summary refs log tree commit diff stats
path: root/lib/pure/collections/heapqueue.nim
diff options
context:
space:
mode:
Diffstat (limited to 'lib/pure/collections/heapqueue.nim')
-rw-r--r--lib/pure/collections/heapqueue.nim266
1 files changed, 266 insertions, 0 deletions
diff --git a/lib/pure/collections/heapqueue.nim b/lib/pure/collections/heapqueue.nim
new file mode 100644
index 000000000..96f9b4430
--- /dev/null
+++ b/lib/pure/collections/heapqueue.nim
@@ -0,0 +1,266 @@
+#
+#
+#            Nim's Runtime Library
+#        (c) Copyright 2016 Yuriy Glukhov
+#
+#    See the file "copying.txt", included in this
+#    distribution, for details about the copyright.
+
+
+## The `heapqueue` module implements a
+## `binary heap data structure<https://en.wikipedia.org/wiki/Binary_heap>`_
+## that can be used as a `priority queue<https://en.wikipedia.org/wiki/Priority_queue>`_.
+## They are represented as arrays for which `a[k] <= a[2*k+1]` and `a[k] <= a[2*k+2]`
+## for all indices `k` (counting elements from 0). The interesting property of a heap is that
+## `a[0]` is always its smallest element.
+##
+## Basic usage
+## -----------
+##
+runnableExamples:
+  var heap = [8, 2].toHeapQueue
+  heap.push(5)
+  # the first element is the lowest element
+  assert heap[0] == 2
+  # remove and return the lowest element
+  assert heap.pop() == 2
+  # the lowest element remaining is 5
+  assert heap[0] == 5
+
+## Usage with custom objects
+## -------------------------
+## To use a `HeapQueue` with a custom object, the `<` operator must be
+## implemented.
+
+runnableExamples:
+  type Job = object
+    priority: int
+
+  proc `<`(a, b: Job): bool = a.priority < b.priority
+
+  var jobs = initHeapQueue[Job]()
+  jobs.push(Job(priority: 1))
+  jobs.push(Job(priority: 2))
+
+  assert jobs[0].priority == 1
+
+
+import std/private/since
+
+when defined(nimPreviewSlimSystem):
+  import std/assertions
+
+type HeapQueue*[T] = object
+  ## A heap queue, commonly known as a priority queue.
+  data: seq[T]
+
+proc initHeapQueue*[T](): HeapQueue[T] =
+  ## Creates a new empty heap.
+  ##
+  ## Heaps are initialized by default, so it is not necessary to call
+  ## this function explicitly.
+  ##
+  ## **See also:**
+  ## * `toHeapQueue proc <#toHeapQueue,openArray[T]>`_
+  result = default(HeapQueue[T])
+
+proc len*[T](heap: HeapQueue[T]): int {.inline.} =
+  ## Returns the number of elements of `heap`.
+  runnableExamples:
+    let heap = [9, 5, 8].toHeapQueue
+    assert heap.len == 3
+
+  heap.data.len
+
+proc `[]`*[T](heap: HeapQueue[T], i: Natural): lent T {.inline.} =
+  ## Accesses the i-th element of `heap`.
+  heap.data[i]
+
+iterator items*[T](heap: HeapQueue[T]): lent T {.inline, since: (2, 1, 1).} =
+  ## Iterates over each item of `heap`.
+  let L = len(heap)
+  for i in 0 .. high(heap.data):
+    yield heap.data[i]
+    assert(len(heap) == L, "the length of the HeapQueue changed while iterating over it")
+
+proc heapCmp[T](x, y: T): bool {.inline.} = x < y
+
+proc siftup[T](heap: var HeapQueue[T], startpos, p: int) =
+  ## `heap` is a heap at all indices >= `startpos`, except possibly for `p`. `p`
+  ## is the index of a leaf with a possibly out-of-order value. Restores the
+  ## heap invariant.
+  var pos = p
+  let newitem = heap[pos]
+  # Follow the path to the root, moving parents down until finding a place
+  # newitem fits.
+  while pos > startpos:
+    let parentpos = (pos - 1) shr 1
+    let parent = heap[parentpos]
+    if heapCmp(newitem, parent):
+      heap.data[pos] = parent
+      pos = parentpos
+    else:
+      break
+  heap.data[pos] = newitem
+
+proc siftdownToBottom[T](heap: var HeapQueue[T], p: int) =
+  # This is faster when the element should be close to the bottom.
+  let endpos = len(heap)
+  var pos = p
+  let startpos = pos
+  let newitem = heap[pos]
+  # Bubble up the smaller child until hitting a leaf.
+  var childpos = 2 * pos + 1 # leftmost child position
+  while childpos < endpos:
+    # Set childpos to index of smaller child.
+    let rightpos = childpos + 1
+    if rightpos < endpos and not heapCmp(heap[childpos], heap[rightpos]):
+      childpos = rightpos
+    # Move the smaller child up.
+    heap.data[pos] = heap[childpos]
+    pos = childpos
+    childpos = 2 * pos + 1
+  # The leaf at pos is empty now. Put newitem there, and bubble it up
+  # to its final resting place (by sifting its parents down).
+  heap.data[pos] = newitem
+  siftup(heap, startpos, pos)
+
+proc siftdown[T](heap: var HeapQueue[T], p: int) =
+  let endpos = len(heap)
+  var pos = p
+  let newitem = heap[pos]
+  var childpos = 2 * pos + 1
+  while childpos < endpos:
+    let rightpos = childpos + 1
+    if rightpos < endpos and not heapCmp(heap[childpos], heap[rightpos]):
+      childpos = rightpos
+    if not heapCmp(heap[childpos], newitem):
+      break
+    heap.data[pos] = heap[childpos]
+    pos = childpos
+    childpos = 2 * pos + 1
+  heap.data[pos] = newitem
+
+proc push*[T](heap: var HeapQueue[T], item: sink T) =
+  ## Pushes `item` onto `heap`, maintaining the heap invariant.
+  heap.data.add(item)
+  siftup(heap, 0, len(heap) - 1)
+
+proc toHeapQueue*[T](x: openArray[T]): HeapQueue[T] {.since: (1, 3).} =
+  ## Creates a new HeapQueue that contains the elements of `x`.
+  ##
+  ## **See also:**
+  ## * `initHeapQueue proc <#initHeapQueue>`_
+  runnableExamples:
+    var heap = [9, 5, 8].toHeapQueue
+    assert heap.pop() == 5
+    assert heap[0] == 8
+
+  # see https://en.wikipedia.org/wiki/Binary_heap#Building_a_heap
+  result.data = @x
+  for i in countdown(x.len div 2 - 1, 0):
+    siftdown(result, i)
+
+proc pop*[T](heap: var HeapQueue[T]): T =
+  ## Pops and returns the smallest item from `heap`,
+  ## maintaining the heap invariant.
+  runnableExamples:
+    var heap = [9, 5, 8].toHeapQueue
+    assert heap.pop() == 5
+
+  let lastelt = heap.data.pop()
+  if heap.len > 0:
+    result = heap[0]
+    heap.data[0] = lastelt
+    siftdownToBottom(heap, 0)
+  else:
+    result = lastelt
+
+proc find*[T](heap: HeapQueue[T], x: T): int {.since: (1, 3).} =
+  ## Linear scan to find the index of the item `x` or -1 if not found.
+  runnableExamples:
+    let heap = [9, 5, 8].toHeapQueue
+    assert heap.find(5) == 0
+    assert heap.find(9) == 1
+    assert heap.find(777) == -1
+
+  result = -1
+  for i in 0 ..< heap.len:
+    if heap[i] == x: return i
+
+proc contains*[T](heap: HeapQueue[T], x: T): bool {.since: (2, 1, 1).} =
+  ## Returns true if `x` is in `heap` or false if not found. This is a shortcut
+  ## for `find(heap, x) >= 0`.
+  result = find(heap, x) >= 0
+
+proc del*[T](heap: var HeapQueue[T], index: Natural) =
+  ## Removes the element at `index` from `heap`, maintaining the heap invariant.
+  runnableExamples:
+    var heap = [9, 5, 8].toHeapQueue
+    heap.del(1)
+    assert heap[0] == 5
+    assert heap[1] == 8
+
+  swap(heap.data[^1], heap.data[index])
+  let newLen = heap.len - 1
+  heap.data.setLen(newLen)
+  if index < newLen:
+    siftdownToBottom(heap, index)
+
+proc replace*[T](heap: var HeapQueue[T], item: sink T): T =
+  ## Pops and returns the current smallest value, and add the new item.
+  ## This is more efficient than `pop()` followed by `push()`, and can be
+  ## more appropriate when using a fixed-size heap. Note that the value
+  ## returned may be larger than `item`! That constrains reasonable uses of
+  ## this routine unless written as part of a conditional replacement.
+  ##
+  ## **See also:**
+  ## * `pushpop proc <#pushpop,HeapQueue[T],sinkT>`_
+  runnableExamples:
+    var heap = [5, 12].toHeapQueue
+    assert heap.replace(6) == 5
+    assert heap.len == 2
+    assert heap[0] == 6
+    assert heap.replace(4) == 6
+
+  result = heap[0]
+  heap.data[0] = item
+  siftdown(heap, 0)
+
+proc pushpop*[T](heap: var HeapQueue[T], item: sink T): T =
+  ## Fast version of a `push()` followed by a `pop()`.
+  ##
+  ## **See also:**
+  ## * `replace proc <#replace,HeapQueue[T],sinkT>`_
+  runnableExamples:
+    var heap = [5, 12].toHeapQueue
+    assert heap.pushpop(6) == 5
+    assert heap.len == 2
+    assert heap[0] == 6
+    assert heap.pushpop(4) == 4
+
+  result = item
+  if heap.len > 0 and heapCmp(heap.data[0], result):
+    swap(result, heap.data[0])
+    siftdown(heap, 0)
+
+proc clear*[T](heap: var HeapQueue[T]) =
+  ## Removes all elements from `heap`, making it empty.
+  runnableExamples:
+    var heap = [9, 5, 8].toHeapQueue
+    heap.clear()
+    assert heap.len == 0
+
+  heap.data.setLen(0)
+
+proc `$`*[T](heap: HeapQueue[T]): string =
+  ## Turns a heap into its string representation.
+  runnableExamples:
+    let heap = [1, 2].toHeapQueue
+    assert $heap == "[1, 2]"
+
+  result = "["
+  for x in heap.data:
+    if result.len > 1: result.add(", ")
+    result.addQuoted(x)
+  result.add("]")