summary refs log tree commit diff stats
path: root/lib/pure/collections/heapqueue.nim
diff options
context:
space:
mode:
Diffstat (limited to 'lib/pure/collections/heapqueue.nim')
-rw-r--r--lib/pure/collections/heapqueue.nim320
1 files changed, 176 insertions, 144 deletions
diff --git a/lib/pure/collections/heapqueue.nim b/lib/pure/collections/heapqueue.nim
index f958a5b0a..96f9b4430 100644
--- a/lib/pure/collections/heapqueue.nim
+++ b/lib/pure/collections/heapqueue.nim
@@ -6,76 +6,91 @@
 #    See the file "copying.txt", included in this
 #    distribution, for details about the copyright.
 
-##[
-  The `heapqueue` module implements a
-  `heap data structure<https://en.wikipedia.org/wiki/Heap_(data_structure)>`_
-  that can be used as a
-  `priority queue<https://en.wikipedia.org/wiki/Priority_queue>`_.
-  Heaps are arrays for which `a[k] <= a[2*k+1]` and `a[k] <= a[2*k+2]` for
-  all `k`, counting elements from 0. The interesting property of a heap is that
-  `a[0]` is always its smallest element.
-
-  Basic usage
-  -----------
-  .. code-block:: Nim
-    import heapqueue
-
-    var heap = initHeapQueue[int]()
-    heap.push(8)
-    heap.push(2)
-    heap.push(5)
-    # The first element is the lowest element
-    assert heap[0] == 2
-    # Remove and return the lowest element
-    assert heap.pop() == 2
-    # The lowest element remaining is 5
-    assert heap[0] == 5
-
-  Usage with custom object
-  ------------------------
-  To use a `HeapQueue` with a custom object, the `<` operator must be
-  implemented.
-
-  .. code-block:: Nim
-    import heapqueue
-
-    type Job = object
-      priority: int
 
-    proc `<`(a, b: Job): bool = a.priority < b.priority
-
-    var jobs = initHeapQueue[Job]()
-    jobs.push(Job(priority: 1))
-    jobs.push(Job(priority: 2))
-
-    assert jobs[0].priority == 1
-]##
+## The `heapqueue` module implements a
+## `binary heap data structure<https://en.wikipedia.org/wiki/Binary_heap>`_
+## that can be used as a `priority queue<https://en.wikipedia.org/wiki/Priority_queue>`_.
+## They are represented as arrays for which `a[k] <= a[2*k+1]` and `a[k] <= a[2*k+2]`
+## for all indices `k` (counting elements from 0). The interesting property of a heap is that
+## `a[0]` is always its smallest element.
+##
+## Basic usage
+## -----------
+##
+runnableExamples:
+  var heap = [8, 2].toHeapQueue
+  heap.push(5)
+  # the first element is the lowest element
+  assert heap[0] == 2
+  # remove and return the lowest element
+  assert heap.pop() == 2
+  # the lowest element remaining is 5
+  assert heap[0] == 5
+
+## Usage with custom objects
+## -------------------------
+## To use a `HeapQueue` with a custom object, the `<` operator must be
+## implemented.
+
+runnableExamples:
+  type Job = object
+    priority: int
+
+  proc `<`(a, b: Job): bool = a.priority < b.priority
+
+  var jobs = initHeapQueue[Job]()
+  jobs.push(Job(priority: 1))
+  jobs.push(Job(priority: 2))
+
+  assert jobs[0].priority == 1
+
+
+import std/private/since
+
+when defined(nimPreviewSlimSystem):
+  import std/assertions
 
 type HeapQueue*[T] = object
   ## A heap queue, commonly known as a priority queue.
   data: seq[T]
 
 proc initHeapQueue*[T](): HeapQueue[T] =
-  ## Create a new empty heap.
-  discard
+  ## Creates a new empty heap.
+  ##
+  ## Heaps are initialized by default, so it is not necessary to call
+  ## this function explicitly.
+  ##
+  ## **See also:**
+  ## * `toHeapQueue proc <#toHeapQueue,openArray[T]>`_
+  result = default(HeapQueue[T])
 
 proc len*[T](heap: HeapQueue[T]): int {.inline.} =
-  ## Return the number of elements of `heap`.
+  ## Returns the number of elements of `heap`.
+  runnableExamples:
+    let heap = [9, 5, 8].toHeapQueue
+    assert heap.len == 3
+
   heap.data.len
 
-proc `[]`*[T](heap: HeapQueue[T], i: Natural): T {.inline.} =
-  ## Access the i-th element of `heap`.
+proc `[]`*[T](heap: HeapQueue[T], i: Natural): lent T {.inline.} =
+  ## Accesses the i-th element of `heap`.
   heap.data[i]
 
-proc heapCmp[T](x, y: T): bool {.inline.} =
-  return (x < y)
+iterator items*[T](heap: HeapQueue[T]): lent T {.inline, since: (2, 1, 1).} =
+  ## Iterates over each item of `heap`.
+  let L = len(heap)
+  for i in 0 .. high(heap.data):
+    yield heap.data[i]
+    assert(len(heap) == L, "the length of the HeapQueue changed while iterating over it")
 
-proc siftdown[T](heap: var HeapQueue[T], startpos, p: int) =
-  ## 'heap' is a heap at all indices >= startpos, except possibly for pos.  pos
-  ## is the index of a leaf with a possibly out-of-order value.  Restore the
+proc heapCmp[T](x, y: T): bool {.inline.} = x < y
+
+proc siftup[T](heap: var HeapQueue[T], startpos, p: int) =
+  ## `heap` is a heap at all indices >= `startpos`, except possibly for `p`. `p`
+  ## is the index of a leaf with a possibly out-of-order value. Restores the
   ## heap invariant.
   var pos = p
-  var newitem = heap[pos]
+  let newitem = heap[pos]
   # Follow the path to the root, moving parents down until finding a place
   # newitem fits.
   while pos > startpos:
@@ -88,13 +103,14 @@ proc siftdown[T](heap: var HeapQueue[T], startpos, p: int) =
       break
   heap.data[pos] = newitem
 
-proc siftup[T](heap: var HeapQueue[T], p: int) =
+proc siftdownToBottom[T](heap: var HeapQueue[T], p: int) =
+  # This is faster when the element should be close to the bottom.
   let endpos = len(heap)
   var pos = p
   let startpos = pos
   let newitem = heap[pos]
   # Bubble up the smaller child until hitting a leaf.
-  var childpos = 2*pos + 1 # leftmost child position
+  var childpos = 2 * pos + 1 # leftmost child position
   while childpos < endpos:
     # Set childpos to index of smaller child.
     let rightpos = childpos + 1
@@ -103,132 +119,148 @@ proc siftup[T](heap: var HeapQueue[T], p: int) =
     # Move the smaller child up.
     heap.data[pos] = heap[childpos]
     pos = childpos
-    childpos = 2*pos + 1
-  # The leaf at pos is empty now.  Put newitem there, and bubble it up
+    childpos = 2 * pos + 1
+  # The leaf at pos is empty now. Put newitem there, and bubble it up
   # to its final resting place (by sifting its parents down).
   heap.data[pos] = newitem
-  siftdown(heap, startpos, pos)
+  siftup(heap, startpos, pos)
+
+proc siftdown[T](heap: var HeapQueue[T], p: int) =
+  let endpos = len(heap)
+  var pos = p
+  let newitem = heap[pos]
+  var childpos = 2 * pos + 1
+  while childpos < endpos:
+    let rightpos = childpos + 1
+    if rightpos < endpos and not heapCmp(heap[childpos], heap[rightpos]):
+      childpos = rightpos
+    if not heapCmp(heap[childpos], newitem):
+      break
+    heap.data[pos] = heap[childpos]
+    pos = childpos
+    childpos = 2 * pos + 1
+  heap.data[pos] = newitem
 
-proc push*[T](heap: var HeapQueue[T], item: T) =
-  ## Push `item` onto heap, maintaining the heap invariant.
+proc push*[T](heap: var HeapQueue[T], item: sink T) =
+  ## Pushes `item` onto `heap`, maintaining the heap invariant.
   heap.data.add(item)
-  siftdown(heap, 0, len(heap)-1)
+  siftup(heap, 0, len(heap) - 1)
+
+proc toHeapQueue*[T](x: openArray[T]): HeapQueue[T] {.since: (1, 3).} =
+  ## Creates a new HeapQueue that contains the elements of `x`.
+  ##
+  ## **See also:**
+  ## * `initHeapQueue proc <#initHeapQueue>`_
+  runnableExamples:
+    var heap = [9, 5, 8].toHeapQueue
+    assert heap.pop() == 5
+    assert heap[0] == 8
+
+  # see https://en.wikipedia.org/wiki/Binary_heap#Building_a_heap
+  result.data = @x
+  for i in countdown(x.len div 2 - 1, 0):
+    siftdown(result, i)
 
 proc pop*[T](heap: var HeapQueue[T]): T =
-  ## Pop and return the smallest item from `heap`,
+  ## Pops and returns the smallest item from `heap`,
   ## maintaining the heap invariant.
+  runnableExamples:
+    var heap = [9, 5, 8].toHeapQueue
+    assert heap.pop() == 5
+
   let lastelt = heap.data.pop()
   if heap.len > 0:
     result = heap[0]
     heap.data[0] = lastelt
-    siftup(heap, 0)
+    siftdownToBottom(heap, 0)
   else:
     result = lastelt
 
+proc find*[T](heap: HeapQueue[T], x: T): int {.since: (1, 3).} =
+  ## Linear scan to find the index of the item `x` or -1 if not found.
+  runnableExamples:
+    let heap = [9, 5, 8].toHeapQueue
+    assert heap.find(5) == 0
+    assert heap.find(9) == 1
+    assert heap.find(777) == -1
+
+  result = -1
+  for i in 0 ..< heap.len:
+    if heap[i] == x: return i
+
+proc contains*[T](heap: HeapQueue[T], x: T): bool {.since: (2, 1, 1).} =
+  ## Returns true if `x` is in `heap` or false if not found. This is a shortcut
+  ## for `find(heap, x) >= 0`.
+  result = find(heap, x) >= 0
+
 proc del*[T](heap: var HeapQueue[T], index: Natural) =
   ## Removes the element at `index` from `heap`, maintaining the heap invariant.
+  runnableExamples:
+    var heap = [9, 5, 8].toHeapQueue
+    heap.del(1)
+    assert heap[0] == 5
+    assert heap[1] == 8
+
   swap(heap.data[^1], heap.data[index])
   let newLen = heap.len - 1
   heap.data.setLen(newLen)
   if index < newLen:
-    heap.siftup(index)
+    siftdownToBottom(heap, index)
 
-proc replace*[T](heap: var HeapQueue[T], item: T): T =
-  ## Pop and return the current smallest value, and add the new item.
-  ## This is more efficient than pop() followed by push(), and can be
+proc replace*[T](heap: var HeapQueue[T], item: sink T): T =
+  ## Pops and returns the current smallest value, and add the new item.
+  ## This is more efficient than `pop()` followed by `push()`, and can be
   ## more appropriate when using a fixed-size heap. Note that the value
-  ## returned may be larger than item! That constrains reasonable uses of
-  ## this routine unless written as part of a conditional replacement:
+  ## returned may be larger than `item`! That constrains reasonable uses of
+  ## this routine unless written as part of a conditional replacement.
   ##
-  ## .. code-block:: nim
-  ##    if item > heap[0]:
-  ##        item = replace(heap, item)
+  ## **See also:**
+  ## * `pushpop proc <#pushpop,HeapQueue[T],sinkT>`_
+  runnableExamples:
+    var heap = [5, 12].toHeapQueue
+    assert heap.replace(6) == 5
+    assert heap.len == 2
+    assert heap[0] == 6
+    assert heap.replace(4) == 6
+
   result = heap[0]
   heap.data[0] = item
-  siftup(heap, 0)
+  siftdown(heap, 0)
 
-proc pushpop*[T](heap: var HeapQueue[T], item: T): T =
-  ## Fast version of a push followed by a pop.
-  if heap.len > 0 and heapCmp(heap[0], item):
-    swap(item, heap[0])
-    siftup(heap, 0)
-  return item
+proc pushpop*[T](heap: var HeapQueue[T], item: sink T): T =
+  ## Fast version of a `push()` followed by a `pop()`.
+  ##
+  ## **See also:**
+  ## * `replace proc <#replace,HeapQueue[T],sinkT>`_
+  runnableExamples:
+    var heap = [5, 12].toHeapQueue
+    assert heap.pushpop(6) == 5
+    assert heap.len == 2
+    assert heap[0] == 6
+    assert heap.pushpop(4) == 4
+
+  result = item
+  if heap.len > 0 and heapCmp(heap.data[0], result):
+    swap(result, heap.data[0])
+    siftdown(heap, 0)
 
 proc clear*[T](heap: var HeapQueue[T]) =
-  ## Remove all elements from `heap`, making it empty.
+  ## Removes all elements from `heap`, making it empty.
   runnableExamples:
-    var heap = initHeapQueue[int]()
-    heap.push(1)
+    var heap = [9, 5, 8].toHeapQueue
     heap.clear()
     assert heap.len == 0
+
   heap.data.setLen(0)
 
 proc `$`*[T](heap: HeapQueue[T]): string =
-  ## Turn a heap into its string representation.
+  ## Turns a heap into its string representation.
   runnableExamples:
-    var heap = initHeapQueue[int]()
-    heap.push(1)
-    heap.push(2)
+    let heap = [1, 2].toHeapQueue
     assert $heap == "[1, 2]"
+
   result = "["
   for x in heap.data:
     if result.len > 1: result.add(", ")
     result.addQuoted(x)
   result.add("]")
-
-proc newHeapQueue*[T](): HeapQueue[T] {.deprecated:
-  "Deprecated since v0.20.0: use 'initHeapQueue' instead.".} =
-  initHeapQueue[T]()
-
-proc newHeapQueue*[T](heap: var HeapQueue[T]) {.deprecated:
-  "Deprecated since v0.20.0: use 'clear' instead.".} =
-  heap.clear()
-
-when isMainModule:
-  proc toSortedSeq[T](h: HeapQueue[T]): seq[T] =
-    var tmp = h
-    result = @[]
-    while tmp.len > 0:
-      result.add(pop(tmp))
-
-  block: # Simple sanity test
-    var heap = initHeapQueue[int]()
-    let data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
-    for item in data:
-      push(heap, item)
-    doAssert(heap[0] == 0)
-    doAssert(heap.toSortedSeq == @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
-
-  block: # Test del
-    var heap = initHeapQueue[int]()
-    let data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
-    for item in data: push(heap, item)
-
-    heap.del(0)
-    doAssert(heap[0] == 1)
-
-    heap.del(heap.data.find(7))
-    doAssert(heap.toSortedSeq == @[1, 2, 3, 4, 5, 6, 8, 9])
-
-    heap.del(heap.data.find(5))
-    doAssert(heap.toSortedSeq == @[1, 2, 3, 4, 6, 8, 9])
-
-    heap.del(heap.data.find(6))
-    doAssert(heap.toSortedSeq == @[1, 2, 3, 4, 8, 9])
-
-    heap.del(heap.data.find(2))
-    doAssert(heap.toSortedSeq == @[1, 3, 4, 8, 9])
-
-  block: # Test del last
-    var heap = initHeapQueue[int]()
-    let data = [1, 2, 3]
-    for item in data: push(heap, item)
-
-    heap.del(2)
-    doAssert(heap.toSortedSeq == @[1, 2])
-
-    heap.del(1)
-    doAssert(heap.toSortedSeq == @[1])
-
-    heap.del(0)
-    doAssert(heap.toSortedSeq == @[])