summary refs log tree commit diff stats
path: root/lib/pure/collections/queues.nim
diff options
context:
space:
mode:
Diffstat (limited to 'lib/pure/collections/queues.nim')
-rw-r--r--lib/pure/collections/queues.nim257
1 files changed, 0 insertions, 257 deletions
diff --git a/lib/pure/collections/queues.nim b/lib/pure/collections/queues.nim
deleted file mode 100644
index 9a1d169fb..000000000
--- a/lib/pure/collections/queues.nim
+++ /dev/null
@@ -1,257 +0,0 @@
-#
-#
-#            Nim's Runtime Library
-#        (c) Copyright 2012 Andreas Rumpf
-#
-#    See the file "copying.txt", included in this
-#    distribution, for details about the copyright.
-#
-
-## Implementation of a `queue`:idx:. The underlying implementation uses a ``seq``.
-##
-## None of the procs that get an individual value from the queue can be used
-## on an empty queue.
-## If compiled with `boundChecks` option, those procs will raise an `IndexError`
-## on such access. This should not be relied upon, as `-d:release` will
-## disable those checks and may return garbage or crash the program.
-##
-## As such, a check to see if the queue is empty is needed before any
-## access, unless your program logic guarantees it indirectly.
-##
-## .. code-block:: Nim
-##   proc foo(a, b: Positive) =  # assume random positive values for `a` and `b`
-##     var q = initQueue[int]()  # initializes the object
-##     for i in 1 ..< a: q.add i  # populates the queue
-##
-##     if b < q.len:  # checking before indexed access
-##       echo "The element at index position ", b, " is ", q[b]
-##
-##     # The following two lines don't need any checking on access due to the
-##     # logic of the program, but that would not be the case if `a` could be 0.
-##     assert q.front == 1
-##     assert q.back == a
-##
-##     while q.len > 0:  # checking if the queue is empty
-##       echo q.pop()
-##
-## Note: For inter thread communication use
-## a `Channel <channels.html>`_ instead.
-
-import math
-
-{.warning: "`queues` module is deprecated - use `deques` instead".}
-
-type
-  Queue* {.deprecated.} [T] = object ## A queue.
-    data: seq[T]
-    rd, wr, count, mask: int
-
-proc initQueue*[T](initialSize: int = 4): Queue[T] =
-  ## Create a new queue.
-  ## Optionally, the initial capacity can be reserved via `initialSize` as a
-  ## performance optimization. The length of a newly created queue will still
-  ## be 0.
-  ##
-  ## `initialSize` needs to be a power of two. If you need to accept runtime
-  ## values for this you could use the ``nextPowerOfTwo`` proc from the
-  ## `math <math.html>`_ module.
-  assert isPowerOfTwo(initialSize)
-  result.mask = initialSize-1
-  newSeq(result.data, initialSize)
-
-proc len*[T](q: Queue[T]): int {.inline.}=
-  ## Return the number of elements of `q`.
-  result = q.count
-
-template emptyCheck(q) =
-  # Bounds check for the regular queue access.
-  when compileOption("boundChecks"):
-    if unlikely(q.count < 1):
-      raise newException(IndexError, "Empty queue.")
-
-template xBoundsCheck(q, i) =
-  # Bounds check for the array like accesses.
-  when compileOption("boundChecks"):  # d:release should disable this.
-    if unlikely(i >= q.count):  # x < q.low is taken care by the Natural parameter
-      raise newException(IndexError,
-                         "Out of bounds: " & $i & " > " & $(q.count - 1))
-
-proc front*[T](q: Queue[T]): T {.inline.}=
-  ## Return the oldest element of `q`. Equivalent to `q.pop()` but does not
-  ## remove it from the queue.
-  emptyCheck(q)
-  result = q.data[q.rd]
-
-proc back*[T](q: Queue[T]): T {.inline.} =
-  ## Return the newest element of `q` but does not remove it from the queue.
-  emptyCheck(q)
-  result = q.data[q.wr - 1 and q.mask]
-
-proc `[]`*[T](q: Queue[T], i: Natural) : T {.inline.} =
-  ## Access the i-th element of `q` by order of insertion.
-  ## q[0] is the oldest (the next one q.pop() will extract),
-  ## q[^1] is the newest (last one added to the queue).
-  xBoundsCheck(q, i)
-  return q.data[q.rd + i and q.mask]
-
-proc `[]`*[T](q: var Queue[T], i: Natural): var T {.inline.} =
-  ## Access the i-th element of `q` and returns a mutable
-  ## reference to it.
-  xBoundsCheck(q, i)
-  return q.data[q.rd + i and q.mask]
-
-proc `[]=`* [T] (q: var Queue[T], i: Natural, val : T) {.inline.} =
-  ## Change the i-th element of `q`.
-  xBoundsCheck(q, i)
-  q.data[q.rd + i and q.mask] = val
-
-iterator items*[T](q: Queue[T]): T =
-  ## Yield every element of `q`.
-  var i = q.rd
-  for c in 0 ..< q.count:
-    yield q.data[i]
-    i = (i + 1) and q.mask
-
-iterator mitems*[T](q: var Queue[T]): var T =
-  ## Yield every element of `q`.
-  var i = q.rd
-  for c in 0 ..< q.count:
-    yield q.data[i]
-    i = (i + 1) and q.mask
-
-iterator pairs*[T](q: Queue[T]): tuple[key: int, val: T] =
-  ## Yield every (position, value) of `q`.
-  var i = q.rd
-  for c in 0 ..< q.count:
-    yield (c, q.data[i])
-    i = (i + 1) and q.mask
-
-proc contains*[T](q: Queue[T], item: T): bool {.inline.} =
-  ## Return true if `item` is in `q` or false if not found. Usually used
-  ## via the ``in`` operator. It is the equivalent of ``q.find(item) >= 0``.
-  ##
-  ## .. code-block:: Nim
-  ##   if x in q:
-  ##     assert q.contains x
-  for e in q:
-    if e == item: return true
-  return false
-
-proc add*[T](q: var Queue[T], item: T) =
-  ## Add an `item` to the end of the queue `q`.
-  var cap = q.mask+1
-  if unlikely(q.count >= cap):
-    var n = newSeq[T](cap*2)
-    for i, x in pairs(q):  # don't use copyMem because the GC and because it's slower.
-      shallowCopy(n[i], x)
-    shallowCopy(q.data, n)
-    q.mask = cap*2 - 1
-    q.wr = q.count
-    q.rd = 0
-  inc q.count
-  q.data[q.wr] = item
-  q.wr = (q.wr + 1) and q.mask
-
-template default[T](t: typedesc[T]): T =
-  var v: T
-  v
-
-proc pop*[T](q: var Queue[T]): T {.inline, discardable.} =
-  ## Remove and returns the first (oldest) element of the queue `q`.
-  emptyCheck(q)
-  dec q.count
-  result = q.data[q.rd]
-  q.data[q.rd] = default(type(result))
-  q.rd = (q.rd + 1) and q.mask
-
-proc enqueue*[T](q: var Queue[T], item: T) =
-  ## Alias for the ``add`` operation.
-  q.add(item)
-
-proc dequeue*[T](q: var Queue[T]): T =
-  ## Alias for the ``pop`` operation.
-  q.pop()
-
-proc `$`*[T](q: Queue[T]): string =
-  ## Turn a queue into its string representation.
-  result = "["
-  for x in items(q):  # Don't remove the items here for reasons that don't fit in this margin.
-    if result.len > 1: result.add(", ")
-    result.add($x)
-  result.add("]")
-
-when isMainModule:
-  var q = initQueue[int](1)
-  q.add(123)
-  q.add(9)
-  q.enqueue(4)
-  var first = q.dequeue()
-  q.add(56)
-  q.add(6)
-  var second = q.pop()
-  q.add(789)
-
-  assert first == 123
-  assert second == 9
-  assert($q == "[4, 56, 6, 789]")
-
-  assert q[0] == q.front and q.front == 4
-  q[0] = 42
-  q[q.len - 1] = 7
-
-  assert 6 in q and 789 notin q
-  assert q.find(6) >= 0
-  assert q.find(789) < 0
-
-  for i in -2 .. 10:
-    if i in q:
-      assert q.contains(i) and q.find(i) >= 0
-    else:
-      assert(not q.contains(i) and q.find(i) < 0)
-
-  when compileOption("boundChecks"):
-    try:
-      echo q[99]
-      assert false
-    except IndexError:
-      discard
-
-    try:
-      assert q.len == 4
-      for i in 0 ..< 5: q.pop()
-      assert false
-    except IndexError:
-      discard
-
-  # grabs some types of resize error.
-  q = initQueue[int]()
-  for i in 1 .. 4: q.add i
-  q.pop()
-  q.pop()
-  for i in 5 .. 8: q.add i
-  assert $q == "[3, 4, 5, 6, 7, 8]"
-
-  # Similar to proc from the documentation example
-  proc foo(a, b: Positive) = # assume random positive values for `a` and `b`.
-    var q = initQueue[int]()
-    assert q.len == 0
-    for i in 1 .. a: q.add i
-
-    if b < q.len: # checking before indexed access.
-      assert q[b] == b + 1
-
-    # The following two lines don't need any checking on access due to the logic
-    # of the program, but that would not be the case if `a` could be 0.
-    assert q.front == 1
-    assert q.back == a
-
-    while q.len > 0: # checking if the queue is empty
-      assert q.pop() > 0
-
-  #foo(0,0)
-  foo(8,5)
-  foo(10,9)
-  foo(1,1)
-  foo(2,1)
-  foo(1,5)
-  foo(3,2)