,261 @@ # See the file "copying.txt", included in this # distribution, for details about the copyright. -##[ Heap queue algorithm (a.k.a. priority queue). Ported from Python heapq. -Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for -all k, counting elements from 0. For the sake of comparison, -non-existing elements are considered to be infinite. The interesting -property of a heap is that a[0] is always its smallest element. +## The `heapqueue` module implements a +## `binary heap data structure<https://en.wikipedia.org/wiki/Binary_heap>`_ +## that can be used as a `priority queue<https://en.wikipedia.org/wiki/Priority_queue>`_. +## They are represented as arrays for which `a[k] <= a[2*k+1]` and `a[k] <= a[2*k+2]` +## for all indices `k` (counting elements from 0). The interesting property of a heap is that +## `a[0]` is always its smallest element. +## +## Basic usage +## ----------- +## +runnableExamples: + var heap = [8, 2].toHeapQueue + heap.push(5) + # the first element is the lowest element + assert heap[0] == 2 + # remove and return the lowest element + assert heap.pop() == 2 + # the lowest element remaining is 5 + assert heap[0] == 5 + +## Usage with custom objects +## ------------------------- +## To use a `HeapQueue` with a custom object, the `<` operator must be +## implemented. + +runnableExamples: + type Job = object + priority: int + + proc `<`(a, b: Job): bool = a.priority < b.priority + + var jobs = initHeapQueue[Job]() + jobs.push(Job(priority: 1)) + jobs.push(Job(priority: 2)) + + assert jobs[0].priority == 1 + + +import std/private/since + +when defined(nimPreviewSlimSystem): + import std/assertions -]## +type HeapQueue*[T] = object + ## A heap queue, commonly known as a priority queue. + data: seq[T] -type HeapQueue*[T] = distinct seq[T] +proc initHeapQueue*[T](): HeapQueue[T] = + ## Creates a new empty heap. + ## + ## Heaps are initialized by default, so it is not necessary to call + ## this function explicitly. + ## + ## **See also:** + ## * `toHeapQueue proc <#toHeapQueue,openArray[T]>`_ + result = default(HeapQueue[T]) -proc newHeapQueue*[T](): HeapQueue[T] {.inline.} = HeapQueue[T](newSeq[T]()) -proc newHeapQueue*[T](h: var HeapQueue[T]) {.inline.} = h = HeapQueue[T](newSeq[T]()) +proc len*[T](heap: HeapQueue[T]): int {.inline.} = + ## Returns the number of elements of `heap`. + runnableExamples: + let heap = [9, 5, 8].toHeapQueue + assert heap.len == 3 -proc len*[T](h: HeapQueue[T]): int {.inline.} = seq[T](h).len -proc `[]`*[T](h: HeapQueue[T], i: int): T {.inline.} = seq[T](h)[i] -proc `[]=`[T](h: var HeapQueue[T], i: int, v: T) {.inline.} = seq[T](h)[i] = v -proc add[T](h: var HeapQueue[T], v: T) {.inline.} = seq[T](h).add(v) + heap.data.len -proc heapCmp[T](x, y: T): bool {.inline.} = - return (x < y) +proc `[]`*[T](heap: HeapQueue[T], i: Natural): lent T {.inline.} = + ## Accesses the i-th element of `heap`. + heap.data[i] -# 'heap' is a heap at all indices >= startpos, except possibly for pos. pos -# is the index of a leaf with a possibly out-of-order value. Restore the -# heap invariant. -proc siftdown[T](heap: var HeapQueue[T], startpos, p: int) = +iterator items*[T](heap: HeapQueue[T]): lent T {.inline, since: (2, 1, 1).} = + ## Iterates over each item of `heap`. + let L = len(heap) + for i in 0 .. high(heap.data): + yield heap.data[i] + assert(len(heap) == L, "the length of the HeapQueue changed while iterating over it") + +proc heapCmp[T](x, y: T): bool {.inline.} = x < y + +proc siftup[T](heap: var HeapQueue[T], startpos, p: int) = + ## `heap` is a heap at all indices >= `startpos`, except possibly for `p`. `p` + ## is the index of a leaf with a possibly out-of-order value. Restores the + ## heap invariant. var pos = p - var newitem = heap[pos] + let newitem = heap[pos] # Follow the path to the root, moving parents down until finding a place # newitem fits. while pos > startpos: let parentpos = (pos - 1) shr 1 let parent = heap[parentpos] if heapCmp(newitem, parent): - heap[pos] = parent + heap.data[pos] = parent pos = parentpos else: break - heap[pos] = newitem + heap.data[pos] = newitem -proc siftup[T](heap: var HeapQueue[T], p: int) = +proc siftdownToBottom[T](heap: var HeapQueue[T], p: int) = + # This is faster when the element should be close to the bottom. let endpos = len(heap) var pos = p let startpos = pos let newitem = heap[pos] # Bubble up the smaller child until hitting a leaf. - var childpos = 2*pos + 1 # leftmost child position + var childpos = 2 * pos + 1 # leftmost child position while childpos < endpos: # Set childpos to index of smaller child. let rightpos = childpos + 1 if rightpos < endpos and not heapCmp(heap[childpos], heap[rightpos]): childpos = rightpos # Move the smaller child up. - heap[pos] = heap[childpos] + heap.data[pos] = heap[childpos] pos = childpos - childpos = 2*pos + 1 - # The leaf at pos is empty now. Put newitem there, and bubble it up + childpos = 2 * pos + 1 + # The leaf at pos is empty now. Put newitem there, and bubble it up # to its final resting place (by sifting its parents down). - heap[pos] = newitem - siftdown(heap, startpos, pos) + heap.data[pos] = newitem + siftup(heap, startpos, pos) -proc push*[T](heap: var HeapQueue[T], item: T) = - ## Push item onto heap, maintaining the heap invariant. - (seq[T](heap)).add(item) - siftdown(heap, 0, len(heap)-1) +proc siftdown[T](heap: var HeapQueue[T], p: int) = + let endpos = len(heap) + var pos = p + let newitem = heap[pos] + var childpos = 2 * pos + 1 + while childpos < endpos: + let rightpos = childpos + 1 + if rightpos < endpos and not heapCmp(heap[childpos], heap[rightpos]): + childpos = rightpos + if not heapCmp(heap[childpos], newitem): + break + heap.data[pos] = heap[childpos] + pos = childpos + childpos = 2 * pos + 1 + heap.data[pos] = newitem + +proc push*[T](heap: var HeapQueue[T], item: sink T) = + ## Pushes `item` onto `heap`, maintaining the heap invariant. + heap.data.add(item) + siftup(heap, 0, len(heap) - 1) + +proc toHeapQueue*[T](x: openArray[T]): HeapQueue[T] {.since: (1, 3).} = + ## Creates a new HeapQueue that contains the elements of `x`. + ## + ## **See also:** + ## * `initHeapQueue proc <#initHeapQueue>`_ + runnableExamples: + var heap = [9, 5, 8].toHeapQueue + assert heap.pop() == 5 + assert heap[0] == 8 + + # see https://en.wikipedia.org/wiki/Binary_heap#Building_a_heap + result.data = @x + for i in countdown(x.len div 2 - 1, 0): + siftdown(result, i) proc pop*[T](heap: var HeapQueue[T]): T = - ## Pop the smallest item off the heap, maintaining the heap invariant. - let lastelt = seq[T](heap).pop() + ## Pops and returns the smallest item from `heap`, + ## maintaining the heap invariant. + runnableExamples: + var heap = [9, 5, 8].toHeapQueue + assert heap.pop() == 5 + + let lastelt = heap.data.pop() if heap.len > 0: result = heap[0] - heap[0] = lastelt - siftup(heap, 0) + heap.data[0] = lastelt + siftdownToBottom(heap, 0) else: result = lastelt -proc del*[T](heap: var HeapQueue[T], index: int) = - ## Removes element at `index`, maintaining the heap invariant. - swap(seq[T](heap)[^1], seq[T](heap)[index]) +proc find*[T](heap: HeapQueue[T], x: T): int {.since: (1, 3).} = + ## Linear scan to find the index of the item `x` or -1 if not found. + runnableExamples: + let heap = [9, 5, 8].toHeapQueue + assert heap.find(5) == 0 + assert heap.find(9) == 1 + assert heap.find(777) == -1 + + result = -1 + for i in 0 ..< heap.len: + if heap[i] == x: return i + +proc contains*[T](heap: HeapQueue[T], x: T): bool {.since: (2, 1, 1).} = + ## Returns true if `x` is in `heap` or false if not found. This is a shortcut + ## for `find(heap, x) >= 0`. + result = find(heap, x) >= 0 + +proc del*[T](heap: var HeapQueue[T], index: Natural) = + ## Removes the element at `index` from `heap`, maintaining the heap invariant. + runnableExamples: + var heap = [9, 5, 8].toHeapQueue + heap.del(1) + assert heap[0] == 5 + assert heap[1] == 8 + + swap(heap.data[^1], heap.data[index]) let newLen = heap.len - 1 - seq[T](heap).setLen(newLen) + heap.data.setLen(newLen) if index < newLen: - heap.siftup(index) + siftdownToBottom(heap, index) -proc replace*[T](heap: var HeapQueue[T], item: T): T = - ## Pop and return the current smallest value, and add the new item. - ## This is more efficient than pop() followed by push(), and can be - ## more appropriate when using a fixed-size heap. Note that the value - ## returned may be larger than item! That constrains reasonable uses of - ## this routine unless written as part of a conditional replacement: +proc replace*[T](heap: var HeapQueue[T], item: sink T): T = + ## Pops and returns the current smallest value, and add the new item. + ## This is more efficient than `pop()` followed by `push()`, and can be + ## more appropriate when using a fixed-size heap. Note that the value + ## returned may be larger than `item`! That constrains reasonable uses of + ## this routine unless written as part of a conditional replacement. + ## + ## **See also:** + ## * `pushpop proc <#pushpop,HeapQueue[T],sinkT>`_ + runnableExamples: + var heap = [5, 12].toHeapQueue + assert heap.replace(6) == 5 + assert heap.len == 2 + assert heap[0] == 6 + assert heap.replace(4) == 6 - ## if item > heap[0]: - ## item = replace(heap, item) result = heap[0] - heap[0] = item - siftup(heap, 0) - -proc pushpop*[T](heap: var HeapQueue[T], item: T): T = - ## Fast version of a push followed by a pop. - if heap.len > 0 and heapCmp(heap[0], item): - swap(item, heap[0]) - siftup(heap, 0) - return item - -when isMainModule: - proc toSortedSeq[T](h: HeapQueue[T]): seq[T] = - var tmp = h - result = @[] - while tmp.len > 0: - result.add(pop(tmp)) - - block: # Simple sanity test - var heap = newHeapQueue[int]() - let data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0] - for item in data: - push(heap, item) - doAssert(heap[0] == 0) - doAssert(heap.toSortedSeq == @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) - - block: # Test del - var heap = newHeapQueue[int]() - let data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0] - for item in data: push(heap, item) - - heap.del(0) - doAssert(heap[0] == 1) - - heap.del(seq[int](heap).find(7)) - doAssert(heap.toSortedSeq == @[1, 2, 3, 4, 5, 6, 8, 9]) - - heap.del(seq[int](heap).find(5)) - doAssert(heap.toSortedSeq == @[1, 2, 3, 4, 6, 8, 9]) - - heap.del(seq[int](heap).find(6)) - doAssert(heap.toSortedSeq == @[1, 2, 3, 4, 8, 9]) - - heap.del(seq[int](heap).find(2)) - doAssert(heap.toSortedSeq == @[1, 3, 4, 8, 9]) - - block: # Test del last - var heap = newHeapQueue[int]() - let data = [1, 2, 3] - for item in data: push(heap, item) - - heap.del(2) - doAssert(heap.toSortedSeq == @[1, 2]) + heap.data[0] = item + siftdown(heap, 0) - heap.del(1) - doAssert(heap.toSortedSeq == @[1]) +proc pushpop*[T](heap: var HeapQueue[T], item: sink T): T = + ## Fast version of a `push()` followed by a `pop()`. + ## + ## **See also:** + ## * `replace proc <#replace,HeapQueue[T],sinkT>`_ + runnableExamples: + var heap = [5, 12].toHeapQueue + assert heap.pushpop(6) == 5 + assert heap.len == 2 + assert heap[0] == 6 + assert heap.pushpop(4) == 4 + + result = item + if heap.len > 0 and heapCmp(heap.data[0], result): + swap(result, heap.data[0]) + siftdown(heap, 0) + +proc clear*[T](heap: var HeapQueue[T]) = + ## Removes all elements from `heap`, making it empty. + runnableExamples: + var heap = [9, 5, 8].toHeapQueue + heap.clear() + assert heap.len == 0 + + heap.data.setLen(0) + +proc `$`*[T](heap: HeapQueue[T]): string = + ## Turns a heap into its string representation. + runnableExamples: + let heap = [1, 2].toHeapQueue + assert $heap == "[1, 2]" - heap.del(0) - doAssert(heap.toSortedSeq == @[]) + result = "[" + for x in heap.data: + if result.len > 1: result.add(", ") + result.addQuoted(x) + result.add("]") |