summary refs log tree commit diff stats
path: root/lib/pure/collections/sequtils.nim
diff options
context:
space:
mode:
Diffstat (limited to 'lib/pure/collections/sequtils.nim')
-rw-r--r--lib/pure/collections/sequtils.nim541
1 files changed, 318 insertions, 223 deletions
diff --git a/lib/pure/collections/sequtils.nim b/lib/pure/collections/sequtils.nim
index f101d508e..3c0d8dc0e 100644
--- a/lib/pure/collections/sequtils.nim
+++ b/lib/pure/collections/sequtils.nim
@@ -7,19 +7,19 @@
 #    distribution, for details about the copyright.
 #
 
-## Although this module has ``seq`` in its name, it implements operations
-## not only for `seq`:idx: type, but for three built-in container types under
-## the ``openArray`` umbrella:
+## Although this module has `seq` in its name, it implements operations
+## not only for the `seq`:idx: type, but for three built-in container types
+## under the `openArray` umbrella:
 ## * sequences
 ## * strings
 ## * array
 ##
-## The system module defines several common functions, such as:
-## * ``newSeq[T]`` for creating new sequences of type ``T``
-## * ``@`` for converting arrays and strings to sequences
-## * ``add`` for adding new elements to strings and sequences
-## * ``&`` for string and seq concatenation
-## * ``in`` (alias for ``contains``) and ``notin`` for checking if an item is
+## The `system` module defines several common functions, such as:
+## * `newSeq[T]` for creating new sequences of type `T`
+## * `@` for converting arrays and strings to sequences
+## * `add` for adding new elements to strings and sequences
+## * `&` for string and seq concatenation
+## * `in` (alias for `contains`) and `notin` for checking if an item is
 ##   in a container
 ##
 ## This module builds upon that, providing additional functionality in form of
@@ -27,45 +27,52 @@
 ## languages.
 ##
 ## For functional style programming you have different options at your disposal:
-## * pass `anonymous proc<manual.html#procedures-anonymous-procs>`_
-## * import `sugar module<sugar.html>`_  and use
-##   `=> macro<sugar.html#%3D>.m,untyped,untyped>`_
+## * the `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
+## * pass an `anonymous proc<manual.html#procedures-anonymous-procs>`_
+## * import the `sugar module<sugar.html>`_  and use
+##   the `=> macro<sugar.html#%3D>.m,untyped,untyped>`_
 ## * use `...It templates<#18>`_
 ##   (`mapIt<#mapIt.t,typed,untyped>`_,
 ##   `filterIt<#filterIt.t,untyped,untyped>`_, etc.)
 ##
-## The chaining of functions is possible thanks to the
+## Chaining of functions is possible thanks to the
 ## `method call syntax<manual.html#procedures-method-call-syntax>`_.
-##
-## .. code-block::
-##   import sequtils, sugar
-##
-##   # Creating a sequence from 1 to 10, multiplying each member by 2,
-##   # keeping only the members which are not divisible by 6.
-##   let
-##     foo = toSeq(1..10).map(x => x*2).filter(x => x mod 6 != 0)
-##     bar = toSeq(1..10).mapIt(it*2).filterIt(it mod 6 != 0)
-##
-##   doAssert foo == bar
-##   echo foo                  # @[2, 4, 8, 10, 14, 16, 20]
-##
-##   echo foo.any(x => x > 17) # true
-##   echo bar.allIt(it < 20)   # false
-##   echo foo.foldl(a + b)     # 74; sum of all members
-##
-## .. code-block::
-##   import sequtils
-##   from strutils import join
-##
-##   let
-##     vowels = @"aeiou" # creates a sequence @['a', 'e', 'i', 'o', 'u']
-##     foo = "sequtils is an awesome module"
-##
-##   echo foo.filterIt(it notin vowels).join # "sqtls s n wsm mdl"
-##
-## ----
-##
-## **See also**:
+
+runnableExamples:
+  import std/sugar
+
+  # Creating a sequence from 1 to 10, multiplying each member by 2,
+  # keeping only the members which are not divisible by 6.
+  let
+    foo = toSeq(1..10).map(x => x * 2).filter(x => x mod 6 != 0)
+    bar = toSeq(1..10).mapIt(it * 2).filterIt(it mod 6 != 0)
+    baz = collect:
+      for i in 1..10:
+        let j = 2 * i
+        if j mod 6 != 0:
+          j
+
+  doAssert foo == bar
+  doAssert foo == baz
+  doAssert foo == @[2, 4, 8, 10, 14, 16, 20]
+
+  doAssert foo.any(x => x > 17)
+  doAssert not bar.allIt(it < 20)
+  doAssert foo.foldl(a + b) == 74 # sum of all members
+
+
+runnableExamples:
+  from std/strutils import join
+
+  let
+    vowels = @"aeiou"
+    foo = "sequtils is an awesome module"
+
+  doAssert (vowels is seq[char]) and (vowels == @['a', 'e', 'i', 'o', 'u'])
+  doAssert foo.filterIt(it notin vowels).join == "sqtls s n wsm mdl"
+
+## See also
+## ========
 ## * `strutils module<strutils.html>`_ for common string functions
 ## * `sugar module<sugar.html>`_ for syntactic sugar macros
 ## * `algorithm module<algorithm.html>`_ for common generic algorithms
@@ -75,20 +82,26 @@
 
 import std/private/since
 
-import macros
+import std/macros
+from std/typetraits import supportsCopyMem
 
-when not defined(nimhygiene):
-  {.pragma: dirty.}
+when defined(nimPreviewSlimSystem):
+  import std/assertions
 
 
+when defined(nimHasEffectsOf):
+  {.experimental: "strictEffects".}
+else:
+  {.pragma: effectsOf.}
+
 macro evalOnceAs(expAlias, exp: untyped,
                  letAssigneable: static[bool]): untyped =
-  ## Injects ``expAlias`` in caller scope, to avoid bugs involving multiple
-  ##  substitution in macro arguments such as
-  ## https://github.com/nim-lang/Nim/issues/7187
-  ## ``evalOnceAs(myAlias, myExp)`` will behave as ``let myAlias = myExp``
-  ## except when ``letAssigneable`` is false (e.g. to handle openArray) where
-  ## it just forwards ``exp`` unchanged
+  ## Injects `expAlias` in caller scope, to avoid bugs involving multiple
+  ## substitution in macro arguments such as
+  ## https://github.com/nim-lang/Nim/issues/7187.
+  ## `evalOnceAs(myAlias, myExp)` will behave as `let myAlias = myExp`
+  ## except when `letAssigneable` is false (e.g. to handle openArray) where
+  ## it just forwards `exp` unchanged.
   expectKind(expAlias, nnkIdent)
   var val = exp
 
@@ -103,12 +116,12 @@ macro evalOnceAs(expAlias, exp: untyped,
     newProc(name = genSym(nskTemplate, $expAlias), params = [getType(untyped)],
       body = val, procType = nnkTemplateDef))
 
-proc concat*[T](seqs: varargs[seq[T]]): seq[T] =
+func concat*[T](seqs: varargs[seq[T]]): seq[T] =
   ## Takes several sequences' items and returns them inside a new sequence.
   ## All sequences must be of the same type.
   ##
-  ## See also:
-  ## * `distribute proc<#distribute,seq[T],Positive>`_ for a reverse
+  ## **See also:**
+  ## * `distribute func<#distribute,seq[T],Positive>`_ for a reverse
   ##   operation
   ##
   runnableExamples:
@@ -128,7 +141,23 @@ proc concat*[T](seqs: varargs[seq[T]]): seq[T] =
       result[i] = itm
       inc(i)
 
-proc count*[T](s: openArray[T], x: T): int =
+func addUnique*[T](s: var seq[T], x: sink T) =
+  ## Adds `x` to the container `s` if it is not already present. 
+  ## Uses `==` to check if the item is already present.
+  runnableExamples:
+    var a = @[1, 2, 3]
+    a.addUnique(4)
+    a.addUnique(4)
+    assert a == @[1, 2, 3, 4]
+
+  for i in 0..high(s):
+    if s[i] == x: return
+  when declared(ensureMove):
+    s.add ensureMove(x)
+  else:
+    s.add x
+
+func count*[T](s: openArray[T], x: T): int =
   ## Returns the number of occurrences of the item `x` in the container `s`.
   ##
   runnableExamples:
@@ -143,7 +172,7 @@ proc count*[T](s: openArray[T], x: T): int =
     if itm == x:
       inc result
 
-proc cycle*[T](s: openArray[T], n: Natural): seq[T] =
+func cycle*[T](s: openArray[T], n: Natural): seq[T] =
   ## Returns a new sequence with the items of the container `s` repeated
   ## `n` times.
   ## `n` must be a non-negative number (zero or more).
@@ -174,10 +203,10 @@ proc repeat*[T](x: T, n: Natural): seq[T] =
   for i in 0 ..< n:
     result[i] = x
 
-proc deduplicate*[T](s: openArray[T], isSorted: bool = false): seq[T] =
+func deduplicate*[T](s: openArray[T], isSorted: bool = false): seq[T] =
   ## Returns a new sequence without duplicates.
   ##
-  ## Setting the optional argument ``isSorted`` to ``true`` (default: false)
+  ## Setting the optional argument `isSorted` to true (default: false)
   ## uses a faster algorithm for deduplication.
   ##
   runnableExamples:
@@ -202,9 +231,9 @@ proc deduplicate*[T](s: openArray[T], isSorted: bool = false): seq[T] =
       for itm in items(s):
         if not result.contains(itm): result.add(itm)
 
-proc minIndex*[T](s: openArray[T]): int {.since: (1, 1).} =
+func minIndex*[T](s: openArray[T]): int {.since: (1, 1).} =
   ## Returns the index of the minimum value of `s`.
-  ## ``T`` needs to have a ``<`` operator.
+  ## `T` needs to have a `<` operator.
   runnableExamples:
     let
       a = @[1, 2, 3, 4]
@@ -219,9 +248,9 @@ proc minIndex*[T](s: openArray[T]): int {.since: (1, 1).} =
   for i in 1..high(s):
     if s[i] < s[result]: result = i
 
-proc maxIndex*[T](s: openArray[T]): int {.since: (1, 1).} =
+func maxIndex*[T](s: openArray[T]): int {.since: (1, 1).} =
   ## Returns the index of the maximum value of `s`.
-  ## ``T`` needs to have a ``<`` operator.
+  ## `T` needs to have a `<` operator.
   runnableExamples:
     let
       a = @[1, 2, 3, 4]
@@ -236,6 +265,15 @@ proc maxIndex*[T](s: openArray[T]): int {.since: (1, 1).} =
   for i in 1..high(s):
     if s[i] > s[result]: result = i
 
+func minmax*[T](x: openArray[T]): (T, T) =
+  ## The minimum and maximum values of `x`. `T` needs to have a `<` operator.
+  var l = x[0]
+  var h = x[0]
+  for i in 1..high(x):
+    if x[i] < l: l = x[i]
+    if h < x[i]: h = x[i]
+  result = (l, h)
+
 
 template zipImpl(s1, s2, retType: untyped): untyped =
   proc zip*[S, T](s1: openArray[S], s2: openArray[T]): retType =
@@ -245,9 +283,9 @@ template zipImpl(s1, s2, retType: untyped): untyped =
     ## If one container is shorter, the remaining items in the longer container
     ## are discarded.
     ##
-    ## **Note**: For Nim 1.0.x and older version, ``zip`` returned a seq of
-    ## named tuple with fields ``a`` and ``b``. For Nim versions 1.1.x and newer,
-    ## ``zip`` returns a seq of unnamed tuples.
+    ## **Note**: For Nim 1.0.x and older version, `zip` returned a seq of
+    ## named tuples with fields `a` and `b`. For Nim versions 1.1.x and newer,
+    ## `zip` returns a seq of unnamed tuples.
     runnableExamples:
       let
         short = @[1, 2, 3]
@@ -290,25 +328,24 @@ proc unzip*[S, T](s: openArray[(S, T)]): (seq[S], seq[T]) {.since: (1, 1).} =
       unzipped2 = @['a', 'b', 'c']
     assert zipped.unzip() == (unzipped1, unzipped2)
     assert zip(unzipped1, unzipped2).unzip() == (unzipped1, unzipped2)
-  result[0] = newSeq[S](s.len)
-  result[1] = newSeq[T](s.len)
+  result = (newSeq[S](s.len), newSeq[T](s.len))
   for i in 0..<s.len:
     result[0][i] = s[i][0]
     result[1][i] = s[i][1]
 
-proc distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] =
+func distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] =
   ## Splits and distributes a sequence `s` into `num` sub-sequences.
   ##
   ## Returns a sequence of `num` sequences. For *some* input values this is the
-  ## inverse of the `concat <#concat,varargs[seq[T]]>`_ proc.
+  ## inverse of the `concat <#concat,varargs[seq[T]]>`_ func.
   ## The input sequence `s` can be empty, which will produce
   ## `num` empty sequences.
   ##
   ## If `spread` is false and the length of `s` is not a multiple of `num`, the
-  ## proc will max out the first sub-sequence with ``1 + len(s) div num``
+  ## func will max out the first sub-sequence with `1 + len(s) div num`
   ## entries, leaving the remainder of elements to the last sequence.
   ##
-  ## On the other hand, if `spread` is true, the proc will distribute evenly
+  ## On the other hand, if `spread` is true, the func will distribute evenly
   ## the remainder of the division across all sequences, which makes the result
   ## more suited to multithreading where you are passing equal sized work units
   ## to a thread pool and want to maximize core usage.
@@ -323,7 +360,6 @@ proc distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] =
   if num < 2:
     result = @[s]
     return
-  let num = int(num) # XXX probably only needed because of .. bug
 
   # Create the result and calculate the stride size and the remainder if any.
   result = newSeq[seq[T]](num)
@@ -354,14 +390,18 @@ proc distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] =
       first = last
 
 proc map*[T, S](s: openArray[T], op: proc (x: T): S {.closure.}):
-                                                            seq[S]{.inline.} =
-  ## Returns a new sequence with the results of `op` proc applied to every
+                                                            seq[S] {.inline, effectsOf: op.} =
+  ## Returns a new sequence with the results of the `op` proc applied to every
   ## item in the container `s`.
   ##
-  ## Since the input is not modified you can use it to
+  ## Since the input is not modified, you can use it to
   ## transform the type of the elements in the input container.
   ##
-  ## See also:
+  ## Instead of using `map` and `filter`, consider using the `collect` macro
+  ## from the `sugar` module.
+  ##
+  ## **See also:**
+  ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
   ## * `mapIt template<#mapIt.t,typed,untyped>`_
   ## * `apply proc<#apply,openArray[T],proc(T)_2>`_ for the in-place version
   ##
@@ -376,15 +416,14 @@ proc map*[T, S](s: openArray[T], op: proc (x: T): S {.closure.}):
     result[i] = op(s[i])
 
 proc apply*[T](s: var openArray[T], op: proc (x: var T) {.closure.})
-                                                              {.inline.} =
-  ## Applies `op` to every item in `s` modifying it directly.
+                                                              {.inline, effectsOf: op.} =
+  ## Applies `op` to every item in `s`, modifying it directly.
   ##
-  ## Note that container `s` must be declared as a ``var``
-  ## and it is required for your input and output types to
-  ## be the same, since `s` is modified in-place.
-  ## The parameter function takes a ``var T`` type parameter.
+  ## Note that the container `s` must be declared as a `var`,
+  ## since `s` is modified in-place.
+  ## The parameter function takes a `var T` type parameter.
   ##
-  ## See also:
+  ## **See also:**
   ## * `applyIt template<#applyIt.t,untyped,untyped>`_
   ## * `map proc<#map,openArray[T],proc(T)>`_
   ##
@@ -396,15 +435,15 @@ proc apply*[T](s: var openArray[T], op: proc (x: var T) {.closure.})
   for i in 0 ..< s.len: op(s[i])
 
 proc apply*[T](s: var openArray[T], op: proc (x: T): T {.closure.})
-                                                              {.inline.} =
+                                                              {.inline, effectsOf: op.} =
   ## Applies `op` to every item in `s` modifying it directly.
   ##
-  ## Note that container `s` must be declared as a ``var``
+  ## Note that the container `s` must be declared as a `var`
   ## and it is required for your input and output types to
   ## be the same, since `s` is modified in-place.
-  ## The parameter function takes and returns a ``T`` type variable.
+  ## The parameter function takes and returns a `T` type variable.
   ##
-  ## See also:
+  ## **See also:**
   ## * `applyIt template<#applyIt.t,untyped,untyped>`_
   ## * `map proc<#map,openArray[T],proc(T)>`_
   ##
@@ -415,12 +454,25 @@ proc apply*[T](s: var openArray[T], op: proc (x: T): T {.closure.})
 
   for i in 0 ..< s.len: s[i] = op(s[i])
 
-iterator filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): T =
+proc apply*[T](s: openArray[T], op: proc (x: T) {.closure.}) {.inline, since: (1, 3), effectsOf: op.} =
+  ## Same as `apply` but for a proc that does not return anything
+  ## and does not mutate `s` directly.
+  runnableExamples:
+    var message: string
+    apply([0, 1, 2, 3, 4], proc(item: int) = message.addInt item)
+    assert message == "01234"
+  for i in 0 ..< s.len: op(s[i])
+
+iterator filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): T {.effectsOf: pred.} =
   ## Iterates through a container `s` and yields every item that fulfills the
-  ## predicate `pred` (function that returns a `bool`).
+  ## predicate `pred` (a function that returns a `bool`).
+  ##
+  ## Instead of using `map` and `filter`, consider using the `collect` macro
+  ## from the `sugar` module.
   ##
-  ## See also:
-  ## * `fliter proc<#filter,openArray[T],proc(T)>`_
+  ## **See also:**
+  ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
+  ## * `filter proc<#filter,openArray[T],proc(T)>`_
   ## * `filterIt template<#filterIt.t,untyped,untyped>`_
   ##
   runnableExamples:
@@ -435,11 +487,15 @@ iterator filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): T =
       yield s[i]
 
 proc filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): seq[T]
-                                                                  {.inline.} =
-  ## Returns a new sequence with all the items of `s` that fulfilled the
-  ## predicate `pred` (function that returns a `bool`).
+                                                                  {.inline, effectsOf: pred.} =
+  ## Returns a new sequence with all the items of `s` that fulfill the
+  ## predicate `pred` (a function that returns a `bool`).
+  ##
+  ## Instead of using `map` and `filter`, consider using the `collect` macro
+  ## from the `sugar` module.
   ##
-  ## See also:
+  ## **See also:**
+  ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
   ## * `filterIt template<#filterIt.t,untyped,untyped>`_
   ## * `filter iterator<#filter.i,openArray[T],proc(T)>`_
   ## * `keepIf proc<#keepIf,seq[T],proc(T)>`_ for the in-place version
@@ -458,16 +514,16 @@ proc filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): seq[T]
       result.add(s[i])
 
 proc keepIf*[T](s: var seq[T], pred: proc(x: T): bool {.closure.})
-                                                                {.inline.} =
-  ## Keeps the items in the passed sequence `s` if they fulfilled the
-  ## predicate `pred` (function that returns a `bool`).
+                                                                {.inline, effectsOf: pred.} =
+  ## Keeps the items in the passed sequence `s` if they fulfill the
+  ## predicate `pred` (a function that returns a `bool`).
   ##
-  ## Note that `s` must be declared as a ``var``.
+  ## Note that `s` must be declared as a `var`.
   ##
   ## Similar to the `filter proc<#filter,openArray[T],proc(T)>`_,
   ## but modifies the sequence directly.
   ##
-  ## See also:
+  ## **See also:**
   ## * `keepItIf template<#keepItIf.t,seq,untyped>`_
   ## * `filter proc<#filter,openArray[T],proc(T)>`_
   ##
@@ -487,12 +543,51 @@ proc keepIf*[T](s: var seq[T], pred: proc(x: T): bool {.closure.})
       inc(pos)
   setLen(s, pos)
 
-proc delete*[T](s: var seq[T]; first, last: Natural) =
-  ## Deletes in the items of a sequence `s` at positions ``first..last``
-  ## (including both ends of a range).
-  ## This modifies `s` itself, it does not return a copy.
+func delete*[T](s: var seq[T]; slice: Slice[int]) =
+  ## Deletes the items `s[slice]`, raising `IndexDefect` if the slice contains
+  ## elements out of range.
   ##
+  ## This operation moves all elements after `s[slice]` in linear time.
   runnableExamples:
+    var a = @[10, 11, 12, 13, 14]
+    doAssertRaises(IndexDefect): a.delete(4..5)
+    assert a == @[10, 11, 12, 13, 14]
+    a.delete(4..4)
+    assert a == @[10, 11, 12, 13]
+    a.delete(1..2)
+    assert a == @[10, 13]
+    a.delete(1..<1) # empty slice
+    assert a == @[10, 13]
+  when compileOption("boundChecks"):
+    if not (slice.a < s.len and slice.a >= 0 and slice.b < s.len):
+      raise newException(IndexDefect, $(slice: slice, len: s.len))
+  if slice.b >= slice.a:
+    template defaultImpl =
+      var i = slice.a
+      var j = slice.b + 1
+      var newLen = s.len - j + i
+      while i < newLen:
+        when defined(gcDestructors):
+          s[i] = move(s[j])
+        else:
+          s[i].shallowCopy(s[j])
+        inc(i)
+        inc(j)
+      setLen(s, newLen)
+    when nimvm: defaultImpl()
+    else:
+      when defined(js):
+        let n = slice.b - slice.a + 1
+        let first = slice.a
+        {.emit: "`s`.splice(`first`, `n`);".}
+      else:
+        defaultImpl()
+
+func delete*[T](s: var seq[T]; first, last: Natural) {.deprecated: "use `delete(s, first..last)`".} =
+  ## Deletes the items of a sequence `s` at positions `first..last`
+  ## (including both ends of the range).
+  ## This modifies `s` itself, it does not return a copy.
+  runnableExamples("--warning:deprecated:off"):
     let outcome = @[1, 1, 1, 1, 1, 1, 1, 1]
     var dest = @[1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1]
     dest.delete(3, 8)
@@ -501,8 +596,8 @@ proc delete*[T](s: var seq[T]; first, last: Natural) =
   if first >= s.len:
     return
   var i = first
-  var j = min(len(s), last+1)
-  var newLen = len(s)-j+i
+  var j = min(len(s), last + 1)
+  var newLen = len(s) - j + i
   while i < newLen:
     when defined(gcDestructors):
       s[i] = move(s[j])
@@ -512,11 +607,11 @@ proc delete*[T](s: var seq[T]; first, last: Natural) =
     inc(j)
   setLen(s, newLen)
 
-proc insert*[T](dest: var seq[T], src: openArray[T], pos = 0) =
+func insert*[T](dest: var seq[T], src: openArray[T], pos = 0) =
   ## Inserts items from `src` into `dest` at position `pos`. This modifies
   ## `dest` itself, it does not return a copy.
   ##
-  ## Notice that `src` and `dest` must be of the same type.
+  ## Note that the elements of `src` and `dest` must be of the same type.
   ##
   runnableExamples:
     var dest = @[1, 1, 1, 1, 1, 1, 1, 1]
@@ -527,7 +622,8 @@ proc insert*[T](dest: var seq[T], src: openArray[T], pos = 0) =
     assert dest == outcome
 
   var j = len(dest) - 1
-  var i = len(dest) + len(src) - 1
+  var i = j + len(src)
+  if i == j: return
   dest.setLen(i + 1)
 
   # Move items after `pos` to the end of the sequence.
@@ -546,16 +642,20 @@ proc insert*[T](dest: var seq[T], src: openArray[T], pos = 0) =
 
 
 template filterIt*(s, pred: untyped): untyped =
-  ## Returns a new sequence with all the items of `s` that fulfilled the
+  ## Returns a new sequence with all the items of `s` that fulfill the
   ## predicate `pred`.
   ##
   ## Unlike the `filter proc<#filter,openArray[T],proc(T)>`_ and
   ## `filter iterator<#filter.i,openArray[T],proc(T)>`_,
-  ## the predicate needs to be an expression using the ``it`` variable
-  ## for testing, like: ``filterIt("abcxyz", it == 'x')``.
+  ## the predicate needs to be an expression using the `it` variable
+  ## for testing, like: `filterIt("abcxyz", it == 'x')`.
   ##
-  ## See also:
-  ## * `fliter proc<#filter,openArray[T],proc(T)>`_
+  ## Instead of using `mapIt` and `filterIt`, consider using the `collect` macro
+  ## from the `sugar` module.
+  ##
+  ## **See also:**
+  ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
+  ## * `filter proc<#filter,openArray[T],proc(T)>`_
   ## * `filter iterator<#filter.i,openArray[T],proc(T)>`_
   ##
   runnableExamples:
@@ -572,14 +672,14 @@ template filterIt*(s, pred: untyped): untyped =
   result
 
 template keepItIf*(varSeq: seq, pred: untyped) =
-  ## Keeps the items in the passed sequence (must be declared as a ``var``)
-  ## if they fulfilled the predicate.
+  ## Keeps the items in the passed sequence (must be declared as a `var`)
+  ## if they fulfill the predicate.
   ##
   ## Unlike the `keepIf proc<#keepIf,seq[T],proc(T)>`_,
   ## the predicate needs to be an expression using
-  ## the ``it`` variable for testing, like: ``keepItIf("abcxyz", it == 'x')``.
+  ## the `it` variable for testing, like: `keepItIf("abcxyz", it == 'x')`.
   ##
-  ## See also:
+  ## **See also:**
   ## * `keepIf proc<#keepIf,seq[T],proc(T)>`_
   ## * `filterIt template<#filterIt.t,untyped,untyped>`_
   ##
@@ -602,10 +702,10 @@ template keepItIf*(varSeq: seq, pred: untyped) =
 
 since (1, 1):
   template countIt*(s, pred: untyped): int =
-    ## Returns a count of all the items that fulfilled the predicate.
+    ## Returns a count of all the items that fulfill the predicate.
     ##
     ## The predicate needs to be an expression using
-    ## the ``it`` variable for testing, like: ``countIt(@[1, 2, 3], it > 2)``.
+    ## the `it` variable for testing, like: `countIt(@[1, 2, 3], it > 2)`.
     ##
     runnableExamples:
       let numbers = @[-3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
@@ -619,23 +719,23 @@ since (1, 1):
       if pred: result += 1
     result
 
-proc all*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool =
+proc all*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool {.effectsOf: pred.} =
   ## Iterates through a container and checks if every item fulfills the
   ## predicate.
   ##
-  ## See also:
+  ## **See also:**
   ## * `allIt template<#allIt.t,untyped,untyped>`_
   ## * `any proc<#any,openArray[T],proc(T)>`_
   ##
   runnableExamples:
     let numbers = @[1, 4, 5, 8, 9, 7, 4]
-    assert all(numbers, proc (x: int): bool = return x < 10) == true
-    assert all(numbers, proc (x: int): bool = return x < 9) == false
+    assert all(numbers, proc (x: int): bool = x < 10) == true
+    assert all(numbers, proc (x: int): bool = x < 9) == false
 
   for i in s:
     if not pred(i):
       return false
-  return true
+  true
 
 template allIt*(s, pred: untyped): bool =
   ## Iterates through a container and checks if every item fulfills the
@@ -643,9 +743,9 @@ template allIt*(s, pred: untyped): bool =
   ##
   ## Unlike the `all proc<#all,openArray[T],proc(T)>`_,
   ## the predicate needs to be an expression using
-  ## the ``it`` variable for testing, like: ``allIt("abba", it == 'a')``.
+  ## the `it` variable for testing, like: `allIt("abba", it == 'a')`.
   ##
-  ## See also:
+  ## **See also:**
   ## * `all proc<#all,openArray[T],proc(T)>`_
   ## * `anyIt template<#anyIt.t,untyped,untyped>`_
   ##
@@ -661,33 +761,33 @@ template allIt*(s, pred: untyped): bool =
       break
   result
 
-proc any*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool =
-  ## Iterates through a container and checks if some item fulfills the
-  ## predicate.
+proc any*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool {.effectsOf: pred.} =
+  ## Iterates through a container and checks if at least one item
+  ## fulfills the predicate.
   ##
-  ## See also:
+  ## **See also:**
   ## * `anyIt template<#anyIt.t,untyped,untyped>`_
   ## * `all proc<#all,openArray[T],proc(T)>`_
   ##
   runnableExamples:
     let numbers = @[1, 4, 5, 8, 9, 7, 4]
-    assert any(numbers, proc (x: int): bool = return x > 8) == true
-    assert any(numbers, proc (x: int): bool = return x > 9) == false
+    assert any(numbers, proc (x: int): bool = x > 8) == true
+    assert any(numbers, proc (x: int): bool = x > 9) == false
 
   for i in s:
     if pred(i):
       return true
-  return false
+  false
 
 template anyIt*(s, pred: untyped): bool =
-  ## Iterates through a container and checks if some item fulfills the
-  ## predicate.
+  ## Iterates through a container and checks if at least one item
+  ## fulfills the predicate.
   ##
   ## Unlike the `any proc<#any,openArray[T],proc(T)>`_,
   ## the predicate needs to be an expression using
-  ## the ``it`` variable for testing, like: ``anyIt("abba", it == 'a')``.
+  ## the `it` variable for testing, like: `anyIt("abba", it == 'a')`.
   ##
-  ## See also:
+  ## **See also:**
   ## * `any proc<#any,openArray[T],proc(T)>`_
   ## * `allIt template<#allIt.t,untyped,untyped>`_
   ##
@@ -716,7 +816,7 @@ template toSeq1(s: not iterator): untyped =
         i += 1
       result
   else:
-    var result: seq[OutType] = @[]
+    var result: seq[OutType]# = @[]
     for it in s:
       result.add(it)
     result
@@ -733,7 +833,7 @@ template toSeq2(iter: iterator): untyped =
     result
   else:
     type OutType = typeof(iter2())
-    var result: seq[OutType] = @[]
+    var result: seq[OutType]# = @[]
     when compiles(iter2()):
       evalOnceAs(iter4, iter, false)
       let iter3 = iter4()
@@ -788,15 +888,15 @@ template foldl*(sequence, operation: untyped): untyped =
   ## The sequence is required to have at least a single element. Debug versions
   ## of your program will assert in this situation but release versions will
   ## happily go ahead. If the sequence has a single element it will be returned
-  ## without applying ``operation``.
+  ## without applying `operation`.
   ##
-  ## The ``operation`` parameter should be an expression which uses the
-  ## variables ``a`` and ``b`` for each step of the fold. Since this is a left
+  ## The `operation` parameter should be an expression which uses the
+  ## variables `a` and `b` for each step of the fold. Since this is a left
   ## fold, for non associative binary operations like subtraction think that
   ## the sequence of numbers 1, 2 and 3 will be parenthesized as (((1) - 2) -
   ## 3).
   ##
-  ## See also:
+  ## **See also:**
   ## * `foldl template<#foldl.t,,,>`_ with a starting parameter
   ## * `foldr template<#foldr.t,untyped,untyped>`_
   ##
@@ -808,10 +908,17 @@ template foldl*(sequence, operation: untyped): untyped =
       multiplication = foldl(numbers, a * b)
       words = @["nim", "is", "cool"]
       concatenation = foldl(words, a & b)
+      procs = @["proc", "Is", "Also", "Fine"]
+
+
+    func foo(acc, cur: string): string =
+      result = acc & cur
+
     assert addition == 25, "Addition is (((5)+9)+11)"
     assert subtraction == -15, "Subtraction is (((5)-9)-11)"
     assert multiplication == 495, "Multiplication is (((5)*9)*11)"
     assert concatenation == "nimiscool"
+    assert foldl(procs, foo(a, b)) == "procIsAlsoFine"
 
   let s = sequence
   assert s.len > 0, "Can't fold empty sequences"
@@ -827,14 +934,14 @@ template foldl*(sequence, operation: untyped): untyped =
 template foldl*(sequence, operation, first): untyped =
   ## Template to fold a sequence from left to right, returning the accumulation.
   ##
-  ## This version of ``foldl`` gets a **starting parameter**. This makes it possible
+  ## This version of `foldl` gets a **starting parameter**. This makes it possible
   ## to accumulate the sequence into a different type than the sequence elements.
   ##
-  ## The ``operation`` parameter should be an expression which uses the variables
-  ## ``a`` and ``b`` for each step of the fold. The ``first`` parameter is the
-  ## start value (the first ``a``) and therefor defines the type of the result.
+  ## The `operation` parameter should be an expression which uses the variables
+  ## `a` and `b` for each step of the fold. The `first` parameter is the
+  ## start value (the first `a`) and therefore defines the type of the result.
   ##
-  ## See also:
+  ## **See also:**
   ## * `foldr template<#foldr.t,untyped,untyped>`_
   ##
   runnableExamples:
@@ -857,15 +964,15 @@ template foldr*(sequence, operation: untyped): untyped =
   ## The sequence is required to have at least a single element. Debug versions
   ## of your program will assert in this situation but release versions will
   ## happily go ahead. If the sequence has a single element it will be returned
-  ## without applying ``operation``.
+  ## without applying `operation`.
   ##
-  ## The ``operation`` parameter should be an expression which uses the
-  ## variables ``a`` and ``b`` for each step of the fold. Since this is a right
+  ## The `operation` parameter should be an expression which uses the
+  ## variables `a` and `b` for each step of the fold. Since this is a right
   ## fold, for non associative binary operations like subtraction think that
   ## the sequence of numbers 1, 2 and 3 will be parenthesized as (1 - (2 -
   ## (3))).
   ##
-  ## See also:
+  ## **See also:**
   ## * `foldl template<#foldl.t,untyped,untyped>`_
   ## * `foldl template<#foldl.t,,,>`_ with a starting parameter
   ##
@@ -894,16 +1001,20 @@ template foldr*(sequence, operation: untyped): untyped =
   result
 
 template mapIt*(s: typed, op: untyped): untyped =
-  ## Returns a new sequence with the results of `op` proc applied to every
+  ## Returns a new sequence with the results of the `op` proc applied to every
   ## item in the container `s`.
   ##
   ## Since the input is not modified you can use it to
   ## transform the type of the elements in the input container.
   ##
-  ## The template injects the ``it`` variable which you can use directly in an
+  ## The template injects the `it` variable which you can use directly in an
   ## expression.
   ##
-  ## See also:
+  ## Instead of using `mapIt` and `filterIt`, consider using the `collect` macro
+  ## from the `sugar` module.
+  ##
+  ## **See also:**
+  ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
   ## * `map proc<#map,openArray[T],proc(T)>`_
   ## * `applyIt template<#applyIt.t,untyped,untyped>`_ for the in-place version
   ##
@@ -913,16 +1024,10 @@ template mapIt*(s: typed, op: untyped): untyped =
       strings = nums.mapIt($(4 * it))
     assert strings == @["4", "8", "12", "16"]
 
-  when defined(nimHasTypeof):
-    type OutType = typeof((
-      block:
-        var it{.inject.}: typeof(items(s), typeOfIter);
-        op), typeOfProc)
-  else:
-    type OutType = typeof((
-      block:
-        var it{.inject.}: typeof(items(s));
-        op))
+  type OutType = typeof((
+    block:
+      var it{.inject.}: typeof(items(s), typeOfIter);
+      op), typeOfProc)
   when OutType is not (proc):
     # Here, we avoid to create closures in loops.
     # This avoids https://github.com/nim-lang/Nim/issues/12625
@@ -940,7 +1045,7 @@ template mapIt*(s: typed, op: untyped): untyped =
           i += 1
         result
     else:
-      var result: seq[OutType] = @[]
+      var result: seq[OutType]# = @[]
       # use `items` to avoid https://github.com/nim-lang/Nim/issues/12639
       for it {.inject.} in items(s):
         result.add(op)
@@ -953,11 +1058,7 @@ template mapIt*(s: typed, op: untyped): untyped =
     # With this fallback, above code can be simplified to:
     #   [1, 2].mapIt((x: int) => it + x)
     # In this case, `mapIt` is just syntax sugar for `map`.
-
-    when defined(nimHasTypeof):
-      type InType = typeof(items(s), typeOfIter)
-    else:
-      type InType = typeof(items(s))
+    type InType = typeof(items(s), typeOfIter)
     # Use a help proc `f` to create closures for each element in `s`
     let f = proc (x: InType): OutType =
               let it {.inject.} = x
@@ -965,13 +1066,13 @@ template mapIt*(s: typed, op: untyped): untyped =
     map(s, f)
 
 template applyIt*(varSeq, op: untyped) =
-  ## Convenience template around the mutable ``apply`` proc to reduce typing.
+  ## Convenience template around the mutable `apply` proc to reduce typing.
   ##
-  ## The template injects the ``it`` variable which you can use directly in an
-  ## expression. The expression has to return the same type as the sequence you
-  ## are mutating.
+  ## The template injects the `it` variable which you can use directly in an
+  ## expression. The expression has to return the same type as the elements
+  ## of the sequence you are mutating.
   ##
-  ## See also:
+  ## **See also:**
   ## * `apply proc<#apply,openArray[T],proc(T)_2>`_
   ## * `mapIt template<#mapIt.t,typed,untyped>`_
   ##
@@ -986,29 +1087,33 @@ template applyIt*(varSeq, op: untyped) =
 
 
 template newSeqWith*(len: int, init: untyped): untyped =
-  ## Creates a new sequence of length `len`, calling `init` to initialize
-  ## each value of the sequence.
-  ##
-  ## Useful for creating "2D" sequences - sequences containing other sequences
-  ## or to populate fields of the created sequence.
+  ## Creates a new `seq` of length `len`, calling `init` to initialize
+  ## each value of the seq.
   ##
+  ## Useful for creating "2D" seqs - seqs containing other seqs
+  ## or to populate fields of the created seq.
   runnableExamples:
-    ## Creates a sequence containing 5 bool sequences, each of length of 3.
+    ## Creates a seq containing 5 bool seqs, each of length of 3.
     var seq2D = newSeqWith(5, newSeq[bool](3))
     assert seq2D.len == 5
     assert seq2D[0].len == 3
     assert seq2D[4][2] == false
 
-    ## Creates a sequence of 20 random numbers from 1 to 10
-    import random
-    var seqRand = newSeqWith(20, rand(10))
-
-  var result = newSeq[typeof(init)](len)
-  for i in 0 ..< len:
+    ## Creates a seq with random numbers
+    import std/random
+    var seqRand = newSeqWith(20, rand(1.0))
+    assert seqRand[0] != seqRand[1]
+  type T = typeof(init)
+  let newLen = len
+  when supportsCopyMem(T) and declared(newSeqUninit):
+    var result = newSeqUninit[T](newLen)
+  else: # TODO: use `newSeqUnsafe` when that's available
+    var result = newSeq[T](newLen)
+  for i in 0 ..< newLen:
     result[i] = init
-  result
+  move(result) # refs bug #7295
 
-proc mapLitsImpl(constructor: NimNode; op: NimNode; nested: bool;
+func mapLitsImpl(constructor: NimNode; op: NimNode; nested: bool;
                  filter = nnkLiterals): NimNode =
   if constructor.kind in filter:
     result = newNimNode(nnkCall, lineInfoFrom = constructor)
@@ -1024,44 +1129,34 @@ proc mapLitsImpl(constructor: NimNode; op: NimNode; nested: bool;
 
 macro mapLiterals*(constructor, op: untyped;
                    nested = true): untyped =
-  ## Applies ``op`` to each of the **atomic** literals like ``3``
-  ## or ``"abc"`` in the specified ``constructor`` AST. This can
+  ## Applies `op` to each of the **atomic** literals like `3`
+  ## or `"abc"` in the specified `constructor` AST. This can
   ## be used to map every array element to some target type:
-  ##
-  ## Example:
-  ##
-  ## .. code-block::
-  ##   let x = mapLiterals([0.1, 1.2, 2.3, 3.4], int)
-  ##   doAssert x is array[4, int]
-  ##
-  ## Short notation for:
-  ##
-  ## .. code-block::
-  ##   let x = [int(0.1), int(1.2), int(2.3), int(3.4)]
-  ##
-  ## If ``nested`` is true (which is the default), the literals are replaced
-  ## everywhere in the ``constructor`` AST, otherwise only the first level
+  runnableExamples:
+    let x = mapLiterals([0.1, 1.2, 2.3, 3.4], int)
+    doAssert x is array[4, int]
+    doAssert x == [int(0.1), int(1.2), int(2.3), int(3.4)]
+  ## If `nested` is true (which is the default), the literals are replaced
+  ## everywhere in the `constructor` AST, otherwise only the first level
   ## is considered:
-  ##
-  ## .. code-block::
-  ##   let a = mapLiterals((1.2, (2.3, 3.4), 4.8), int)
-  ##   let b = mapLiterals((1.2, (2.3, 3.4), 4.8), int, nested=false)
-  ##   assert a == (1, (2, 3), 4)
-  ##   assert b == (1, (2.3, 3.4), 4)
-  ##
-  ##   let c = mapLiterals((1, (2, 3), 4, (5, 6)), `$`)
-  ##   let d = mapLiterals((1, (2, 3), 4, (5, 6)), `$`, nested=false)
-  ##   assert c == ("1", ("2", "3"), "4", ("5", "6"))
-  ##   assert d == ("1", (2, 3), "4", (5, 6))
-  ##
-  ## There are no constraints for the ``constructor`` AST, it
+  runnableExamples:
+    let a = mapLiterals((1.2, (2.3, 3.4), 4.8), int)
+    let b = mapLiterals((1.2, (2.3, 3.4), 4.8), int, nested=false)
+    assert a == (1, (2, 3), 4)
+    assert b == (1, (2.3, 3.4), 4)
+
+    let c = mapLiterals((1, (2, 3), 4, (5, 6)), `$`)
+    let d = mapLiterals((1, (2, 3), 4, (5, 6)), `$`, nested=false)
+    assert c == ("1", ("2", "3"), "4", ("5", "6"))
+    assert d == ("1", (2, 3), "4", (5, 6))
+  ## There are no constraints for the `constructor` AST, it
   ## works for nested tuples of arrays of sets etc.
   result = mapLitsImpl(constructor, op, nested.boolVal)
 
 iterator items*[T](xs: iterator: T): T =
-  ## iterates over each element yielded by a closure iterator. This may
+  ## Iterates over each element yielded by a closure iterator. This may
   ## not seem particularly useful on its own, but this allows closure
-  ## iterators to be used by the the mapIt, filterIt, allIt, anyIt, etc.
+  ## iterators to be used by the mapIt, filterIt, allIt, anyIt, etc.
   ## templates.
   for x in xs():
     yield x