diff options
Diffstat (limited to 'lib/pure/collections/sequtils.nim')
-rw-r--r-- | lib/pure/collections/sequtils.nim | 1429 |
1 files changed, 986 insertions, 443 deletions
diff --git a/lib/pure/collections/sequtils.nim b/lib/pure/collections/sequtils.nim index 3f37d1ef0..3c0d8dc0e 100644 --- a/lib/pure/collections/sequtils.nim +++ b/lib/pure/collections/sequtils.nim @@ -1,43 +1,137 @@ # # # Nim's Runtime Library -# (c) Copyright 2011 Alex Mitchell +# (c) Copyright 2011 Alexander Mitchell-Robinson # # See the file "copying.txt", included in this # distribution, for details about the copyright. # -## :Author: Alex Mitchell +## Although this module has `seq` in its name, it implements operations +## not only for the `seq`:idx: type, but for three built-in container types +## under the `openArray` umbrella: +## * sequences +## * strings +## * array ## -## This module implements operations for the built-in `seq`:idx: type which -## were inspired by functional programming languages. If you are looking for -## the typical `map` function which applies a function to every element in a -## sequence, it already exists in the `system <system.html>`_ module in both -## mutable and immutable styles. +## The `system` module defines several common functions, such as: +## * `newSeq[T]` for creating new sequences of type `T` +## * `@` for converting arrays and strings to sequences +## * `add` for adding new elements to strings and sequences +## * `&` for string and seq concatenation +## * `in` (alias for `contains`) and `notin` for checking if an item is +## in a container ## -## Also, for functional style programming you may want to pass `anonymous procs -## <manual.html#anonymous-procs>`_ to procs like ``filter`` to reduce typing. -## Anonymous procs can use `the special do notation <manual.html#do-notation>`_ -## which is more convenient in certain situations. +## This module builds upon that, providing additional functionality in form of +## procs, iterators and templates inspired by functional programming +## languages. ## -## **Note**: This interface will change as soon as the compiler supports -## closures and proper coroutines. +## For functional style programming you have different options at your disposal: +## * the `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_ +## * pass an `anonymous proc<manual.html#procedures-anonymous-procs>`_ +## * import the `sugar module<sugar.html>`_ and use +## the `=> macro<sugar.html#%3D>.m,untyped,untyped>`_ +## * use `...It templates<#18>`_ +## (`mapIt<#mapIt.t,typed,untyped>`_, +## `filterIt<#filterIt.t,untyped,untyped>`_, etc.) +## +## Chaining of functions is possible thanks to the +## `method call syntax<manual.html#procedures-method-call-syntax>`_. + +runnableExamples: + import std/sugar + + # Creating a sequence from 1 to 10, multiplying each member by 2, + # keeping only the members which are not divisible by 6. + let + foo = toSeq(1..10).map(x => x * 2).filter(x => x mod 6 != 0) + bar = toSeq(1..10).mapIt(it * 2).filterIt(it mod 6 != 0) + baz = collect: + for i in 1..10: + let j = 2 * i + if j mod 6 != 0: + j + + doAssert foo == bar + doAssert foo == baz + doAssert foo == @[2, 4, 8, 10, 14, 16, 20] + + doAssert foo.any(x => x > 17) + doAssert not bar.allIt(it < 20) + doAssert foo.foldl(a + b) == 74 # sum of all members + + +runnableExamples: + from std/strutils import join + + let + vowels = @"aeiou" + foo = "sequtils is an awesome module" + + doAssert (vowels is seq[char]) and (vowels == @['a', 'e', 'i', 'o', 'u']) + doAssert foo.filterIt(it notin vowels).join == "sqtls s n wsm mdl" + +## See also +## ======== +## * `strutils module<strutils.html>`_ for common string functions +## * `sugar module<sugar.html>`_ for syntactic sugar macros +## * `algorithm module<algorithm.html>`_ for common generic algorithms +## * `json module<json.html>`_ for a structure which allows +## heterogeneous members + + +import std/private/since + +import std/macros +from std/typetraits import supportsCopyMem + +when defined(nimPreviewSlimSystem): + import std/assertions + + +when defined(nimHasEffectsOf): + {.experimental: "strictEffects".} +else: + {.pragma: effectsOf.} + +macro evalOnceAs(expAlias, exp: untyped, + letAssigneable: static[bool]): untyped = + ## Injects `expAlias` in caller scope, to avoid bugs involving multiple + ## substitution in macro arguments such as + ## https://github.com/nim-lang/Nim/issues/7187. + ## `evalOnceAs(myAlias, myExp)` will behave as `let myAlias = myExp` + ## except when `letAssigneable` is false (e.g. to handle openArray) where + ## it just forwards `exp` unchanged. + expectKind(expAlias, nnkIdent) + var val = exp -when not defined(nimhygiene): - {.pragma: dirty.} + result = newStmtList() + # If `exp` is not a symbol we evaluate it once here and then use the temporary + # symbol as alias + if exp.kind != nnkSym and letAssigneable: + val = genSym() + result.add(newLetStmt(val, exp)) -proc concat*[T](seqs: varargs[seq[T]]): seq[T] = + result.add( + newProc(name = genSym(nskTemplate, $expAlias), params = [getType(untyped)], + body = val, procType = nnkTemplateDef)) + +func concat*[T](seqs: varargs[seq[T]]): seq[T] = ## Takes several sequences' items and returns them inside a new sequence. + ## All sequences must be of the same type. ## - ## Example: + ## **See also:** + ## * `distribute func<#distribute,seq[T],Positive>`_ for a reverse + ## operation ## - ## .. code-block:: - ## let - ## s1 = @[1, 2, 3] - ## s2 = @[4, 5] - ## s3 = @[6, 7] - ## total = concat(s1, s2, s3) - ## assert total == @[1, 2, 3, 4, 5, 6, 7] + runnableExamples: + let + s1 = @[1, 2, 3] + s2 = @[4, 5] + s3 = @[6, 7] + total = concat(s1, s2, s3) + assert total == @[1, 2, 3, 4, 5, 6, 7] + var L = 0 for seqitm in items(seqs): inc(L, len(seqitm)) newSeq(result, L) @@ -47,96 +141,226 @@ proc concat*[T](seqs: varargs[seq[T]]): seq[T] = result[i] = itm inc(i) -proc repeat*[T](s: seq[T], n: Natural): seq[T] = - ## Returns a new sequence with the items of `s` repeated `n` times. - ## - ## Example: +func addUnique*[T](s: var seq[T], x: sink T) = + ## Adds `x` to the container `s` if it is not already present. + ## Uses `==` to check if the item is already present. + runnableExamples: + var a = @[1, 2, 3] + a.addUnique(4) + a.addUnique(4) + assert a == @[1, 2, 3, 4] + + for i in 0..high(s): + if s[i] == x: return + when declared(ensureMove): + s.add ensureMove(x) + else: + s.add x + +func count*[T](s: openArray[T], x: T): int = + ## Returns the number of occurrences of the item `x` in the container `s`. ## - ## .. code-block: + runnableExamples: + let + a = @[1, 2, 2, 3, 2, 4, 2] + b = "abracadabra" + assert count(a, 2) == 4 + assert count(a, 99) == 0 + assert count(b, 'r') == 2 + + for itm in items(s): + if itm == x: + inc result + +func cycle*[T](s: openArray[T], n: Natural): seq[T] = + ## Returns a new sequence with the items of the container `s` repeated + ## `n` times. + ## `n` must be a non-negative number (zero or more). ## - ## let - ## s = @[1, 2, 3] - ## total = s.repeat(3) - ## assert total == @[1, 2, 3, 1, 2, 3, 1, 2, 3] + runnableExamples: + let + s = @[1, 2, 3] + total = s.cycle(3) + assert total == @[1, 2, 3, 1, 2, 3, 1, 2, 3] + result = newSeq[T](n * s.len) var o = 0 - for x in 1..n: + for x in 0 ..< n: for e in s: result[o] = e inc o -proc deduplicate*[T](seq1: seq[T]): seq[T] = +proc repeat*[T](x: T, n: Natural): seq[T] = + ## Returns a new sequence with the item `x` repeated `n` times. + ## `n` must be a non-negative number (zero or more). + ## + runnableExamples: + let + total = repeat(5, 3) + assert total == @[5, 5, 5] + + result = newSeq[T](n) + for i in 0 ..< n: + result[i] = x + +func deduplicate*[T](s: openArray[T], isSorted: bool = false): seq[T] = ## Returns a new sequence without duplicates. ## - ## .. code-block:: - ## let - ## dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4] - ## dup2 = @["a", "a", "c", "d", "d"] - ## unique1 = deduplicate(dup1) - ## unique2 = deduplicate(dup2) - ## assert unique1 == @[1, 3, 4, 2, 8] - ## assert unique2 == @["a", "c", "d"] + ## Setting the optional argument `isSorted` to true (default: false) + ## uses a faster algorithm for deduplication. + ## + runnableExamples: + let + dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4] + dup2 = @["a", "a", "c", "d", "d"] + unique1 = deduplicate(dup1) + unique2 = deduplicate(dup2, isSorted = true) + assert unique1 == @[1, 3, 4, 2, 8] + assert unique2 == @["a", "c", "d"] + result = @[] - for itm in items(seq1): - if not result.contains(itm): result.add(itm) - -{.deprecated: [distnct: deduplicate].} - -proc zip*[S, T](seq1: seq[S], seq2: seq[T]): seq[tuple[a: S, b: T]] = - ## Returns a new sequence with a combination of the two input sequences. - ## - ## For convenience you can access the returned tuples through the named - ## fields `a` and `b`. If one sequence is shorter, the remaining items in the - ## longer sequence are discarded. Example: - ## - ## .. code-block:: - ## let - ## short = @[1, 2, 3] - ## long = @[6, 5, 4, 3, 2, 1] - ## words = @["one", "two", "three"] - ## zip1 = zip(short, long) - ## zip2 = zip(short, words) - ## assert zip1 == @[(1, 6), (2, 5), (3, 4)] - ## assert zip2 == @[(1, "one"), (2, "two"), (3, "three")] - ## assert zip1[2].b == 4 - ## assert zip2[2].b == "three" - var m = min(seq1.len, seq2.len) - newSeq(result, m) - for i in 0 .. m-1: result[i] = (seq1[i], seq2[i]) - -proc distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] = - ## Splits and distributes a sequence `s` into `num` sub sequences. - ## - ## Returns a sequence of `num` sequences. For some input values this is the - ## inverse of the `concat <#concat>`_ proc. The proc will assert in debug - ## builds if `s` is nil or `num` is less than one, and will likely crash on - ## release builds. The input sequence `s` can be empty, which will produce + if s.len > 0: + if isSorted: + var prev = s[0] + result.add(prev) + for i in 1..s.high: + if s[i] != prev: + prev = s[i] + result.add(prev) + else: + for itm in items(s): + if not result.contains(itm): result.add(itm) + +func minIndex*[T](s: openArray[T]): int {.since: (1, 1).} = + ## Returns the index of the minimum value of `s`. + ## `T` needs to have a `<` operator. + runnableExamples: + let + a = @[1, 2, 3, 4] + b = @[6, 5, 4, 3] + c = [2, -7, 8, -5] + d = "ziggy" + assert minIndex(a) == 0 + assert minIndex(b) == 3 + assert minIndex(c) == 1 + assert minIndex(d) == 2 + + for i in 1..high(s): + if s[i] < s[result]: result = i + +func maxIndex*[T](s: openArray[T]): int {.since: (1, 1).} = + ## Returns the index of the maximum value of `s`. + ## `T` needs to have a `<` operator. + runnableExamples: + let + a = @[1, 2, 3, 4] + b = @[6, 5, 4, 3] + c = [2, -7, 8, -5] + d = "ziggy" + assert maxIndex(a) == 3 + assert maxIndex(b) == 0 + assert maxIndex(c) == 2 + assert maxIndex(d) == 0 + + for i in 1..high(s): + if s[i] > s[result]: result = i + +func minmax*[T](x: openArray[T]): (T, T) = + ## The minimum and maximum values of `x`. `T` needs to have a `<` operator. + var l = x[0] + var h = x[0] + for i in 1..high(x): + if x[i] < l: l = x[i] + if h < x[i]: h = x[i] + result = (l, h) + + +template zipImpl(s1, s2, retType: untyped): untyped = + proc zip*[S, T](s1: openArray[S], s2: openArray[T]): retType = + ## Returns a new sequence with a combination of the two input containers. + ## + ## The input containers can be of different types. + ## If one container is shorter, the remaining items in the longer container + ## are discarded. + ## + ## **Note**: For Nim 1.0.x and older version, `zip` returned a seq of + ## named tuples with fields `a` and `b`. For Nim versions 1.1.x and newer, + ## `zip` returns a seq of unnamed tuples. + runnableExamples: + let + short = @[1, 2, 3] + long = @[6, 5, 4, 3, 2, 1] + words = @["one", "two", "three"] + letters = "abcd" + zip1 = zip(short, long) + zip2 = zip(short, words) + assert zip1 == @[(1, 6), (2, 5), (3, 4)] + assert zip2 == @[(1, "one"), (2, "two"), (3, "three")] + assert zip1[2][0] == 3 + assert zip2[1][1] == "two" + when (NimMajor, NimMinor) <= (1, 0): + let + zip3 = zip(long, letters) + assert zip3 == @[(a: 6, b: 'a'), (5, 'b'), (4, 'c'), (3, 'd')] + assert zip3[0].b == 'a' + else: + let + zip3: seq[tuple[num: int, letter: char]] = zip(long, letters) + assert zip3 == @[(6, 'a'), (5, 'b'), (4, 'c'), (3, 'd')] + assert zip3[0].letter == 'a' + + var m = min(s1.len, s2.len) + newSeq(result, m) + for i in 0 ..< m: + result[i] = (s1[i], s2[i]) + +when (NimMajor, NimMinor) <= (1, 0): + zipImpl(s1, s2, seq[tuple[a: S, b: T]]) +else: + zipImpl(s1, s2, seq[(S, T)]) + +proc unzip*[S, T](s: openArray[(S, T)]): (seq[S], seq[T]) {.since: (1, 1).} = + ## Returns a tuple of two sequences split out from a sequence of 2-field tuples. + runnableExamples: + let + zipped = @[(1, 'a'), (2, 'b'), (3, 'c')] + unzipped1 = @[1, 2, 3] + unzipped2 = @['a', 'b', 'c'] + assert zipped.unzip() == (unzipped1, unzipped2) + assert zip(unzipped1, unzipped2).unzip() == (unzipped1, unzipped2) + result = (newSeq[S](s.len), newSeq[T](s.len)) + for i in 0..<s.len: + result[0][i] = s[i][0] + result[1][i] = s[i][1] + +func distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] = + ## Splits and distributes a sequence `s` into `num` sub-sequences. + ## + ## Returns a sequence of `num` sequences. For *some* input values this is the + ## inverse of the `concat <#concat,varargs[seq[T]]>`_ func. + ## The input sequence `s` can be empty, which will produce ## `num` empty sequences. ## ## If `spread` is false and the length of `s` is not a multiple of `num`, the - ## proc will max out the first sub sequences with ``1 + len(s) div num`` + ## func will max out the first sub-sequence with `1 + len(s) div num` ## entries, leaving the remainder of elements to the last sequence. ## - ## On the other hand, if `spread` is true, the proc will distribute evenly + ## On the other hand, if `spread` is true, the func will distribute evenly ## the remainder of the division across all sequences, which makes the result ## more suited to multithreading where you are passing equal sized work units ## to a thread pool and want to maximize core usage. ## - ## Example: - ## - ## .. code-block:: - ## let numbers = @[1, 2, 3, 4, 5, 6, 7] - ## assert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]] - ## assert numbers.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]] - ## assert numbers.distribute(6)[0] == @[1, 2] - ## assert numbers.distribute(6)[5] == @[7] - assert(not s.isNil, "`s` can't be nil") + runnableExamples: + let numbers = @[1, 2, 3, 4, 5, 6, 7] + assert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]] + assert numbers.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]] + assert numbers.distribute(6)[0] == @[1, 2] + assert numbers.distribute(6)[1] == @[3] + if num < 2: result = @[s] return - let num = int(num) # XXX probably only needed because of .. bug - # Create the result and calculate the stride size and the remainder if any. result = newSeq[seq[T]](num) var @@ -148,117 +372,266 @@ proc distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] = if extra == 0 or spread == false: # Use an algorithm which overcounts the stride and minimizes reading limits. if extra > 0: inc(stride) - - for i in 0 .. <num: + for i in 0 ..< num: result[i] = newSeq[T]() - for g in first .. <min(s.len, first + stride): + for g in first ..< min(s.len, first + stride): result[i].add(s[g]) first += stride - else: # Use an undercounting algorithm which *adds* the remainder each iteration. - for i in 0 .. <num: + for i in 0 ..< num: last = first + stride if extra > 0: extra -= 1 inc(last) - result[i] = newSeq[T]() - for g in first .. <last: + for g in first ..< last: result[i].add(s[g]) first = last +proc map*[T, S](s: openArray[T], op: proc (x: T): S {.closure.}): + seq[S] {.inline, effectsOf: op.} = + ## Returns a new sequence with the results of the `op` proc applied to every + ## item in the container `s`. + ## + ## Since the input is not modified, you can use it to + ## transform the type of the elements in the input container. + ## + ## Instead of using `map` and `filter`, consider using the `collect` macro + ## from the `sugar` module. + ## + ## **See also:** + ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_ + ## * `mapIt template<#mapIt.t,typed,untyped>`_ + ## * `apply proc<#apply,openArray[T],proc(T)_2>`_ for the in-place version + ## + runnableExamples: + let + a = @[1, 2, 3, 4] + b = map(a, proc(x: int): string = $x) + assert b == @["1", "2", "3", "4"] + newSeq(result, s.len) + for i in 0 ..< s.len: + result[i] = op(s[i]) -iterator filter*[T](seq1: seq[T], pred: proc(item: T): bool {.closure.}): T = - ## Iterates through a sequence and yields every item that fulfills the - ## predicate. +proc apply*[T](s: var openArray[T], op: proc (x: var T) {.closure.}) + {.inline, effectsOf: op.} = + ## Applies `op` to every item in `s`, modifying it directly. + ## + ## Note that the container `s` must be declared as a `var`, + ## since `s` is modified in-place. + ## The parameter function takes a `var T` type parameter. + ## + ## **See also:** + ## * `applyIt template<#applyIt.t,untyped,untyped>`_ + ## * `map proc<#map,openArray[T],proc(T)>`_ + ## + runnableExamples: + var a = @["1", "2", "3", "4"] + apply(a, proc(x: var string) = x &= "42") + assert a == @["142", "242", "342", "442"] + + for i in 0 ..< s.len: op(s[i]) + +proc apply*[T](s: var openArray[T], op: proc (x: T): T {.closure.}) + {.inline, effectsOf: op.} = + ## Applies `op` to every item in `s` modifying it directly. + ## + ## Note that the container `s` must be declared as a `var` + ## and it is required for your input and output types to + ## be the same, since `s` is modified in-place. + ## The parameter function takes and returns a `T` type variable. + ## + ## **See also:** + ## * `applyIt template<#applyIt.t,untyped,untyped>`_ + ## * `map proc<#map,openArray[T],proc(T)>`_ + ## + runnableExamples: + var a = @["1", "2", "3", "4"] + apply(a, proc(x: string): string = x & "42") + assert a == @["142", "242", "342", "442"] + + for i in 0 ..< s.len: s[i] = op(s[i]) + +proc apply*[T](s: openArray[T], op: proc (x: T) {.closure.}) {.inline, since: (1, 3), effectsOf: op.} = + ## Same as `apply` but for a proc that does not return anything + ## and does not mutate `s` directly. + runnableExamples: + var message: string + apply([0, 1, 2, 3, 4], proc(item: int) = message.addInt item) + assert message == "01234" + for i in 0 ..< s.len: op(s[i]) + +iterator filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): T {.effectsOf: pred.} = + ## Iterates through a container `s` and yields every item that fulfills the + ## predicate `pred` (a function that returns a `bool`). + ## + ## Instead of using `map` and `filter`, consider using the `collect` macro + ## from the `sugar` module. + ## + ## **See also:** + ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_ + ## * `filter proc<#filter,openArray[T],proc(T)>`_ + ## * `filterIt template<#filterIt.t,untyped,untyped>`_ + ## + runnableExamples: + let numbers = @[1, 4, 5, 8, 9, 7, 4] + var evens = newSeq[int]() + for n in filter(numbers, proc (x: int): bool = x mod 2 == 0): + evens.add(n) + assert evens == @[4, 8, 4] + + for i in 0 ..< s.len: + if pred(s[i]): + yield s[i] + +proc filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): seq[T] + {.inline, effectsOf: pred.} = + ## Returns a new sequence with all the items of `s` that fulfill the + ## predicate `pred` (a function that returns a `bool`). + ## + ## Instead of using `map` and `filter`, consider using the `collect` macro + ## from the `sugar` module. + ## + ## **See also:** + ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_ + ## * `filterIt template<#filterIt.t,untyped,untyped>`_ + ## * `filter iterator<#filter.i,openArray[T],proc(T)>`_ + ## * `keepIf proc<#keepIf,seq[T],proc(T)>`_ for the in-place version + ## + runnableExamples: + let + colors = @["red", "yellow", "black"] + f1 = filter(colors, proc(x: string): bool = x.len < 6) + f2 = filter(colors, proc(x: string): bool = x.contains('y')) + assert f1 == @["red", "black"] + assert f2 == @["yellow"] + + result = newSeq[T]() + for i in 0 ..< s.len: + if pred(s[i]): + result.add(s[i]) + +proc keepIf*[T](s: var seq[T], pred: proc(x: T): bool {.closure.}) + {.inline, effectsOf: pred.} = + ## Keeps the items in the passed sequence `s` if they fulfill the + ## predicate `pred` (a function that returns a `bool`). ## - ## Example: - ## - ## .. code-block:: - ## let numbers = @[1, 4, 5, 8, 9, 7, 4] - ## for n in filter(numbers, proc (x: int): bool = x mod 2 == 0): - ## echo($n) - ## # echoes 4, 8, 4 in separate lines - for i in countup(0, len(seq1)-1): - var item = seq1[i] - if pred(item): yield seq1[i] - -proc filter*[T](seq1: seq[T], pred: proc(item: T): bool {.closure.}): seq[T] = - ## Returns a new sequence with all the items that fulfilled the predicate. - ## - ## Example: - ## - ## .. code-block:: - ## let - ## colors = @["red", "yellow", "black"] - ## f1 = filter(colors, proc(x: string): bool = x.len < 6) - ## f2 = filter(colors) do (x: string) -> bool : x.len > 5 - ## assert f1 == @["red", "black"] - ## assert f2 == @["yellow"] - accumulateResult(filter(seq1, pred)) - -proc keepIf*[T](seq1: var seq[T], pred: proc(item: T): bool {.closure.}) = - ## Keeps the items in the passed sequence if they fulfilled the predicate. - ## Same as the ``filter`` proc, but modifies the sequence directly. - ## - ## Example: - ## - ## .. code-block:: - ## var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1] - ## keepIf(floats, proc(x: float): bool = x > 10) - ## assert floats == @[13.0, 12.5, 10.1] + ## Note that `s` must be declared as a `var`. + ## + ## Similar to the `filter proc<#filter,openArray[T],proc(T)>`_, + ## but modifies the sequence directly. + ## + ## **See also:** + ## * `keepItIf template<#keepItIf.t,seq,untyped>`_ + ## * `filter proc<#filter,openArray[T],proc(T)>`_ + ## + runnableExamples: + var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1] + keepIf(floats, proc(x: float): bool = x > 10) + assert floats == @[13.0, 12.5, 10.1] + var pos = 0 - for i in 0 .. <len(seq1): - if pred(seq1[i]): + for i in 0 ..< len(s): + if pred(s[i]): if pos != i: - seq1[pos] = seq1[i] + when defined(gcDestructors): + s[pos] = move(s[i]) + else: + shallowCopy(s[pos], s[i]) inc(pos) - setLen(seq1, pos) + setLen(s, pos) -proc delete*[T](s: var seq[T], first=0, last=0) = - ## Deletes in `s` the items at position `first` .. `last`. This modifies - ## `s` itself, it does not return a copy. +func delete*[T](s: var seq[T]; slice: Slice[int]) = + ## Deletes the items `s[slice]`, raising `IndexDefect` if the slice contains + ## elements out of range. ## - ## Example: - ## - ##.. code-block:: - ## let outcome = @[1,1,1,1,1,1,1,1] - ## var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1] - ## dest.delete(3, 8) - ## assert outcome == dest + ## This operation moves all elements after `s[slice]` in linear time. + runnableExamples: + var a = @[10, 11, 12, 13, 14] + doAssertRaises(IndexDefect): a.delete(4..5) + assert a == @[10, 11, 12, 13, 14] + a.delete(4..4) + assert a == @[10, 11, 12, 13] + a.delete(1..2) + assert a == @[10, 13] + a.delete(1..<1) # empty slice + assert a == @[10, 13] + when compileOption("boundChecks"): + if not (slice.a < s.len and slice.a >= 0 and slice.b < s.len): + raise newException(IndexDefect, $(slice: slice, len: s.len)) + if slice.b >= slice.a: + template defaultImpl = + var i = slice.a + var j = slice.b + 1 + var newLen = s.len - j + i + while i < newLen: + when defined(gcDestructors): + s[i] = move(s[j]) + else: + s[i].shallowCopy(s[j]) + inc(i) + inc(j) + setLen(s, newLen) + when nimvm: defaultImpl() + else: + when defined(js): + let n = slice.b - slice.a + 1 + let first = slice.a + {.emit: "`s`.splice(`first`, `n`);".} + else: + defaultImpl() +func delete*[T](s: var seq[T]; first, last: Natural) {.deprecated: "use `delete(s, first..last)`".} = + ## Deletes the items of a sequence `s` at positions `first..last` + ## (including both ends of the range). + ## This modifies `s` itself, it does not return a copy. + runnableExamples("--warning:deprecated:off"): + let outcome = @[1, 1, 1, 1, 1, 1, 1, 1] + var dest = @[1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1] + dest.delete(3, 8) + assert outcome == dest + doAssert first <= last + if first >= s.len: + return var i = first - var j = last+1 - var newLen = len(s)-j+i + var j = min(len(s), last + 1) + var newLen = len(s) - j + i while i < newLen: - s[i].shallowCopy(s[j]) + when defined(gcDestructors): + s[i] = move(s[j]) + else: + s[i].shallowCopy(s[j]) inc(i) inc(j) setLen(s, newLen) -proc insert*[T](dest: var seq[T], src: openArray[T], pos=0) = +func insert*[T](dest: var seq[T], src: openArray[T], pos = 0) = ## Inserts items from `src` into `dest` at position `pos`. This modifies ## `dest` itself, it does not return a copy. ## - ## Example: + ## Note that the elements of `src` and `dest` must be of the same type. ## - ##.. code-block:: - ## var dest = @[1,1,1,1,1,1,1,1] - ## let - ## src = @[2,2,2,2,2,2] - ## outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1] - ## dest.insert(src, 3) - ## assert dest == outcome + runnableExamples: + var dest = @[1, 1, 1, 1, 1, 1, 1, 1] + let + src = @[2, 2, 2, 2, 2, 2] + outcome = @[1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1] + dest.insert(src, 3) + assert dest == outcome var j = len(dest) - 1 - var i = len(dest) + len(src) - 1 + var i = j + len(src) + if i == j: return dest.setLen(i + 1) # Move items after `pos` to the end of the sequence. while j >= pos: - dest[i].shallowCopy(dest[j]) + when defined(gcDestructors): + dest[i] = move(dest[j]) + else: + dest[i].shallowCopy(dest[j]) dec(i) dec(j) # Insert items from `dest` into `dest` at `pos` @@ -268,261 +641,266 @@ proc insert*[T](dest: var seq[T], src: openArray[T], pos=0) = inc(j) -template filterIt*(seq1, pred: expr): expr {.immediate.} = - ## Returns a new sequence with all the items that fulfilled the predicate. +template filterIt*(s, pred: untyped): untyped = + ## Returns a new sequence with all the items of `s` that fulfill the + ## predicate `pred`. + ## + ## Unlike the `filter proc<#filter,openArray[T],proc(T)>`_ and + ## `filter iterator<#filter.i,openArray[T],proc(T)>`_, + ## the predicate needs to be an expression using the `it` variable + ## for testing, like: `filterIt("abcxyz", it == 'x')`. ## - ## Unlike the `proc` version, the predicate needs to be an expression using - ## the ``it`` variable for testing, like: ``filterIt("abcxyz", it == 'x')``. - ## Example: + ## Instead of using `mapIt` and `filterIt`, consider using the `collect` macro + ## from the `sugar` module. ## - ## .. code-block:: - ## let - ## temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44] - ## acceptable = filterIt(temperatures, it < 50 and it > -10) - ## notAcceptable = filterIt(temperatures, it > 50 or it < -10) - ## assert acceptable == @[-2.0, 24.5, 44.31] - ## assert notAcceptable == @[-272.15, 99.9, -113.44] - var result {.gensym.}: type(seq1) = @[] - for it {.inject.} in items(seq1): + ## **See also:** + ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_ + ## * `filter proc<#filter,openArray[T],proc(T)>`_ + ## * `filter iterator<#filter.i,openArray[T],proc(T)>`_ + ## + runnableExamples: + let + temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44] + acceptable = temperatures.filterIt(it < 50 and it > -10) + notAcceptable = temperatures.filterIt(it > 50 or it < -10) + assert acceptable == @[-2.0, 24.5, 44.31] + assert notAcceptable == @[-272.15, 99.9, -113.44] + + var result = newSeq[typeof(s[0])]() + for it {.inject.} in items(s): if pred: result.add(it) result -template keepItIf*(varSeq, pred: expr) = - ## Convenience template around the ``keepIf`` proc to reduce typing. +template keepItIf*(varSeq: seq, pred: untyped) = + ## Keeps the items in the passed sequence (must be declared as a `var`) + ## if they fulfill the predicate. + ## + ## Unlike the `keepIf proc<#keepIf,seq[T],proc(T)>`_, + ## the predicate needs to be an expression using + ## the `it` variable for testing, like: `keepItIf("abcxyz", it == 'x')`. ## - ## Unlike the `proc` version, the predicate needs to be an expression using - ## the ``it`` variable for testing, like: ``keepItIf("abcxyz", it == 'x')``. - ## Example: + ## **See also:** + ## * `keepIf proc<#keepIf,seq[T],proc(T)>`_ + ## * `filterIt template<#filterIt.t,untyped,untyped>`_ ## - ## .. code-block:: - ## var candidates = @["foo", "bar", "baz", "foobar"] - ## keepItIf(candidates, it.len == 3 and it[0] == 'b') - ## assert candidates == @["bar", "baz"] + runnableExamples: + var candidates = @["foo", "bar", "baz", "foobar"] + candidates.keepItIf(it.len == 3 and it[0] == 'b') + assert candidates == @["bar", "baz"] + var pos = 0 - for i in 0 .. <len(varSeq): + for i in 0 ..< len(varSeq): let it {.inject.} = varSeq[i] if pred: if pos != i: - varSeq[pos] = varSeq[i] + when defined(gcDestructors): + varSeq[pos] = move(varSeq[i]) + else: + shallowCopy(varSeq[pos], varSeq[i]) inc(pos) setLen(varSeq, pos) +since (1, 1): + template countIt*(s, pred: untyped): int = + ## Returns a count of all the items that fulfill the predicate. + ## + ## The predicate needs to be an expression using + ## the `it` variable for testing, like: `countIt(@[1, 2, 3], it > 2)`. + ## + runnableExamples: + let numbers = @[-3, -2, -1, 0, 1, 2, 3, 4, 5, 6] + iterator iota(n: int): int = + for i in 0..<n: yield i + assert numbers.countIt(it < 0) == 3 + assert countIt(iota(10), it < 2) == 2 -template toSeq*(iter: expr): expr {.immediate.} = - ## Transforms any iterator into a sequence. - ## - ## Example: - ## - ## .. code-block:: - ## let - ## numeric = @[1, 2, 3, 4, 5, 6, 7, 8, 9] - ## odd_numbers = toSeq(filter(numeric) do (x: int) -> bool: - ## if x mod 2 == 1: - ## result = true) - ## assert odd_numbers == @[1, 3, 5, 7, 9] - ## - ## **Note**: Since this is an immediate macro, you cannot always invoke this - ## as ``x.toSeq``, depending on the ``x``. - ## See `this <manual.html#limitations-of-the-method-call-syntax>`_ - ## for an explanation. - var result {.gensym.}: seq[type(iter)] = @[] - for x in iter: add(result, x) - result + var result = 0 + for it {.inject.} in s: + if pred: result += 1 + result -template foldl*(sequence, operation: expr): expr = - ## Template to fold a sequence from left to right, returning the accumulation. +proc all*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool {.effectsOf: pred.} = + ## Iterates through a container and checks if every item fulfills the + ## predicate. ## - ## The sequence is required to have at least a single element. Debug versions - ## of your program will assert in this situation but release versions will - ## happily go ahead. If the sequence has a single element it will be returned - ## without applying ``operation``. + ## **See also:** + ## * `allIt template<#allIt.t,untyped,untyped>`_ + ## * `any proc<#any,openArray[T],proc(T)>`_ ## - ## The ``operation`` parameter should be an expression which uses the - ## variables ``a`` and ``b`` for each step of the fold. Since this is a left - ## fold, for non associative binary operations like subtraction think that - ## the sequence of numbers 1, 2 and 3 will be parenthesized as (((1) - 2) - - ## 3). Example: - ## - ## .. code-block:: - ## let - ## numbers = @[5, 9, 11] - ## addition = foldl(numbers, a + b) - ## subtraction = foldl(numbers, a - b) - ## multiplication = foldl(numbers, a * b) - ## words = @["nim", "is", "cool"] - ## concatenation = foldl(words, a & b) - ## assert addition == 25, "Addition is (((5)+9)+11)" - ## assert subtraction == -15, "Subtraction is (((5)-9)-11)" - ## assert multiplication == 495, "Multiplication is (((5)*9)*11)" - ## assert concatenation == "nimiscool" - assert sequence.len > 0, "Can't fold empty sequences" - var result {.gensym.}: type(sequence[0]) - result = sequence[0] - for i in countup(1, sequence.len - 1): - let - a {.inject.} = result - b {.inject.} = sequence[i] - result = operation - result + runnableExamples: + let numbers = @[1, 4, 5, 8, 9, 7, 4] + assert all(numbers, proc (x: int): bool = x < 10) == true + assert all(numbers, proc (x: int): bool = x < 9) == false -template foldr*(sequence, operation: expr): expr = - ## Template to fold a sequence from right to left, returning the accumulation. + for i in s: + if not pred(i): + return false + true + +template allIt*(s, pred: untyped): bool = + ## Iterates through a container and checks if every item fulfills the + ## predicate. ## - ## The sequence is required to have at least a single element. Debug versions - ## of your program will assert in this situation but release versions will - ## happily go ahead. If the sequence has a single element it will be returned - ## without applying ``operation``. + ## Unlike the `all proc<#all,openArray[T],proc(T)>`_, + ## the predicate needs to be an expression using + ## the `it` variable for testing, like: `allIt("abba", it == 'a')`. ## - ## The ``operation`` parameter should be an expression which uses the - ## variables ``a`` and ``b`` for each step of the fold. Since this is a right - ## fold, for non associative binary operations like subtraction think that - ## the sequence of numbers 1, 2 and 3 will be parenthesized as (1 - (2 - - ## (3))). Example: - ## - ## .. code-block:: - ## let - ## numbers = @[5, 9, 11] - ## addition = foldr(numbers, a + b) - ## subtraction = foldr(numbers, a - b) - ## multiplication = foldr(numbers, a * b) - ## words = @["nim", "is", "cool"] - ## concatenation = foldr(words, a & b) - ## assert addition == 25, "Addition is (5+(9+(11)))" - ## assert subtraction == 7, "Subtraction is (5-(9-(11)))" - ## assert multiplication == 495, "Multiplication is (5*(9*(11)))" - ## assert concatenation == "nimiscool" - assert sequence.len > 0, "Can't fold empty sequences" - var result {.gensym.}: type(sequence[0]) - result = sequence[sequence.len - 1] - for i in countdown(sequence.len - 2, 0): - let - a {.inject.} = sequence[i] - b {.inject.} = result - result = operation - result + ## **See also:** + ## * `all proc<#all,openArray[T],proc(T)>`_ + ## * `anyIt template<#anyIt.t,untyped,untyped>`_ + ## + runnableExamples: + let numbers = @[1, 4, 5, 8, 9, 7, 4] + assert numbers.allIt(it < 10) == true + assert numbers.allIt(it < 9) == false -template mapIt*(seq1, typ, op: expr): expr = - ## Convenience template around the ``map`` proc to reduce typing. - ## - ## The template injects the ``it`` variable which you can use directly in an - ## expression. You also need to pass as `typ` the type of the expression, - ## since the new returned sequence can have a different type than the - ## original. Example: - ## - ## .. code-block:: - ## let - ## nums = @[1, 2, 3, 4] - ## strings = nums.mapIt(string, $(4 * it)) - ## assert strings == @["4", "8", "12", "16"] - var result {.gensym.}: seq[typ] = @[] - for it {.inject.} in items(seq1): - result.add(op) + var result = true + for it {.inject.} in items(s): + if not pred: + result = false + break result -template mapIt*(varSeq, op: expr) = - ## Convenience template around the mutable ``map`` proc to reduce typing. +proc any*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool {.effectsOf: pred.} = + ## Iterates through a container and checks if at least one item + ## fulfills the predicate. ## - ## The template injects the ``it`` variable which you can use directly in an - ## expression. The expression has to return the same type as the sequence you - ## are mutating. Example: + ## **See also:** + ## * `anyIt template<#anyIt.t,untyped,untyped>`_ + ## * `all proc<#all,openArray[T],proc(T)>`_ ## - ## .. code-block:: - ## var nums = @[1, 2, 3, 4] - ## nums.mapIt(it * 3) - ## assert nums[0] + nums[3] == 15 - for i in 0 .. <len(varSeq): - let it {.inject.} = varSeq[i] - varSeq[i] = op + runnableExamples: + let numbers = @[1, 4, 5, 8, 9, 7, 4] + assert any(numbers, proc (x: int): bool = x > 8) == true + assert any(numbers, proc (x: int): bool = x > 9) == false -template newSeqWith*(len: int, init: expr): expr = - ## creates a new sequence, calling `init` to initialize each value. Example: + for i in s: + if pred(i): + return true + false + +template anyIt*(s, pred: untyped): bool = + ## Iterates through a container and checks if at least one item + ## fulfills the predicate. ## - ## .. code-block:: - ## var seq2D = newSeqWith(20, newSeq[bool](10)) - ## seq2D[0][0] = true - ## seq2D[1][0] = true - ## seq2D[0][1] = true + ## Unlike the `any proc<#any,openArray[T],proc(T)>`_, + ## the predicate needs to be an expression using + ## the `it` variable for testing, like: `anyIt("abba", it == 'a')`. ## - ## import math - ## var seqRand = newSeqWith(20, random(10)) - ## echo seqRand - var result {.gensym.} = newSeq[type(init)](len) - for i in 0 .. <len: - result[i] = init + ## **See also:** + ## * `any proc<#any,openArray[T],proc(T)>`_ + ## * `allIt template<#allIt.t,untyped,untyped>`_ + ## + runnableExamples: + let numbers = @[1, 4, 5, 8, 9, 7, 4] + assert numbers.anyIt(it > 8) == true + assert numbers.anyIt(it > 9) == false + + var result = false + for it {.inject.} in items(s): + if pred: + result = true + break result -when isMainModule: - import strutils - block: # concat test - let - s1 = @[1, 2, 3] - s2 = @[4, 5] - s3 = @[6, 7] - total = concat(s1, s2, s3) - assert total == @[1, 2, 3, 4, 5, 6, 7] +template toSeq1(s: not iterator): untyped = + # overload for typed but not iterator + type OutType = typeof(items(s)) + when compiles(s.len): + block: + evalOnceAs(s2, s, compiles((let _ = s))) + var i = 0 + var result = newSeq[OutType](s2.len) + for it in s2: + result[i] = it + i += 1 + result + else: + var result: seq[OutType]# = @[] + for it in s: + result.add(it) + result - block: # duplicates test - let - dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4] - dup2 = @["a", "a", "c", "d", "d"] - unique1 = deduplicate(dup1) - unique2 = deduplicate(dup2) - assert unique1 == @[1, 3, 4, 2, 8] - assert unique2 == @["a", "c", "d"] +template toSeq2(iter: iterator): untyped = + # overload for iterator + evalOnceAs(iter2, iter(), false) + when compiles(iter2.len): + var i = 0 + var result = newSeq[typeof(iter2)](iter2.len) + for x in iter2: + result[i] = x + inc i + result + else: + type OutType = typeof(iter2()) + var result: seq[OutType]# = @[] + when compiles(iter2()): + evalOnceAs(iter4, iter, false) + let iter3 = iter4() + for x in iter3(): + result.add(x) + else: + for x in iter2(): + result.add(x) + result - block: # zip test - let - short = @[1, 2, 3] - long = @[6, 5, 4, 3, 2, 1] - words = @["one", "two", "three"] - zip1 = zip(short, long) - zip2 = zip(short, words) - assert zip1 == @[(1, 6), (2, 5), (3, 4)] - assert zip2 == @[(1, "one"), (2, "two"), (3, "three")] - assert zip1[2].b == 4 - assert zip2[2].b == "three" - - block: # filter proc test +template toSeq*(iter: untyped): untyped = + ## Transforms any iterable (anything that can be iterated over, e.g. with + ## a for-loop) into a sequence. + ## + runnableExamples: let - colors = @["red", "yellow", "black"] - f1 = filter(colors, proc(x: string): bool = x.len < 6) - f2 = filter(colors) do (x: string) -> bool : x.len > 5 - assert f1 == @["red", "black"] - assert f2 == @["yellow"] - - block: # filter iterator test - let numbers = @[1, 4, 5, 8, 9, 7, 4] - for n in filter(numbers, proc (x: int): bool = x mod 2 == 0): - echo($n) - # echoes 4, 8, 4 in separate lines + myRange = 1..5 + mySet: set[int8] = {5'i8, 3, 1} + assert typeof(myRange) is HSlice[system.int, system.int] + assert typeof(mySet) is set[int8] - block: # keepIf test - var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1] - keepIf(floats, proc(x: float): bool = x > 10) - assert floats == @[13.0, 12.5, 10.1] - - block: # filterIt test let - temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44] - acceptable = filterIt(temperatures, it < 50 and it > -10) - notAcceptable = filterIt(temperatures, it > 50 or it < -10) - assert acceptable == @[-2.0, 24.5, 44.31] - assert notAcceptable == @[-272.15, 99.9, -113.44] + mySeq1 = toSeq(myRange) + mySeq2 = toSeq(mySet) + assert mySeq1 == @[1, 2, 3, 4, 5] + assert mySeq2 == @[1'i8, 3, 5] - block: # keepItIf test - var candidates = @["foo", "bar", "baz", "foobar"] - keepItIf(candidates, it.len == 3 and it[0] == 'b') - assert candidates == @["bar", "baz"] - - block: # toSeq test - let - numeric = @[1, 2, 3, 4, 5, 6, 7, 8, 9] - odd_numbers = toSeq(filter(numeric) do (x: int) -> bool: - if x mod 2 == 1: - result = true) - assert odd_numbers == @[1, 3, 5, 7, 9] + when compiles(toSeq1(iter)): + toSeq1(iter) + elif compiles(toSeq2(iter)): + toSeq2(iter) + else: + # overload for untyped, e.g.: `toSeq(myInlineIterator(3))` + when compiles(iter.len): + block: + evalOnceAs(iter2, iter, true) + var result = newSeq[typeof(iter)](iter2.len) + var i = 0 + for x in iter2: + result[i] = x + inc i + result + else: + var result: seq[typeof(iter)] = @[] + for x in iter: + result.add(x) + result - block: # foldl tests +template foldl*(sequence, operation: untyped): untyped = + ## Template to fold a sequence from left to right, returning the accumulation. + ## + ## The sequence is required to have at least a single element. Debug versions + ## of your program will assert in this situation but release versions will + ## happily go ahead. If the sequence has a single element it will be returned + ## without applying `operation`. + ## + ## The `operation` parameter should be an expression which uses the + ## variables `a` and `b` for each step of the fold. Since this is a left + ## fold, for non associative binary operations like subtraction think that + ## the sequence of numbers 1, 2 and 3 will be parenthesized as (((1) - 2) - + ## 3). + ## + ## **See also:** + ## * `foldl template<#foldl.t,,,>`_ with a starting parameter + ## * `foldr template<#foldr.t,untyped,untyped>`_ + ## + runnableExamples: let numbers = @[5, 9, 11] addition = foldl(numbers, a + b) @@ -530,12 +908,75 @@ when isMainModule: multiplication = foldl(numbers, a * b) words = @["nim", "is", "cool"] concatenation = foldl(words, a & b) + procs = @["proc", "Is", "Also", "Fine"] + + + func foo(acc, cur: string): string = + result = acc & cur + assert addition == 25, "Addition is (((5)+9)+11)" assert subtraction == -15, "Subtraction is (((5)-9)-11)" assert multiplication == 495, "Multiplication is (((5)*9)*11)" assert concatenation == "nimiscool" + assert foldl(procs, foo(a, b)) == "procIsAlsoFine" + + let s = sequence + assert s.len > 0, "Can't fold empty sequences" + var result: typeof(s[0]) + result = s[0] + for i in 1..<s.len: + let + a {.inject.} = result + b {.inject.} = s[i] + result = operation + result + +template foldl*(sequence, operation, first): untyped = + ## Template to fold a sequence from left to right, returning the accumulation. + ## + ## This version of `foldl` gets a **starting parameter**. This makes it possible + ## to accumulate the sequence into a different type than the sequence elements. + ## + ## The `operation` parameter should be an expression which uses the variables + ## `a` and `b` for each step of the fold. The `first` parameter is the + ## start value (the first `a`) and therefore defines the type of the result. + ## + ## **See also:** + ## * `foldr template<#foldr.t,untyped,untyped>`_ + ## + runnableExamples: + let + numbers = @[0, 8, 1, 5] + digits = foldl(numbers, a & (chr(b + ord('0'))), "") + assert digits == "0815" - block: # foldr tests + var result: typeof(first) = first + for x in items(sequence): + let + a {.inject.} = result + b {.inject.} = x + result = operation + result + +template foldr*(sequence, operation: untyped): untyped = + ## Template to fold a sequence from right to left, returning the accumulation. + ## + ## The sequence is required to have at least a single element. Debug versions + ## of your program will assert in this situation but release versions will + ## happily go ahead. If the sequence has a single element it will be returned + ## without applying `operation`. + ## + ## The `operation` parameter should be an expression which uses the + ## variables `a` and `b` for each step of the fold. Since this is a right + ## fold, for non associative binary operations like subtraction think that + ## the sequence of numbers 1, 2 and 3 will be parenthesized as (1 - (2 - + ## (3))). + ## + ## **See also:** + ## * `foldl template<#foldl.t,untyped,untyped>`_ + ## * `foldl template<#foldl.t,,,>`_ with a starting parameter + ## + runnableExamples: let numbers = @[5, 9, 11] addition = foldr(numbers, a + b) @@ -548,72 +989,174 @@ when isMainModule: assert multiplication == 495, "Multiplication is (5*(9*(11)))" assert concatenation == "nimiscool" - block: # delete tests - let outcome = @[1,1,1,1,1,1,1,1] - var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1] - dest.delete(3, 8) - assert outcome == dest, """\ - Deleting range 3-9 from [1,1,1,2,2,2,2,2,2,1,1,1,1,1] - is [1,1,1,1,1,1,1,1]""" - - block: # insert tests - var dest = @[1,1,1,1,1,1,1,1] + let s = sequence # xxx inefficient, use {.evalonce.} pending #13750 + let n = s.len + assert n > 0, "Can't fold empty sequences" + var result = s[n - 1] + for i in countdown(n - 2, 0): let - src = @[2,2,2,2,2,2] - outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1] - dest.insert(src, 3) - assert dest == outcome, """\ - Inserting [2,2,2,2,2,2] into [1,1,1,1,1,1,1,1] - at 3 is [1,1,1,2,2,2,2,2,2,1,1,1,1,1]""" + a {.inject.} = s[i] + b {.inject.} = result + result = operation + result - block: # mapIt tests - var +template mapIt*(s: typed, op: untyped): untyped = + ## Returns a new sequence with the results of the `op` proc applied to every + ## item in the container `s`. + ## + ## Since the input is not modified you can use it to + ## transform the type of the elements in the input container. + ## + ## The template injects the `it` variable which you can use directly in an + ## expression. + ## + ## Instead of using `mapIt` and `filterIt`, consider using the `collect` macro + ## from the `sugar` module. + ## + ## **See also:** + ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_ + ## * `map proc<#map,openArray[T],proc(T)>`_ + ## * `applyIt template<#applyIt.t,untyped,untyped>`_ for the in-place version + ## + runnableExamples: + let nums = @[1, 2, 3, 4] - strings = nums.mapIt(string, $(4 * it)) - nums.mapIt(it * 3) + strings = nums.mapIt($(4 * it)) + assert strings == @["4", "8", "12", "16"] + + type OutType = typeof(( + block: + var it{.inject.}: typeof(items(s), typeOfIter); + op), typeOfProc) + when OutType is not (proc): + # Here, we avoid to create closures in loops. + # This avoids https://github.com/nim-lang/Nim/issues/12625 + when compiles(s.len): + block: # using a block avoids https://github.com/nim-lang/Nim/issues/8580 + + # BUG: `evalOnceAs(s2, s, false)` would lead to C compile errors + # (`error: use of undeclared identifier`) instead of Nim compile errors + evalOnceAs(s2, s, compiles((let _ = s))) + + var i = 0 + var result = newSeq[OutType](s2.len) + for it {.inject.} in s2: + result[i] = op + i += 1 + result + else: + var result: seq[OutType]# = @[] + # use `items` to avoid https://github.com/nim-lang/Nim/issues/12639 + for it {.inject.} in items(s): + result.add(op) + result + else: + # `op` is going to create closures in loops, let's fallback to `map`. + # NOTE: Without this fallback, developers have to define a helper function and + # call `map`: + # [1, 2].map((it) => ((x: int) => it + x)) + # With this fallback, above code can be simplified to: + # [1, 2].mapIt((x: int) => it + x) + # In this case, `mapIt` is just syntax sugar for `map`. + type InType = typeof(items(s), typeOfIter) + # Use a help proc `f` to create closures for each element in `s` + let f = proc (x: InType): OutType = + let it {.inject.} = x + op + map(s, f) + +template applyIt*(varSeq, op: untyped) = + ## Convenience template around the mutable `apply` proc to reduce typing. + ## + ## The template injects the `it` variable which you can use directly in an + ## expression. The expression has to return the same type as the elements + ## of the sequence you are mutating. + ## + ## **See also:** + ## * `apply proc<#apply,openArray[T],proc(T)_2>`_ + ## * `mapIt template<#mapIt.t,typed,untyped>`_ + ## + runnableExamples: + var nums = @[1, 2, 3, 4] + nums.applyIt(it * 3) assert nums[0] + nums[3] == 15 - block: # distribute tests - let numbers = @[1, 2, 3, 4, 5, 6, 7] - doAssert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]] - doAssert numbers.distribute(6)[0] == @[1, 2] - doAssert numbers.distribute(6)[5] == @[7] - let a = @[1, 2, 3, 4, 5, 6, 7] - doAssert a.distribute(1, true) == @[@[1, 2, 3, 4, 5, 6, 7]] - doAssert a.distribute(1, false) == @[@[1, 2, 3, 4, 5, 6, 7]] - doAssert a.distribute(2, true) == @[@[1, 2, 3, 4], @[5, 6, 7]] - doAssert a.distribute(2, false) == @[@[1, 2, 3, 4], @[5, 6, 7]] - doAssert a.distribute(3, true) == @[@[1, 2, 3], @[4, 5], @[6, 7]] - doAssert a.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]] - doAssert a.distribute(4, true) == @[@[1, 2], @[3, 4], @[5, 6], @[7]] - doAssert a.distribute(4, false) == @[@[1, 2], @[3, 4], @[5, 6], @[7]] - doAssert a.distribute(5, true) == @[@[1, 2], @[3, 4], @[5], @[6], @[7]] - doAssert a.distribute(5, false) == @[@[1, 2], @[3, 4], @[5, 6], @[7], @[]] - doAssert a.distribute(6, true) == @[@[1, 2], @[3], @[4], @[5], @[6], @[7]] - doAssert a.distribute(6, false) == @[ - @[1, 2], @[3, 4], @[5, 6], @[7], @[], @[]] - doAssert a.distribute(8, false) == a.distribute(8, true) - doAssert a.distribute(90, false) == a.distribute(90, true) - var b = @[0] - for f in 1 .. 25: b.add(f) - doAssert b.distribute(5, true)[4].len == 5 - doAssert b.distribute(5, false)[4].len == 2 - - block: # newSeqWith tests - var seq2D = newSeqWith(4, newSeq[bool](2)) - seq2D[0][0] = true - seq2D[1][0] = true - seq2D[0][1] = true - doAssert seq2D == @[@[true, true], @[true, false], @[false, false], @[false, false]] - - block: # repeat tests - let - a = @[1, 2, 3] - b: seq[int] = @[] + for i in low(varSeq) .. high(varSeq): + let it {.inject.} = varSeq[i] + varSeq[i] = op + + +template newSeqWith*(len: int, init: untyped): untyped = + ## Creates a new `seq` of length `len`, calling `init` to initialize + ## each value of the seq. + ## + ## Useful for creating "2D" seqs - seqs containing other seqs + ## or to populate fields of the created seq. + runnableExamples: + ## Creates a seq containing 5 bool seqs, each of length of 3. + var seq2D = newSeqWith(5, newSeq[bool](3)) + assert seq2D.len == 5 + assert seq2D[0].len == 3 + assert seq2D[4][2] == false + + ## Creates a seq with random numbers + import std/random + var seqRand = newSeqWith(20, rand(1.0)) + assert seqRand[0] != seqRand[1] + type T = typeof(init) + let newLen = len + when supportsCopyMem(T) and declared(newSeqUninit): + var result = newSeqUninit[T](newLen) + else: # TODO: use `newSeqUnsafe` when that's available + var result = newSeq[T](newLen) + for i in 0 ..< newLen: + result[i] = init + move(result) # refs bug #7295 + +func mapLitsImpl(constructor: NimNode; op: NimNode; nested: bool; + filter = nnkLiterals): NimNode = + if constructor.kind in filter: + result = newNimNode(nnkCall, lineInfoFrom = constructor) + result.add op + result.add constructor + else: + result = copyNimNode(constructor) + for v in constructor: + if nested or v.kind in filter: + result.add mapLitsImpl(v, op, nested, filter) + else: + result.add v + +macro mapLiterals*(constructor, op: untyped; + nested = true): untyped = + ## Applies `op` to each of the **atomic** literals like `3` + ## or `"abc"` in the specified `constructor` AST. This can + ## be used to map every array element to some target type: + runnableExamples: + let x = mapLiterals([0.1, 1.2, 2.3, 3.4], int) + doAssert x is array[4, int] + doAssert x == [int(0.1), int(1.2), int(2.3), int(3.4)] + ## If `nested` is true (which is the default), the literals are replaced + ## everywhere in the `constructor` AST, otherwise only the first level + ## is considered: + runnableExamples: + let a = mapLiterals((1.2, (2.3, 3.4), 4.8), int) + let b = mapLiterals((1.2, (2.3, 3.4), 4.8), int, nested=false) + assert a == (1, (2, 3), 4) + assert b == (1, (2.3, 3.4), 4) - doAssert a.repeat(3) == @[1, 2, 3, 1, 2, 3, 1, 2, 3] - doAssert a.repeat(0) == @[] - #doAssert a.repeat(-1) == @[] # will not compile! - doAssert b.repeat(3) == @[] + let c = mapLiterals((1, (2, 3), 4, (5, 6)), `$`) + let d = mapLiterals((1, (2, 3), 4, (5, 6)), `$`, nested=false) + assert c == ("1", ("2", "3"), "4", ("5", "6")) + assert d == ("1", (2, 3), "4", (5, 6)) + ## There are no constraints for the `constructor` AST, it + ## works for nested tuples of arrays of sets etc. + result = mapLitsImpl(constructor, op, nested.boolVal) - echo "Finished doc tests" +iterator items*[T](xs: iterator: T): T = + ## Iterates over each element yielded by a closure iterator. This may + ## not seem particularly useful on its own, but this allows closure + ## iterators to be used by the mapIt, filterIt, allIt, anyIt, etc. + ## templates. + for x in xs(): + yield x |