diff options
Diffstat (limited to 'lib/pure/collections/heapqueue.nim')
-rw-r--r-- | lib/pure/collections/heapqueue.nim | 266 |
1 files changed, 266 insertions, 0 deletions
diff --git a/lib/pure/collections/heapqueue.nim b/lib/pure/collections/heapqueue.nim new file mode 100644 index 000000000..96f9b4430 --- /dev/null +++ b/lib/pure/collections/heapqueue.nim @@ -0,0 +1,266 @@ +# +# +# Nim's Runtime Library +# (c) Copyright 2016 Yuriy Glukhov +# +# See the file "copying.txt", included in this +# distribution, for details about the copyright. + + +## The `heapqueue` module implements a +## `binary heap data structure<https://en.wikipedia.org/wiki/Binary_heap>`_ +## that can be used as a `priority queue<https://en.wikipedia.org/wiki/Priority_queue>`_. +## They are represented as arrays for which `a[k] <= a[2*k+1]` and `a[k] <= a[2*k+2]` +## for all indices `k` (counting elements from 0). The interesting property of a heap is that +## `a[0]` is always its smallest element. +## +## Basic usage +## ----------- +## +runnableExamples: + var heap = [8, 2].toHeapQueue + heap.push(5) + # the first element is the lowest element + assert heap[0] == 2 + # remove and return the lowest element + assert heap.pop() == 2 + # the lowest element remaining is 5 + assert heap[0] == 5 + +## Usage with custom objects +## ------------------------- +## To use a `HeapQueue` with a custom object, the `<` operator must be +## implemented. + +runnableExamples: + type Job = object + priority: int + + proc `<`(a, b: Job): bool = a.priority < b.priority + + var jobs = initHeapQueue[Job]() + jobs.push(Job(priority: 1)) + jobs.push(Job(priority: 2)) + + assert jobs[0].priority == 1 + + +import std/private/since + +when defined(nimPreviewSlimSystem): + import std/assertions + +type HeapQueue*[T] = object + ## A heap queue, commonly known as a priority queue. + data: seq[T] + +proc initHeapQueue*[T](): HeapQueue[T] = + ## Creates a new empty heap. + ## + ## Heaps are initialized by default, so it is not necessary to call + ## this function explicitly. + ## + ## **See also:** + ## * `toHeapQueue proc <#toHeapQueue,openArray[T]>`_ + result = default(HeapQueue[T]) + +proc len*[T](heap: HeapQueue[T]): int {.inline.} = + ## Returns the number of elements of `heap`. + runnableExamples: + let heap = [9, 5, 8].toHeapQueue + assert heap.len == 3 + + heap.data.len + +proc `[]`*[T](heap: HeapQueue[T], i: Natural): lent T {.inline.} = + ## Accesses the i-th element of `heap`. + heap.data[i] + +iterator items*[T](heap: HeapQueue[T]): lent T {.inline, since: (2, 1, 1).} = + ## Iterates over each item of `heap`. + let L = len(heap) + for i in 0 .. high(heap.data): + yield heap.data[i] + assert(len(heap) == L, "the length of the HeapQueue changed while iterating over it") + +proc heapCmp[T](x, y: T): bool {.inline.} = x < y + +proc siftup[T](heap: var HeapQueue[T], startpos, p: int) = + ## `heap` is a heap at all indices >= `startpos`, except possibly for `p`. `p` + ## is the index of a leaf with a possibly out-of-order value. Restores the + ## heap invariant. + var pos = p + let newitem = heap[pos] + # Follow the path to the root, moving parents down until finding a place + # newitem fits. + while pos > startpos: + let parentpos = (pos - 1) shr 1 + let parent = heap[parentpos] + if heapCmp(newitem, parent): + heap.data[pos] = parent + pos = parentpos + else: + break + heap.data[pos] = newitem + +proc siftdownToBottom[T](heap: var HeapQueue[T], p: int) = + # This is faster when the element should be close to the bottom. + let endpos = len(heap) + var pos = p + let startpos = pos + let newitem = heap[pos] + # Bubble up the smaller child until hitting a leaf. + var childpos = 2 * pos + 1 # leftmost child position + while childpos < endpos: + # Set childpos to index of smaller child. + let rightpos = childpos + 1 + if rightpos < endpos and not heapCmp(heap[childpos], heap[rightpos]): + childpos = rightpos + # Move the smaller child up. + heap.data[pos] = heap[childpos] + pos = childpos + childpos = 2 * pos + 1 + # The leaf at pos is empty now. Put newitem there, and bubble it up + # to its final resting place (by sifting its parents down). + heap.data[pos] = newitem + siftup(heap, startpos, pos) + +proc siftdown[T](heap: var HeapQueue[T], p: int) = + let endpos = len(heap) + var pos = p + let newitem = heap[pos] + var childpos = 2 * pos + 1 + while childpos < endpos: + let rightpos = childpos + 1 + if rightpos < endpos and not heapCmp(heap[childpos], heap[rightpos]): + childpos = rightpos + if not heapCmp(heap[childpos], newitem): + break + heap.data[pos] = heap[childpos] + pos = childpos + childpos = 2 * pos + 1 + heap.data[pos] = newitem + +proc push*[T](heap: var HeapQueue[T], item: sink T) = + ## Pushes `item` onto `heap`, maintaining the heap invariant. + heap.data.add(item) + siftup(heap, 0, len(heap) - 1) + +proc toHeapQueue*[T](x: openArray[T]): HeapQueue[T] {.since: (1, 3).} = + ## Creates a new HeapQueue that contains the elements of `x`. + ## + ## **See also:** + ## * `initHeapQueue proc <#initHeapQueue>`_ + runnableExamples: + var heap = [9, 5, 8].toHeapQueue + assert heap.pop() == 5 + assert heap[0] == 8 + + # see https://en.wikipedia.org/wiki/Binary_heap#Building_a_heap + result.data = @x + for i in countdown(x.len div 2 - 1, 0): + siftdown(result, i) + +proc pop*[T](heap: var HeapQueue[T]): T = + ## Pops and returns the smallest item from `heap`, + ## maintaining the heap invariant. + runnableExamples: + var heap = [9, 5, 8].toHeapQueue + assert heap.pop() == 5 + + let lastelt = heap.data.pop() + if heap.len > 0: + result = heap[0] + heap.data[0] = lastelt + siftdownToBottom(heap, 0) + else: + result = lastelt + +proc find*[T](heap: HeapQueue[T], x: T): int {.since: (1, 3).} = + ## Linear scan to find the index of the item `x` or -1 if not found. + runnableExamples: + let heap = [9, 5, 8].toHeapQueue + assert heap.find(5) == 0 + assert heap.find(9) == 1 + assert heap.find(777) == -1 + + result = -1 + for i in 0 ..< heap.len: + if heap[i] == x: return i + +proc contains*[T](heap: HeapQueue[T], x: T): bool {.since: (2, 1, 1).} = + ## Returns true if `x` is in `heap` or false if not found. This is a shortcut + ## for `find(heap, x) >= 0`. + result = find(heap, x) >= 0 + +proc del*[T](heap: var HeapQueue[T], index: Natural) = + ## Removes the element at `index` from `heap`, maintaining the heap invariant. + runnableExamples: + var heap = [9, 5, 8].toHeapQueue + heap.del(1) + assert heap[0] == 5 + assert heap[1] == 8 + + swap(heap.data[^1], heap.data[index]) + let newLen = heap.len - 1 + heap.data.setLen(newLen) + if index < newLen: + siftdownToBottom(heap, index) + +proc replace*[T](heap: var HeapQueue[T], item: sink T): T = + ## Pops and returns the current smallest value, and add the new item. + ## This is more efficient than `pop()` followed by `push()`, and can be + ## more appropriate when using a fixed-size heap. Note that the value + ## returned may be larger than `item`! That constrains reasonable uses of + ## this routine unless written as part of a conditional replacement. + ## + ## **See also:** + ## * `pushpop proc <#pushpop,HeapQueue[T],sinkT>`_ + runnableExamples: + var heap = [5, 12].toHeapQueue + assert heap.replace(6) == 5 + assert heap.len == 2 + assert heap[0] == 6 + assert heap.replace(4) == 6 + + result = heap[0] + heap.data[0] = item + siftdown(heap, 0) + +proc pushpop*[T](heap: var HeapQueue[T], item: sink T): T = + ## Fast version of a `push()` followed by a `pop()`. + ## + ## **See also:** + ## * `replace proc <#replace,HeapQueue[T],sinkT>`_ + runnableExamples: + var heap = [5, 12].toHeapQueue + assert heap.pushpop(6) == 5 + assert heap.len == 2 + assert heap[0] == 6 + assert heap.pushpop(4) == 4 + + result = item + if heap.len > 0 and heapCmp(heap.data[0], result): + swap(result, heap.data[0]) + siftdown(heap, 0) + +proc clear*[T](heap: var HeapQueue[T]) = + ## Removes all elements from `heap`, making it empty. + runnableExamples: + var heap = [9, 5, 8].toHeapQueue + heap.clear() + assert heap.len == 0 + + heap.data.setLen(0) + +proc `$`*[T](heap: HeapQueue[T]): string = + ## Turns a heap into its string representation. + runnableExamples: + let heap = [1, 2].toHeapQueue + assert $heap == "[1, 2]" + + result = "[" + for x in heap.data: + if result.len > 1: result.add(", ") + result.addQuoted(x) + result.add("]") |