summary refs log tree commit diff stats
path: root/lib/pure/collections/sequtils.nim
diff options
context:
space:
mode:
Diffstat (limited to 'lib/pure/collections/sequtils.nim')
-rw-r--r--lib/pure/collections/sequtils.nim1429
1 files changed, 986 insertions, 443 deletions
diff --git a/lib/pure/collections/sequtils.nim b/lib/pure/collections/sequtils.nim
index 3f37d1ef0..3c0d8dc0e 100644
--- a/lib/pure/collections/sequtils.nim
+++ b/lib/pure/collections/sequtils.nim
@@ -1,43 +1,137 @@
 #
 #
 #            Nim's Runtime Library
-#        (c) Copyright 2011 Alex Mitchell
+#        (c) Copyright 2011 Alexander Mitchell-Robinson
 #
 #    See the file "copying.txt", included in this
 #    distribution, for details about the copyright.
 #
 
-## :Author: Alex Mitchell
+## Although this module has `seq` in its name, it implements operations
+## not only for the `seq`:idx: type, but for three built-in container types
+## under the `openArray` umbrella:
+## * sequences
+## * strings
+## * array
 ##
-## This module implements operations for the built-in `seq`:idx: type which
-## were inspired by functional programming languages. If you are looking for
-## the typical `map` function which applies a function to every element in a
-## sequence, it already exists in the `system <system.html>`_ module in both
-## mutable and immutable styles.
+## The `system` module defines several common functions, such as:
+## * `newSeq[T]` for creating new sequences of type `T`
+## * `@` for converting arrays and strings to sequences
+## * `add` for adding new elements to strings and sequences
+## * `&` for string and seq concatenation
+## * `in` (alias for `contains`) and `notin` for checking if an item is
+##   in a container
 ##
-## Also, for functional style programming you may want to pass `anonymous procs
-## <manual.html#anonymous-procs>`_ to procs like ``filter`` to reduce typing.
-## Anonymous procs can use `the special do notation <manual.html#do-notation>`_
-## which is more convenient in certain situations.
+## This module builds upon that, providing additional functionality in form of
+## procs, iterators and templates inspired by functional programming
+## languages.
 ##
-## **Note**: This interface will change as soon as the compiler supports
-## closures and proper coroutines.
+## For functional style programming you have different options at your disposal:
+## * the `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
+## * pass an `anonymous proc<manual.html#procedures-anonymous-procs>`_
+## * import the `sugar module<sugar.html>`_  and use
+##   the `=> macro<sugar.html#%3D>.m,untyped,untyped>`_
+## * use `...It templates<#18>`_
+##   (`mapIt<#mapIt.t,typed,untyped>`_,
+##   `filterIt<#filterIt.t,untyped,untyped>`_, etc.)
+##
+## Chaining of functions is possible thanks to the
+## `method call syntax<manual.html#procedures-method-call-syntax>`_.
+
+runnableExamples:
+  import std/sugar
+
+  # Creating a sequence from 1 to 10, multiplying each member by 2,
+  # keeping only the members which are not divisible by 6.
+  let
+    foo = toSeq(1..10).map(x => x * 2).filter(x => x mod 6 != 0)
+    bar = toSeq(1..10).mapIt(it * 2).filterIt(it mod 6 != 0)
+    baz = collect:
+      for i in 1..10:
+        let j = 2 * i
+        if j mod 6 != 0:
+          j
+
+  doAssert foo == bar
+  doAssert foo == baz
+  doAssert foo == @[2, 4, 8, 10, 14, 16, 20]
+
+  doAssert foo.any(x => x > 17)
+  doAssert not bar.allIt(it < 20)
+  doAssert foo.foldl(a + b) == 74 # sum of all members
+
+
+runnableExamples:
+  from std/strutils import join
+
+  let
+    vowels = @"aeiou"
+    foo = "sequtils is an awesome module"
+
+  doAssert (vowels is seq[char]) and (vowels == @['a', 'e', 'i', 'o', 'u'])
+  doAssert foo.filterIt(it notin vowels).join == "sqtls s n wsm mdl"
+
+## See also
+## ========
+## * `strutils module<strutils.html>`_ for common string functions
+## * `sugar module<sugar.html>`_ for syntactic sugar macros
+## * `algorithm module<algorithm.html>`_ for common generic algorithms
+## * `json module<json.html>`_ for a structure which allows
+##   heterogeneous members
+
+
+import std/private/since
+
+import std/macros
+from std/typetraits import supportsCopyMem
+
+when defined(nimPreviewSlimSystem):
+  import std/assertions
+
+
+when defined(nimHasEffectsOf):
+  {.experimental: "strictEffects".}
+else:
+  {.pragma: effectsOf.}
+
+macro evalOnceAs(expAlias, exp: untyped,
+                 letAssigneable: static[bool]): untyped =
+  ## Injects `expAlias` in caller scope, to avoid bugs involving multiple
+  ## substitution in macro arguments such as
+  ## https://github.com/nim-lang/Nim/issues/7187.
+  ## `evalOnceAs(myAlias, myExp)` will behave as `let myAlias = myExp`
+  ## except when `letAssigneable` is false (e.g. to handle openArray) where
+  ## it just forwards `exp` unchanged.
+  expectKind(expAlias, nnkIdent)
+  var val = exp
 
-when not defined(nimhygiene):
-  {.pragma: dirty.}
+  result = newStmtList()
+  # If `exp` is not a symbol we evaluate it once here and then use the temporary
+  # symbol as alias
+  if exp.kind != nnkSym and letAssigneable:
+    val = genSym()
+    result.add(newLetStmt(val, exp))
 
-proc concat*[T](seqs: varargs[seq[T]]): seq[T] =
+  result.add(
+    newProc(name = genSym(nskTemplate, $expAlias), params = [getType(untyped)],
+      body = val, procType = nnkTemplateDef))
+
+func concat*[T](seqs: varargs[seq[T]]): seq[T] =
   ## Takes several sequences' items and returns them inside a new sequence.
+  ## All sequences must be of the same type.
   ##
-  ## Example:
+  ## **See also:**
+  ## * `distribute func<#distribute,seq[T],Positive>`_ for a reverse
+  ##   operation
   ##
-  ## .. code-block::
-  ##   let
-  ##     s1 = @[1, 2, 3]
-  ##     s2 = @[4, 5]
-  ##     s3 = @[6, 7]
-  ##     total = concat(s1, s2, s3)
-  ##   assert total == @[1, 2, 3, 4, 5, 6, 7]
+  runnableExamples:
+    let
+      s1 = @[1, 2, 3]
+      s2 = @[4, 5]
+      s3 = @[6, 7]
+      total = concat(s1, s2, s3)
+    assert total == @[1, 2, 3, 4, 5, 6, 7]
+
   var L = 0
   for seqitm in items(seqs): inc(L, len(seqitm))
   newSeq(result, L)
@@ -47,96 +141,226 @@ proc concat*[T](seqs: varargs[seq[T]]): seq[T] =
       result[i] = itm
       inc(i)
 
-proc repeat*[T](s: seq[T], n: Natural): seq[T] =
-  ## Returns a new sequence with the items of `s` repeated `n` times.
-  ##
-  ## Example:
+func addUnique*[T](s: var seq[T], x: sink T) =
+  ## Adds `x` to the container `s` if it is not already present. 
+  ## Uses `==` to check if the item is already present.
+  runnableExamples:
+    var a = @[1, 2, 3]
+    a.addUnique(4)
+    a.addUnique(4)
+    assert a == @[1, 2, 3, 4]
+
+  for i in 0..high(s):
+    if s[i] == x: return
+  when declared(ensureMove):
+    s.add ensureMove(x)
+  else:
+    s.add x
+
+func count*[T](s: openArray[T], x: T): int =
+  ## Returns the number of occurrences of the item `x` in the container `s`.
   ##
-  ## .. code-block:
+  runnableExamples:
+    let
+      a = @[1, 2, 2, 3, 2, 4, 2]
+      b = "abracadabra"
+    assert count(a, 2) == 4
+    assert count(a, 99) == 0
+    assert count(b, 'r') == 2
+
+  for itm in items(s):
+    if itm == x:
+      inc result
+
+func cycle*[T](s: openArray[T], n: Natural): seq[T] =
+  ## Returns a new sequence with the items of the container `s` repeated
+  ## `n` times.
+  ## `n` must be a non-negative number (zero or more).
   ##
-  ##   let
-  ##     s = @[1, 2, 3]
-  ##     total = s.repeat(3)
-  ##   assert total == @[1, 2, 3, 1, 2, 3, 1, 2, 3]
+  runnableExamples:
+    let
+      s = @[1, 2, 3]
+      total = s.cycle(3)
+    assert total == @[1, 2, 3, 1, 2, 3, 1, 2, 3]
+
   result = newSeq[T](n * s.len)
   var o = 0
-  for x in 1..n:
+  for x in 0 ..< n:
     for e in s:
       result[o] = e
       inc o
 
-proc deduplicate*[T](seq1: seq[T]): seq[T] =
+proc repeat*[T](x: T, n: Natural): seq[T] =
+  ## Returns a new sequence with the item `x` repeated `n` times.
+  ## `n` must be a non-negative number (zero or more).
+  ##
+  runnableExamples:
+    let
+      total = repeat(5, 3)
+    assert total == @[5, 5, 5]
+
+  result = newSeq[T](n)
+  for i in 0 ..< n:
+    result[i] = x
+
+func deduplicate*[T](s: openArray[T], isSorted: bool = false): seq[T] =
   ## Returns a new sequence without duplicates.
   ##
-  ## .. code-block::
-  ##   let
-  ##     dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4]
-  ##     dup2 = @["a", "a", "c", "d", "d"]
-  ##     unique1 = deduplicate(dup1)
-  ##     unique2 = deduplicate(dup2)
-  ##   assert unique1 == @[1, 3, 4, 2, 8]
-  ##   assert unique2 == @["a", "c", "d"]
+  ## Setting the optional argument `isSorted` to true (default: false)
+  ## uses a faster algorithm for deduplication.
+  ##
+  runnableExamples:
+    let
+      dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4]
+      dup2 = @["a", "a", "c", "d", "d"]
+      unique1 = deduplicate(dup1)
+      unique2 = deduplicate(dup2, isSorted = true)
+    assert unique1 == @[1, 3, 4, 2, 8]
+    assert unique2 == @["a", "c", "d"]
+
   result = @[]
-  for itm in items(seq1):
-    if not result.contains(itm): result.add(itm)
-
-{.deprecated: [distnct: deduplicate].}
-
-proc zip*[S, T](seq1: seq[S], seq2: seq[T]): seq[tuple[a: S, b: T]] =
-  ## Returns a new sequence with a combination of the two input sequences.
-  ##
-  ## For convenience you can access the returned tuples through the named
-  ## fields `a` and `b`. If one sequence is shorter, the remaining items in the
-  ## longer sequence are discarded. Example:
-  ##
-  ## .. code-block::
-  ##   let
-  ##     short = @[1, 2, 3]
-  ##     long = @[6, 5, 4, 3, 2, 1]
-  ##     words = @["one", "two", "three"]
-  ##     zip1 = zip(short, long)
-  ##     zip2 = zip(short, words)
-  ##   assert zip1 == @[(1, 6), (2, 5), (3, 4)]
-  ##   assert zip2 == @[(1, "one"), (2, "two"), (3, "three")]
-  ##   assert zip1[2].b == 4
-  ##   assert zip2[2].b == "three"
-  var m = min(seq1.len, seq2.len)
-  newSeq(result, m)
-  for i in 0 .. m-1: result[i] = (seq1[i], seq2[i])
-
-proc distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] =
-  ## Splits and distributes a sequence `s` into `num` sub sequences.
-  ##
-  ## Returns a sequence of `num` sequences. For some input values this is the
-  ## inverse of the `concat <#concat>`_ proc.  The proc will assert in debug
-  ## builds if `s` is nil or `num` is less than one, and will likely crash on
-  ## release builds.  The input sequence `s` can be empty, which will produce
+  if s.len > 0:
+    if isSorted:
+      var prev = s[0]
+      result.add(prev)
+      for i in 1..s.high:
+        if s[i] != prev:
+          prev = s[i]
+          result.add(prev)
+    else:
+      for itm in items(s):
+        if not result.contains(itm): result.add(itm)
+
+func minIndex*[T](s: openArray[T]): int {.since: (1, 1).} =
+  ## Returns the index of the minimum value of `s`.
+  ## `T` needs to have a `<` operator.
+  runnableExamples:
+    let
+      a = @[1, 2, 3, 4]
+      b = @[6, 5, 4, 3]
+      c = [2, -7, 8, -5]
+      d = "ziggy"
+    assert minIndex(a) == 0
+    assert minIndex(b) == 3
+    assert minIndex(c) == 1
+    assert minIndex(d) == 2
+
+  for i in 1..high(s):
+    if s[i] < s[result]: result = i
+
+func maxIndex*[T](s: openArray[T]): int {.since: (1, 1).} =
+  ## Returns the index of the maximum value of `s`.
+  ## `T` needs to have a `<` operator.
+  runnableExamples:
+    let
+      a = @[1, 2, 3, 4]
+      b = @[6, 5, 4, 3]
+      c = [2, -7, 8, -5]
+      d = "ziggy"
+    assert maxIndex(a) == 3
+    assert maxIndex(b) == 0
+    assert maxIndex(c) == 2
+    assert maxIndex(d) == 0
+
+  for i in 1..high(s):
+    if s[i] > s[result]: result = i
+
+func minmax*[T](x: openArray[T]): (T, T) =
+  ## The minimum and maximum values of `x`. `T` needs to have a `<` operator.
+  var l = x[0]
+  var h = x[0]
+  for i in 1..high(x):
+    if x[i] < l: l = x[i]
+    if h < x[i]: h = x[i]
+  result = (l, h)
+
+
+template zipImpl(s1, s2, retType: untyped): untyped =
+  proc zip*[S, T](s1: openArray[S], s2: openArray[T]): retType =
+    ## Returns a new sequence with a combination of the two input containers.
+    ##
+    ## The input containers can be of different types.
+    ## If one container is shorter, the remaining items in the longer container
+    ## are discarded.
+    ##
+    ## **Note**: For Nim 1.0.x and older version, `zip` returned a seq of
+    ## named tuples with fields `a` and `b`. For Nim versions 1.1.x and newer,
+    ## `zip` returns a seq of unnamed tuples.
+    runnableExamples:
+      let
+        short = @[1, 2, 3]
+        long = @[6, 5, 4, 3, 2, 1]
+        words = @["one", "two", "three"]
+        letters = "abcd"
+        zip1 = zip(short, long)
+        zip2 = zip(short, words)
+      assert zip1 == @[(1, 6), (2, 5), (3, 4)]
+      assert zip2 == @[(1, "one"), (2, "two"), (3, "three")]
+      assert zip1[2][0] == 3
+      assert zip2[1][1] == "two"
+      when (NimMajor, NimMinor) <= (1, 0):
+        let
+          zip3 = zip(long, letters)
+        assert zip3 == @[(a: 6, b: 'a'), (5, 'b'), (4, 'c'), (3, 'd')]
+        assert zip3[0].b == 'a'
+      else:
+        let
+          zip3: seq[tuple[num: int, letter: char]] = zip(long, letters)
+        assert zip3 == @[(6, 'a'), (5, 'b'), (4, 'c'), (3, 'd')]
+        assert zip3[0].letter == 'a'
+
+    var m = min(s1.len, s2.len)
+    newSeq(result, m)
+    for i in 0 ..< m:
+      result[i] = (s1[i], s2[i])
+
+when (NimMajor, NimMinor) <= (1, 0):
+  zipImpl(s1, s2, seq[tuple[a: S, b: T]])
+else:
+  zipImpl(s1, s2, seq[(S, T)])
+
+proc unzip*[S, T](s: openArray[(S, T)]): (seq[S], seq[T]) {.since: (1, 1).} =
+  ## Returns a tuple of two sequences split out from a sequence of 2-field tuples.
+  runnableExamples:
+    let
+      zipped = @[(1, 'a'), (2, 'b'), (3, 'c')]
+      unzipped1 = @[1, 2, 3]
+      unzipped2 = @['a', 'b', 'c']
+    assert zipped.unzip() == (unzipped1, unzipped2)
+    assert zip(unzipped1, unzipped2).unzip() == (unzipped1, unzipped2)
+  result = (newSeq[S](s.len), newSeq[T](s.len))
+  for i in 0..<s.len:
+    result[0][i] = s[i][0]
+    result[1][i] = s[i][1]
+
+func distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] =
+  ## Splits and distributes a sequence `s` into `num` sub-sequences.
+  ##
+  ## Returns a sequence of `num` sequences. For *some* input values this is the
+  ## inverse of the `concat <#concat,varargs[seq[T]]>`_ func.
+  ## The input sequence `s` can be empty, which will produce
   ## `num` empty sequences.
   ##
   ## If `spread` is false and the length of `s` is not a multiple of `num`, the
-  ## proc will max out the first sub sequences with ``1 + len(s) div num``
+  ## func will max out the first sub-sequence with `1 + len(s) div num`
   ## entries, leaving the remainder of elements to the last sequence.
   ##
-  ## On the other hand, if `spread` is true, the proc will distribute evenly
+  ## On the other hand, if `spread` is true, the func will distribute evenly
   ## the remainder of the division across all sequences, which makes the result
   ## more suited to multithreading where you are passing equal sized work units
   ## to a thread pool and want to maximize core usage.
   ##
-  ## Example:
-  ##
-  ## .. code-block::
-  ##   let numbers = @[1, 2, 3, 4, 5, 6, 7]
-  ##   assert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
-  ##   assert numbers.distribute(3, false)  == @[@[1, 2, 3], @[4, 5, 6], @[7]]
-  ##   assert numbers.distribute(6)[0] == @[1, 2]
-  ##   assert numbers.distribute(6)[5] == @[7]
-  assert(not s.isNil, "`s` can't be nil")
+  runnableExamples:
+    let numbers = @[1, 2, 3, 4, 5, 6, 7]
+    assert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
+    assert numbers.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]]
+    assert numbers.distribute(6)[0] == @[1, 2]
+    assert numbers.distribute(6)[1] == @[3]
+
   if num < 2:
     result = @[s]
     return
 
-  let num = int(num) # XXX probably only needed because of .. bug
-
   # Create the result and calculate the stride size and the remainder if any.
   result = newSeq[seq[T]](num)
   var
@@ -148,117 +372,266 @@ proc distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] =
   if extra == 0 or spread == false:
     # Use an algorithm which overcounts the stride and minimizes reading limits.
     if extra > 0: inc(stride)
-
-    for i in 0 .. <num:
+    for i in 0 ..< num:
       result[i] = newSeq[T]()
-      for g in first .. <min(s.len, first + stride):
+      for g in first ..< min(s.len, first + stride):
         result[i].add(s[g])
       first += stride
-
   else:
     # Use an undercounting algorithm which *adds* the remainder each iteration.
-    for i in 0 .. <num:
+    for i in 0 ..< num:
       last = first + stride
       if extra > 0:
         extra -= 1
         inc(last)
-
       result[i] = newSeq[T]()
-      for g in first .. <last:
+      for g in first ..< last:
         result[i].add(s[g])
       first = last
 
+proc map*[T, S](s: openArray[T], op: proc (x: T): S {.closure.}):
+                                                            seq[S] {.inline, effectsOf: op.} =
+  ## Returns a new sequence with the results of the `op` proc applied to every
+  ## item in the container `s`.
+  ##
+  ## Since the input is not modified, you can use it to
+  ## transform the type of the elements in the input container.
+  ##
+  ## Instead of using `map` and `filter`, consider using the `collect` macro
+  ## from the `sugar` module.
+  ##
+  ## **See also:**
+  ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
+  ## * `mapIt template<#mapIt.t,typed,untyped>`_
+  ## * `apply proc<#apply,openArray[T],proc(T)_2>`_ for the in-place version
+  ##
+  runnableExamples:
+    let
+      a = @[1, 2, 3, 4]
+      b = map(a, proc(x: int): string = $x)
+    assert b == @["1", "2", "3", "4"]
 
+  newSeq(result, s.len)
+  for i in 0 ..< s.len:
+    result[i] = op(s[i])
 
-iterator filter*[T](seq1: seq[T], pred: proc(item: T): bool {.closure.}): T =
-  ## Iterates through a sequence and yields every item that fulfills the
-  ## predicate.
+proc apply*[T](s: var openArray[T], op: proc (x: var T) {.closure.})
+                                                              {.inline, effectsOf: op.} =
+  ## Applies `op` to every item in `s`, modifying it directly.
+  ##
+  ## Note that the container `s` must be declared as a `var`,
+  ## since `s` is modified in-place.
+  ## The parameter function takes a `var T` type parameter.
+  ##
+  ## **See also:**
+  ## * `applyIt template<#applyIt.t,untyped,untyped>`_
+  ## * `map proc<#map,openArray[T],proc(T)>`_
+  ##
+  runnableExamples:
+    var a = @["1", "2", "3", "4"]
+    apply(a, proc(x: var string) = x &= "42")
+    assert a == @["142", "242", "342", "442"]
+
+  for i in 0 ..< s.len: op(s[i])
+
+proc apply*[T](s: var openArray[T], op: proc (x: T): T {.closure.})
+                                                              {.inline, effectsOf: op.} =
+  ## Applies `op` to every item in `s` modifying it directly.
+  ##
+  ## Note that the container `s` must be declared as a `var`
+  ## and it is required for your input and output types to
+  ## be the same, since `s` is modified in-place.
+  ## The parameter function takes and returns a `T` type variable.
+  ##
+  ## **See also:**
+  ## * `applyIt template<#applyIt.t,untyped,untyped>`_
+  ## * `map proc<#map,openArray[T],proc(T)>`_
+  ##
+  runnableExamples:
+    var a = @["1", "2", "3", "4"]
+    apply(a, proc(x: string): string = x & "42")
+    assert a == @["142", "242", "342", "442"]
+
+  for i in 0 ..< s.len: s[i] = op(s[i])
+
+proc apply*[T](s: openArray[T], op: proc (x: T) {.closure.}) {.inline, since: (1, 3), effectsOf: op.} =
+  ## Same as `apply` but for a proc that does not return anything
+  ## and does not mutate `s` directly.
+  runnableExamples:
+    var message: string
+    apply([0, 1, 2, 3, 4], proc(item: int) = message.addInt item)
+    assert message == "01234"
+  for i in 0 ..< s.len: op(s[i])
+
+iterator filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): T {.effectsOf: pred.} =
+  ## Iterates through a container `s` and yields every item that fulfills the
+  ## predicate `pred` (a function that returns a `bool`).
+  ##
+  ## Instead of using `map` and `filter`, consider using the `collect` macro
+  ## from the `sugar` module.
+  ##
+  ## **See also:**
+  ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
+  ## * `filter proc<#filter,openArray[T],proc(T)>`_
+  ## * `filterIt template<#filterIt.t,untyped,untyped>`_
+  ##
+  runnableExamples:
+    let numbers = @[1, 4, 5, 8, 9, 7, 4]
+    var evens = newSeq[int]()
+    for n in filter(numbers, proc (x: int): bool = x mod 2 == 0):
+      evens.add(n)
+    assert evens == @[4, 8, 4]
+
+  for i in 0 ..< s.len:
+    if pred(s[i]):
+      yield s[i]
+
+proc filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): seq[T]
+                                                                  {.inline, effectsOf: pred.} =
+  ## Returns a new sequence with all the items of `s` that fulfill the
+  ## predicate `pred` (a function that returns a `bool`).
+  ##
+  ## Instead of using `map` and `filter`, consider using the `collect` macro
+  ## from the `sugar` module.
+  ##
+  ## **See also:**
+  ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
+  ## * `filterIt template<#filterIt.t,untyped,untyped>`_
+  ## * `filter iterator<#filter.i,openArray[T],proc(T)>`_
+  ## * `keepIf proc<#keepIf,seq[T],proc(T)>`_ for the in-place version
+  ##
+  runnableExamples:
+    let
+      colors = @["red", "yellow", "black"]
+      f1 = filter(colors, proc(x: string): bool = x.len < 6)
+      f2 = filter(colors, proc(x: string): bool = x.contains('y'))
+    assert f1 == @["red", "black"]
+    assert f2 == @["yellow"]
+
+  result = newSeq[T]()
+  for i in 0 ..< s.len:
+    if pred(s[i]):
+      result.add(s[i])
+
+proc keepIf*[T](s: var seq[T], pred: proc(x: T): bool {.closure.})
+                                                                {.inline, effectsOf: pred.} =
+  ## Keeps the items in the passed sequence `s` if they fulfill the
+  ## predicate `pred` (a function that returns a `bool`).
   ##
-  ## Example:
-  ##
-  ## .. code-block::
-  ##   let numbers = @[1, 4, 5, 8, 9, 7, 4]
-  ##   for n in filter(numbers, proc (x: int): bool = x mod 2 == 0):
-  ##     echo($n)
-  ##   # echoes 4, 8, 4 in separate lines
-  for i in countup(0, len(seq1)-1):
-    var item = seq1[i]
-    if pred(item): yield seq1[i]
-
-proc filter*[T](seq1: seq[T], pred: proc(item: T): bool {.closure.}): seq[T] =
-  ## Returns a new sequence with all the items that fulfilled the predicate.
-  ##
-  ## Example:
-  ##
-  ## .. code-block::
-  ##   let
-  ##     colors = @["red", "yellow", "black"]
-  ##     f1 = filter(colors, proc(x: string): bool = x.len < 6)
-  ##     f2 = filter(colors) do (x: string) -> bool : x.len > 5
-  ##   assert f1 == @["red", "black"]
-  ##   assert f2 == @["yellow"]
-  accumulateResult(filter(seq1, pred))
-
-proc keepIf*[T](seq1: var seq[T], pred: proc(item: T): bool {.closure.}) =
-  ## Keeps the items in the passed sequence if they fulfilled the predicate.
-  ## Same as the ``filter`` proc, but modifies the sequence directly.
-  ##
-  ## Example:
-  ##
-  ## .. code-block::
-  ##   var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1]
-  ##   keepIf(floats, proc(x: float): bool = x > 10)
-  ##   assert floats == @[13.0, 12.5, 10.1]
+  ## Note that `s` must be declared as a `var`.
+  ##
+  ## Similar to the `filter proc<#filter,openArray[T],proc(T)>`_,
+  ## but modifies the sequence directly.
+  ##
+  ## **See also:**
+  ## * `keepItIf template<#keepItIf.t,seq,untyped>`_
+  ## * `filter proc<#filter,openArray[T],proc(T)>`_
+  ##
+  runnableExamples:
+    var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1]
+    keepIf(floats, proc(x: float): bool = x > 10)
+    assert floats == @[13.0, 12.5, 10.1]
+
   var pos = 0
-  for i in 0 .. <len(seq1):
-    if pred(seq1[i]):
+  for i in 0 ..< len(s):
+    if pred(s[i]):
       if pos != i:
-        seq1[pos] = seq1[i]
+        when defined(gcDestructors):
+          s[pos] = move(s[i])
+        else:
+          shallowCopy(s[pos], s[i])
       inc(pos)
-  setLen(seq1, pos)
+  setLen(s, pos)
 
-proc delete*[T](s: var seq[T], first=0, last=0) =
-  ## Deletes in `s` the items at position `first` .. `last`. This modifies
-  ## `s` itself, it does not return a copy.
+func delete*[T](s: var seq[T]; slice: Slice[int]) =
+  ## Deletes the items `s[slice]`, raising `IndexDefect` if the slice contains
+  ## elements out of range.
   ##
-  ## Example:
-  ##
-  ##.. code-block::
-  ##   let outcome = @[1,1,1,1,1,1,1,1]
-  ##   var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
-  ##   dest.delete(3, 8)
-  ##   assert outcome == dest
+  ## This operation moves all elements after `s[slice]` in linear time.
+  runnableExamples:
+    var a = @[10, 11, 12, 13, 14]
+    doAssertRaises(IndexDefect): a.delete(4..5)
+    assert a == @[10, 11, 12, 13, 14]
+    a.delete(4..4)
+    assert a == @[10, 11, 12, 13]
+    a.delete(1..2)
+    assert a == @[10, 13]
+    a.delete(1..<1) # empty slice
+    assert a == @[10, 13]
+  when compileOption("boundChecks"):
+    if not (slice.a < s.len and slice.a >= 0 and slice.b < s.len):
+      raise newException(IndexDefect, $(slice: slice, len: s.len))
+  if slice.b >= slice.a:
+    template defaultImpl =
+      var i = slice.a
+      var j = slice.b + 1
+      var newLen = s.len - j + i
+      while i < newLen:
+        when defined(gcDestructors):
+          s[i] = move(s[j])
+        else:
+          s[i].shallowCopy(s[j])
+        inc(i)
+        inc(j)
+      setLen(s, newLen)
+    when nimvm: defaultImpl()
+    else:
+      when defined(js):
+        let n = slice.b - slice.a + 1
+        let first = slice.a
+        {.emit: "`s`.splice(`first`, `n`);".}
+      else:
+        defaultImpl()
 
+func delete*[T](s: var seq[T]; first, last: Natural) {.deprecated: "use `delete(s, first..last)`".} =
+  ## Deletes the items of a sequence `s` at positions `first..last`
+  ## (including both ends of the range).
+  ## This modifies `s` itself, it does not return a copy.
+  runnableExamples("--warning:deprecated:off"):
+    let outcome = @[1, 1, 1, 1, 1, 1, 1, 1]
+    var dest = @[1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1]
+    dest.delete(3, 8)
+    assert outcome == dest
+  doAssert first <= last
+  if first >= s.len:
+    return
   var i = first
-  var j = last+1
-  var newLen = len(s)-j+i
+  var j = min(len(s), last + 1)
+  var newLen = len(s) - j + i
   while i < newLen:
-    s[i].shallowCopy(s[j])
+    when defined(gcDestructors):
+      s[i] = move(s[j])
+    else:
+      s[i].shallowCopy(s[j])
     inc(i)
     inc(j)
   setLen(s, newLen)
 
-proc insert*[T](dest: var seq[T], src: openArray[T], pos=0) =
+func insert*[T](dest: var seq[T], src: openArray[T], pos = 0) =
   ## Inserts items from `src` into `dest` at position `pos`. This modifies
   ## `dest` itself, it does not return a copy.
   ##
-  ## Example:
+  ## Note that the elements of `src` and `dest` must be of the same type.
   ##
-  ##.. code-block::
-  ##   var dest = @[1,1,1,1,1,1,1,1]
-  ##   let
-  ##     src = @[2,2,2,2,2,2]
-  ##     outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
-  ##   dest.insert(src, 3)
-  ##   assert dest == outcome
+  runnableExamples:
+    var dest = @[1, 1, 1, 1, 1, 1, 1, 1]
+    let
+      src = @[2, 2, 2, 2, 2, 2]
+      outcome = @[1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1]
+    dest.insert(src, 3)
+    assert dest == outcome
 
   var j = len(dest) - 1
-  var i = len(dest) + len(src) - 1
+  var i = j + len(src)
+  if i == j: return
   dest.setLen(i + 1)
 
   # Move items after `pos` to the end of the sequence.
   while j >= pos:
-    dest[i].shallowCopy(dest[j])
+    when defined(gcDestructors):
+      dest[i] = move(dest[j])
+    else:
+      dest[i].shallowCopy(dest[j])
     dec(i)
     dec(j)
   # Insert items from `dest` into `dest` at `pos`
@@ -268,261 +641,266 @@ proc insert*[T](dest: var seq[T], src: openArray[T], pos=0) =
     inc(j)
 
 
-template filterIt*(seq1, pred: expr): expr {.immediate.} =
-  ## Returns a new sequence with all the items that fulfilled the predicate.
+template filterIt*(s, pred: untyped): untyped =
+  ## Returns a new sequence with all the items of `s` that fulfill the
+  ## predicate `pred`.
+  ##
+  ## Unlike the `filter proc<#filter,openArray[T],proc(T)>`_ and
+  ## `filter iterator<#filter.i,openArray[T],proc(T)>`_,
+  ## the predicate needs to be an expression using the `it` variable
+  ## for testing, like: `filterIt("abcxyz", it == 'x')`.
   ##
-  ## Unlike the `proc` version, the predicate needs to be an expression using
-  ## the ``it`` variable for testing, like: ``filterIt("abcxyz", it == 'x')``.
-  ## Example:
+  ## Instead of using `mapIt` and `filterIt`, consider using the `collect` macro
+  ## from the `sugar` module.
   ##
-  ## .. code-block::
-  ##    let
-  ##      temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44]
-  ##      acceptable = filterIt(temperatures, it < 50 and it > -10)
-  ##      notAcceptable = filterIt(temperatures, it > 50 or it < -10)
-  ##    assert acceptable == @[-2.0, 24.5, 44.31]
-  ##    assert notAcceptable == @[-272.15, 99.9, -113.44]
-  var result {.gensym.}: type(seq1) = @[]
-  for it {.inject.} in items(seq1):
+  ## **See also:**
+  ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
+  ## * `filter proc<#filter,openArray[T],proc(T)>`_
+  ## * `filter iterator<#filter.i,openArray[T],proc(T)>`_
+  ##
+  runnableExamples:
+    let
+      temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44]
+      acceptable = temperatures.filterIt(it < 50 and it > -10)
+      notAcceptable = temperatures.filterIt(it > 50 or it < -10)
+    assert acceptable == @[-2.0, 24.5, 44.31]
+    assert notAcceptable == @[-272.15, 99.9, -113.44]
+
+  var result = newSeq[typeof(s[0])]()
+  for it {.inject.} in items(s):
     if pred: result.add(it)
   result
 
-template keepItIf*(varSeq, pred: expr) =
-  ## Convenience template around the ``keepIf`` proc to reduce typing.
+template keepItIf*(varSeq: seq, pred: untyped) =
+  ## Keeps the items in the passed sequence (must be declared as a `var`)
+  ## if they fulfill the predicate.
+  ##
+  ## Unlike the `keepIf proc<#keepIf,seq[T],proc(T)>`_,
+  ## the predicate needs to be an expression using
+  ## the `it` variable for testing, like: `keepItIf("abcxyz", it == 'x')`.
   ##
-  ## Unlike the `proc` version, the predicate needs to be an expression using
-  ## the ``it`` variable for testing, like: ``keepItIf("abcxyz", it == 'x')``.
-  ## Example:
+  ## **See also:**
+  ## * `keepIf proc<#keepIf,seq[T],proc(T)>`_
+  ## * `filterIt template<#filterIt.t,untyped,untyped>`_
   ##
-  ## .. code-block::
-  ##   var candidates = @["foo", "bar", "baz", "foobar"]
-  ##   keepItIf(candidates, it.len == 3 and it[0] == 'b')
-  ##   assert candidates == @["bar", "baz"]
+  runnableExamples:
+    var candidates = @["foo", "bar", "baz", "foobar"]
+    candidates.keepItIf(it.len == 3 and it[0] == 'b')
+    assert candidates == @["bar", "baz"]
+
   var pos = 0
-  for i in 0 .. <len(varSeq):
+  for i in 0 ..< len(varSeq):
     let it {.inject.} = varSeq[i]
     if pred:
       if pos != i:
-        varSeq[pos] = varSeq[i]
+        when defined(gcDestructors):
+          varSeq[pos] = move(varSeq[i])
+        else:
+          shallowCopy(varSeq[pos], varSeq[i])
       inc(pos)
   setLen(varSeq, pos)
 
+since (1, 1):
+  template countIt*(s, pred: untyped): int =
+    ## Returns a count of all the items that fulfill the predicate.
+    ##
+    ## The predicate needs to be an expression using
+    ## the `it` variable for testing, like: `countIt(@[1, 2, 3], it > 2)`.
+    ##
+    runnableExamples:
+      let numbers = @[-3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
+      iterator iota(n: int): int =
+        for i in 0..<n: yield i
+      assert numbers.countIt(it < 0) == 3
+      assert countIt(iota(10), it < 2) == 2
 
-template toSeq*(iter: expr): expr {.immediate.} =
-  ## Transforms any iterator into a sequence.
-  ##
-  ## Example:
-  ##
-  ## .. code-block::
-  ##   let
-  ##     numeric = @[1, 2, 3, 4, 5, 6, 7, 8, 9]
-  ##     odd_numbers = toSeq(filter(numeric) do (x: int) -> bool:
-  ##       if x mod 2 == 1:
-  ##         result = true)
-  ##   assert odd_numbers == @[1, 3, 5, 7, 9]
-  ##
-  ## **Note**: Since this is an immediate macro, you cannot always invoke this
-  ## as ``x.toSeq``, depending on the ``x``.
-  ## See `this <manual.html#limitations-of-the-method-call-syntax>`_
-  ## for an explanation.
-  var result {.gensym.}: seq[type(iter)] = @[]
-  for x in iter: add(result, x)
-  result
+    var result = 0
+    for it {.inject.} in s:
+      if pred: result += 1
+    result
 
-template foldl*(sequence, operation: expr): expr =
-  ## Template to fold a sequence from left to right, returning the accumulation.
+proc all*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool {.effectsOf: pred.} =
+  ## Iterates through a container and checks if every item fulfills the
+  ## predicate.
   ##
-  ## The sequence is required to have at least a single element. Debug versions
-  ## of your program will assert in this situation but release versions will
-  ## happily go ahead. If the sequence has a single element it will be returned
-  ## without applying ``operation``.
+  ## **See also:**
+  ## * `allIt template<#allIt.t,untyped,untyped>`_
+  ## * `any proc<#any,openArray[T],proc(T)>`_
   ##
-  ## The ``operation`` parameter should be an expression which uses the
-  ## variables ``a`` and ``b`` for each step of the fold. Since this is a left
-  ## fold, for non associative binary operations like subtraction think that
-  ## the sequence of numbers 1, 2 and 3 will be parenthesized as (((1) - 2) -
-  ## 3).  Example:
-  ##
-  ## .. code-block::
-  ##   let
-  ##     numbers = @[5, 9, 11]
-  ##     addition = foldl(numbers, a + b)
-  ##     subtraction = foldl(numbers, a - b)
-  ##     multiplication = foldl(numbers, a * b)
-  ##     words = @["nim", "is", "cool"]
-  ##     concatenation = foldl(words, a & b)
-  ##   assert addition == 25, "Addition is (((5)+9)+11)"
-  ##   assert subtraction == -15, "Subtraction is (((5)-9)-11)"
-  ##   assert multiplication == 495, "Multiplication is (((5)*9)*11)"
-  ##   assert concatenation == "nimiscool"
-  assert sequence.len > 0, "Can't fold empty sequences"
-  var result {.gensym.}: type(sequence[0])
-  result = sequence[0]
-  for i in countup(1, sequence.len - 1):
-    let
-      a {.inject.} = result
-      b {.inject.} = sequence[i]
-    result = operation
-  result
+  runnableExamples:
+    let numbers = @[1, 4, 5, 8, 9, 7, 4]
+    assert all(numbers, proc (x: int): bool = x < 10) == true
+    assert all(numbers, proc (x: int): bool = x < 9) == false
 
-template foldr*(sequence, operation: expr): expr =
-  ## Template to fold a sequence from right to left, returning the accumulation.
+  for i in s:
+    if not pred(i):
+      return false
+  true
+
+template allIt*(s, pred: untyped): bool =
+  ## Iterates through a container and checks if every item fulfills the
+  ## predicate.
   ##
-  ## The sequence is required to have at least a single element. Debug versions
-  ## of your program will assert in this situation but release versions will
-  ## happily go ahead. If the sequence has a single element it will be returned
-  ## without applying ``operation``.
+  ## Unlike the `all proc<#all,openArray[T],proc(T)>`_,
+  ## the predicate needs to be an expression using
+  ## the `it` variable for testing, like: `allIt("abba", it == 'a')`.
   ##
-  ## The ``operation`` parameter should be an expression which uses the
-  ## variables ``a`` and ``b`` for each step of the fold. Since this is a right
-  ## fold, for non associative binary operations like subtraction think that
-  ## the sequence of numbers 1, 2 and 3 will be parenthesized as (1 - (2 -
-  ## (3))). Example:
-  ##
-  ## .. code-block::
-  ##   let
-  ##     numbers = @[5, 9, 11]
-  ##     addition = foldr(numbers, a + b)
-  ##     subtraction = foldr(numbers, a - b)
-  ##     multiplication = foldr(numbers, a * b)
-  ##     words = @["nim", "is", "cool"]
-  ##     concatenation = foldr(words, a & b)
-  ##   assert addition == 25, "Addition is (5+(9+(11)))"
-  ##   assert subtraction == 7, "Subtraction is (5-(9-(11)))"
-  ##   assert multiplication == 495, "Multiplication is (5*(9*(11)))"
-  ##   assert concatenation == "nimiscool"
-  assert sequence.len > 0, "Can't fold empty sequences"
-  var result {.gensym.}: type(sequence[0])
-  result = sequence[sequence.len - 1]
-  for i in countdown(sequence.len - 2, 0):
-    let
-      a {.inject.} = sequence[i]
-      b {.inject.} = result
-    result = operation
-  result
+  ## **See also:**
+  ## * `all proc<#all,openArray[T],proc(T)>`_
+  ## * `anyIt template<#anyIt.t,untyped,untyped>`_
+  ##
+  runnableExamples:
+    let numbers = @[1, 4, 5, 8, 9, 7, 4]
+    assert numbers.allIt(it < 10) == true
+    assert numbers.allIt(it < 9) == false
 
-template mapIt*(seq1, typ, op: expr): expr =
-  ## Convenience template around the ``map`` proc to reduce typing.
-  ##
-  ## The template injects the ``it`` variable which you can use directly in an
-  ## expression. You also need to pass as `typ` the type of the expression,
-  ## since the new returned sequence can have a different type than the
-  ## original.  Example:
-  ##
-  ## .. code-block::
-  ##   let
-  ##     nums = @[1, 2, 3, 4]
-  ##     strings = nums.mapIt(string, $(4 * it))
-  ##   assert strings == @["4", "8", "12", "16"]
-  var result {.gensym.}: seq[typ] = @[]
-  for it {.inject.} in items(seq1):
-    result.add(op)
+  var result = true
+  for it {.inject.} in items(s):
+    if not pred:
+      result = false
+      break
   result
 
-template mapIt*(varSeq, op: expr) =
-  ## Convenience template around the mutable ``map`` proc to reduce typing.
+proc any*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool {.effectsOf: pred.} =
+  ## Iterates through a container and checks if at least one item
+  ## fulfills the predicate.
   ##
-  ## The template injects the ``it`` variable which you can use directly in an
-  ## expression. The expression has to return the same type as the sequence you
-  ## are mutating. Example:
+  ## **See also:**
+  ## * `anyIt template<#anyIt.t,untyped,untyped>`_
+  ## * `all proc<#all,openArray[T],proc(T)>`_
   ##
-  ## .. code-block::
-  ##   var nums = @[1, 2, 3, 4]
-  ##   nums.mapIt(it * 3)
-  ##   assert nums[0] + nums[3] == 15
-  for i in 0 .. <len(varSeq):
-    let it {.inject.} = varSeq[i]
-    varSeq[i] = op
+  runnableExamples:
+    let numbers = @[1, 4, 5, 8, 9, 7, 4]
+    assert any(numbers, proc (x: int): bool = x > 8) == true
+    assert any(numbers, proc (x: int): bool = x > 9) == false
 
-template newSeqWith*(len: int, init: expr): expr =
-  ## creates a new sequence, calling `init` to initialize each value. Example:
+  for i in s:
+    if pred(i):
+      return true
+  false
+
+template anyIt*(s, pred: untyped): bool =
+  ## Iterates through a container and checks if at least one item
+  ## fulfills the predicate.
   ##
-  ## .. code-block::
-  ##   var seq2D = newSeqWith(20, newSeq[bool](10))
-  ##   seq2D[0][0] = true
-  ##   seq2D[1][0] = true
-  ##   seq2D[0][1] = true
+  ## Unlike the `any proc<#any,openArray[T],proc(T)>`_,
+  ## the predicate needs to be an expression using
+  ## the `it` variable for testing, like: `anyIt("abba", it == 'a')`.
   ##
-  ##   import math
-  ##   var seqRand = newSeqWith(20, random(10))
-  ##   echo seqRand
-  var result {.gensym.} = newSeq[type(init)](len)
-  for i in 0 .. <len:
-    result[i] = init
+  ## **See also:**
+  ## * `any proc<#any,openArray[T],proc(T)>`_
+  ## * `allIt template<#allIt.t,untyped,untyped>`_
+  ##
+  runnableExamples:
+    let numbers = @[1, 4, 5, 8, 9, 7, 4]
+    assert numbers.anyIt(it > 8) == true
+    assert numbers.anyIt(it > 9) == false
+
+  var result = false
+  for it {.inject.} in items(s):
+    if pred:
+      result = true
+      break
   result
 
-when isMainModule:
-  import strutils
-  block: # concat test
-    let
-      s1 = @[1, 2, 3]
-      s2 = @[4, 5]
-      s3 = @[6, 7]
-      total = concat(s1, s2, s3)
-    assert total == @[1, 2, 3, 4, 5, 6, 7]
+template toSeq1(s: not iterator): untyped =
+  # overload for typed but not iterator
+  type OutType = typeof(items(s))
+  when compiles(s.len):
+    block:
+      evalOnceAs(s2, s, compiles((let _ = s)))
+      var i = 0
+      var result = newSeq[OutType](s2.len)
+      for it in s2:
+        result[i] = it
+        i += 1
+      result
+  else:
+    var result: seq[OutType]# = @[]
+    for it in s:
+      result.add(it)
+    result
 
-  block: # duplicates test
-    let
-      dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4]
-      dup2 = @["a", "a", "c", "d", "d"]
-      unique1 = deduplicate(dup1)
-      unique2 = deduplicate(dup2)
-    assert unique1 == @[1, 3, 4, 2, 8]
-    assert unique2 == @["a", "c", "d"]
+template toSeq2(iter: iterator): untyped =
+  # overload for iterator
+  evalOnceAs(iter2, iter(), false)
+  when compiles(iter2.len):
+    var i = 0
+    var result = newSeq[typeof(iter2)](iter2.len)
+    for x in iter2:
+      result[i] = x
+      inc i
+    result
+  else:
+    type OutType = typeof(iter2())
+    var result: seq[OutType]# = @[]
+    when compiles(iter2()):
+      evalOnceAs(iter4, iter, false)
+      let iter3 = iter4()
+      for x in iter3():
+        result.add(x)
+    else:
+      for x in iter2():
+        result.add(x)
+    result
 
-  block: # zip test
-    let
-      short = @[1, 2, 3]
-      long = @[6, 5, 4, 3, 2, 1]
-      words = @["one", "two", "three"]
-      zip1 = zip(short, long)
-      zip2 = zip(short, words)
-    assert zip1 == @[(1, 6), (2, 5), (3, 4)]
-    assert zip2 == @[(1, "one"), (2, "two"), (3, "three")]
-    assert zip1[2].b == 4
-    assert zip2[2].b == "three"
-
-  block: # filter proc test
+template toSeq*(iter: untyped): untyped =
+  ## Transforms any iterable (anything that can be iterated over, e.g. with
+  ## a for-loop) into a sequence.
+  ##
+  runnableExamples:
     let
-      colors = @["red", "yellow", "black"]
-      f1 = filter(colors, proc(x: string): bool = x.len < 6)
-      f2 = filter(colors) do (x: string) -> bool : x.len > 5
-    assert f1 == @["red", "black"]
-    assert f2 == @["yellow"]
-
-  block: # filter iterator test
-    let numbers = @[1, 4, 5, 8, 9, 7, 4]
-    for n in filter(numbers, proc (x: int): bool = x mod 2 == 0):
-      echo($n)
-    # echoes 4, 8, 4 in separate lines
+      myRange = 1..5
+      mySet: set[int8] = {5'i8, 3, 1}
+    assert typeof(myRange) is HSlice[system.int, system.int]
+    assert typeof(mySet) is set[int8]
 
-  block: # keepIf test
-    var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1]
-    keepIf(floats, proc(x: float): bool = x > 10)
-    assert floats == @[13.0, 12.5, 10.1]
-
-  block: # filterIt test
     let
-      temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44]
-      acceptable = filterIt(temperatures, it < 50 and it > -10)
-      notAcceptable = filterIt(temperatures, it > 50 or it < -10)
-    assert acceptable == @[-2.0, 24.5, 44.31]
-    assert notAcceptable == @[-272.15, 99.9, -113.44]
+      mySeq1 = toSeq(myRange)
+      mySeq2 = toSeq(mySet)
+    assert mySeq1 == @[1, 2, 3, 4, 5]
+    assert mySeq2 == @[1'i8, 3, 5]
 
-  block: # keepItIf test
-    var candidates = @["foo", "bar", "baz", "foobar"]
-    keepItIf(candidates, it.len == 3 and it[0] == 'b')
-    assert candidates == @["bar", "baz"]
-
-  block: # toSeq test
-    let
-      numeric = @[1, 2, 3, 4, 5, 6, 7, 8, 9]
-      odd_numbers = toSeq(filter(numeric) do (x: int) -> bool:
-        if x mod 2 == 1:
-          result = true)
-    assert odd_numbers == @[1, 3, 5, 7, 9]
+  when compiles(toSeq1(iter)):
+    toSeq1(iter)
+  elif compiles(toSeq2(iter)):
+    toSeq2(iter)
+  else:
+    # overload for untyped, e.g.: `toSeq(myInlineIterator(3))`
+    when compiles(iter.len):
+      block:
+        evalOnceAs(iter2, iter, true)
+        var result = newSeq[typeof(iter)](iter2.len)
+        var i = 0
+        for x in iter2:
+          result[i] = x
+          inc i
+        result
+    else:
+      var result: seq[typeof(iter)] = @[]
+      for x in iter:
+        result.add(x)
+      result
 
-  block: # foldl tests
+template foldl*(sequence, operation: untyped): untyped =
+  ## Template to fold a sequence from left to right, returning the accumulation.
+  ##
+  ## The sequence is required to have at least a single element. Debug versions
+  ## of your program will assert in this situation but release versions will
+  ## happily go ahead. If the sequence has a single element it will be returned
+  ## without applying `operation`.
+  ##
+  ## The `operation` parameter should be an expression which uses the
+  ## variables `a` and `b` for each step of the fold. Since this is a left
+  ## fold, for non associative binary operations like subtraction think that
+  ## the sequence of numbers 1, 2 and 3 will be parenthesized as (((1) - 2) -
+  ## 3).
+  ##
+  ## **See also:**
+  ## * `foldl template<#foldl.t,,,>`_ with a starting parameter
+  ## * `foldr template<#foldr.t,untyped,untyped>`_
+  ##
+  runnableExamples:
     let
       numbers = @[5, 9, 11]
       addition = foldl(numbers, a + b)
@@ -530,12 +908,75 @@ when isMainModule:
       multiplication = foldl(numbers, a * b)
       words = @["nim", "is", "cool"]
       concatenation = foldl(words, a & b)
+      procs = @["proc", "Is", "Also", "Fine"]
+
+
+    func foo(acc, cur: string): string =
+      result = acc & cur
+
     assert addition == 25, "Addition is (((5)+9)+11)"
     assert subtraction == -15, "Subtraction is (((5)-9)-11)"
     assert multiplication == 495, "Multiplication is (((5)*9)*11)"
     assert concatenation == "nimiscool"
+    assert foldl(procs, foo(a, b)) == "procIsAlsoFine"
+
+  let s = sequence
+  assert s.len > 0, "Can't fold empty sequences"
+  var result: typeof(s[0])
+  result = s[0]
+  for i in 1..<s.len:
+    let
+      a {.inject.} = result
+      b {.inject.} = s[i]
+    result = operation
+  result
+
+template foldl*(sequence, operation, first): untyped =
+  ## Template to fold a sequence from left to right, returning the accumulation.
+  ##
+  ## This version of `foldl` gets a **starting parameter**. This makes it possible
+  ## to accumulate the sequence into a different type than the sequence elements.
+  ##
+  ## The `operation` parameter should be an expression which uses the variables
+  ## `a` and `b` for each step of the fold. The `first` parameter is the
+  ## start value (the first `a`) and therefore defines the type of the result.
+  ##
+  ## **See also:**
+  ## * `foldr template<#foldr.t,untyped,untyped>`_
+  ##
+  runnableExamples:
+    let
+      numbers = @[0, 8, 1, 5]
+      digits = foldl(numbers, a & (chr(b + ord('0'))), "")
+    assert digits == "0815"
 
-  block: # foldr tests
+  var result: typeof(first) = first
+  for x in items(sequence):
+    let
+      a {.inject.} = result
+      b {.inject.} = x
+    result = operation
+  result
+
+template foldr*(sequence, operation: untyped): untyped =
+  ## Template to fold a sequence from right to left, returning the accumulation.
+  ##
+  ## The sequence is required to have at least a single element. Debug versions
+  ## of your program will assert in this situation but release versions will
+  ## happily go ahead. If the sequence has a single element it will be returned
+  ## without applying `operation`.
+  ##
+  ## The `operation` parameter should be an expression which uses the
+  ## variables `a` and `b` for each step of the fold. Since this is a right
+  ## fold, for non associative binary operations like subtraction think that
+  ## the sequence of numbers 1, 2 and 3 will be parenthesized as (1 - (2 -
+  ## (3))).
+  ##
+  ## **See also:**
+  ## * `foldl template<#foldl.t,untyped,untyped>`_
+  ## * `foldl template<#foldl.t,,,>`_ with a starting parameter
+  ##
+  runnableExamples:
     let
       numbers = @[5, 9, 11]
       addition = foldr(numbers, a + b)
@@ -548,72 +989,174 @@ when isMainModule:
     assert multiplication == 495, "Multiplication is (5*(9*(11)))"
     assert concatenation == "nimiscool"
 
-  block: # delete tests
-    let outcome = @[1,1,1,1,1,1,1,1]
-    var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
-    dest.delete(3, 8)
-    assert outcome == dest, """\
-    Deleting range 3-9 from [1,1,1,2,2,2,2,2,2,1,1,1,1,1]
-    is [1,1,1,1,1,1,1,1]"""
-
-  block: # insert tests
-    var dest = @[1,1,1,1,1,1,1,1]
+  let s = sequence # xxx inefficient, use {.evalonce.} pending #13750
+  let n = s.len
+  assert n > 0, "Can't fold empty sequences"
+  var result = s[n - 1]
+  for i in countdown(n - 2, 0):
     let
-      src = @[2,2,2,2,2,2]
-      outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
-    dest.insert(src, 3)
-    assert dest == outcome, """\
-    Inserting [2,2,2,2,2,2] into [1,1,1,1,1,1,1,1]
-    at 3 is [1,1,1,2,2,2,2,2,2,1,1,1,1,1]"""
+      a {.inject.} = s[i]
+      b {.inject.} = result
+    result = operation
+  result
 
-  block: # mapIt tests
-    var
+template mapIt*(s: typed, op: untyped): untyped =
+  ## Returns a new sequence with the results of the `op` proc applied to every
+  ## item in the container `s`.
+  ##
+  ## Since the input is not modified you can use it to
+  ## transform the type of the elements in the input container.
+  ##
+  ## The template injects the `it` variable which you can use directly in an
+  ## expression.
+  ##
+  ## Instead of using `mapIt` and `filterIt`, consider using the `collect` macro
+  ## from the `sugar` module.
+  ##
+  ## **See also:**
+  ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
+  ## * `map proc<#map,openArray[T],proc(T)>`_
+  ## * `applyIt template<#applyIt.t,untyped,untyped>`_ for the in-place version
+  ##
+  runnableExamples:
+    let
       nums = @[1, 2, 3, 4]
-      strings = nums.mapIt(string, $(4 * it))
-    nums.mapIt(it * 3)
+      strings = nums.mapIt($(4 * it))
+    assert strings == @["4", "8", "12", "16"]
+
+  type OutType = typeof((
+    block:
+      var it{.inject.}: typeof(items(s), typeOfIter);
+      op), typeOfProc)
+  when OutType is not (proc):
+    # Here, we avoid to create closures in loops.
+    # This avoids https://github.com/nim-lang/Nim/issues/12625
+    when compiles(s.len):
+      block: # using a block avoids https://github.com/nim-lang/Nim/issues/8580
+
+        # BUG: `evalOnceAs(s2, s, false)` would lead to C compile errors
+        # (`error: use of undeclared identifier`) instead of Nim compile errors
+        evalOnceAs(s2, s, compiles((let _ = s)))
+
+        var i = 0
+        var result = newSeq[OutType](s2.len)
+        for it {.inject.} in s2:
+          result[i] = op
+          i += 1
+        result
+    else:
+      var result: seq[OutType]# = @[]
+      # use `items` to avoid https://github.com/nim-lang/Nim/issues/12639
+      for it {.inject.} in items(s):
+        result.add(op)
+      result
+  else:
+    # `op` is going to create closures in loops, let's fallback to `map`.
+    # NOTE: Without this fallback, developers have to define a helper function and
+    # call `map`:
+    #   [1, 2].map((it) => ((x: int) => it + x))
+    # With this fallback, above code can be simplified to:
+    #   [1, 2].mapIt((x: int) => it + x)
+    # In this case, `mapIt` is just syntax sugar for `map`.
+    type InType = typeof(items(s), typeOfIter)
+    # Use a help proc `f` to create closures for each element in `s`
+    let f = proc (x: InType): OutType =
+              let it {.inject.} = x
+              op
+    map(s, f)
+
+template applyIt*(varSeq, op: untyped) =
+  ## Convenience template around the mutable `apply` proc to reduce typing.
+  ##
+  ## The template injects the `it` variable which you can use directly in an
+  ## expression. The expression has to return the same type as the elements
+  ## of the sequence you are mutating.
+  ##
+  ## **See also:**
+  ## * `apply proc<#apply,openArray[T],proc(T)_2>`_
+  ## * `mapIt template<#mapIt.t,typed,untyped>`_
+  ##
+  runnableExamples:
+    var nums = @[1, 2, 3, 4]
+    nums.applyIt(it * 3)
     assert nums[0] + nums[3] == 15
 
-  block: # distribute tests
-    let numbers = @[1, 2, 3, 4, 5, 6, 7]
-    doAssert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
-    doAssert numbers.distribute(6)[0] == @[1, 2]
-    doAssert numbers.distribute(6)[5] == @[7]
-    let a = @[1, 2, 3, 4, 5, 6, 7]
-    doAssert a.distribute(1, true)   == @[@[1, 2, 3, 4, 5, 6, 7]]
-    doAssert a.distribute(1, false)  == @[@[1, 2, 3, 4, 5, 6, 7]]
-    doAssert a.distribute(2, true)   == @[@[1, 2, 3, 4], @[5, 6, 7]]
-    doAssert a.distribute(2, false)  == @[@[1, 2, 3, 4], @[5, 6, 7]]
-    doAssert a.distribute(3, true)   == @[@[1, 2, 3], @[4, 5], @[6, 7]]
-    doAssert a.distribute(3, false)  == @[@[1, 2, 3], @[4, 5, 6], @[7]]
-    doAssert a.distribute(4, true)   == @[@[1, 2], @[3, 4], @[5, 6], @[7]]
-    doAssert a.distribute(4, false)  == @[@[1, 2], @[3, 4], @[5, 6], @[7]]
-    doAssert a.distribute(5, true)   == @[@[1, 2], @[3, 4], @[5], @[6], @[7]]
-    doAssert a.distribute(5, false)  == @[@[1, 2], @[3, 4], @[5, 6], @[7], @[]]
-    doAssert a.distribute(6, true)   == @[@[1, 2], @[3], @[4], @[5], @[6], @[7]]
-    doAssert a.distribute(6, false)  == @[
-      @[1, 2], @[3, 4], @[5, 6], @[7], @[], @[]]
-    doAssert a.distribute(8, false)  == a.distribute(8, true)
-    doAssert a.distribute(90, false) == a.distribute(90, true)
-    var b = @[0]
-    for f in 1 .. 25: b.add(f)
-    doAssert b.distribute(5, true)[4].len == 5
-    doAssert b.distribute(5, false)[4].len == 2
-
-  block: # newSeqWith tests
-    var seq2D = newSeqWith(4, newSeq[bool](2))
-    seq2D[0][0] = true
-    seq2D[1][0] = true
-    seq2D[0][1] = true
-    doAssert seq2D == @[@[true, true], @[true, false], @[false, false], @[false, false]]
-
-  block: # repeat tests
-    let
-      a = @[1, 2, 3]
-      b: seq[int] = @[]
+  for i in low(varSeq) .. high(varSeq):
+    let it {.inject.} = varSeq[i]
+    varSeq[i] = op
+
+
+template newSeqWith*(len: int, init: untyped): untyped =
+  ## Creates a new `seq` of length `len`, calling `init` to initialize
+  ## each value of the seq.
+  ##
+  ## Useful for creating "2D" seqs - seqs containing other seqs
+  ## or to populate fields of the created seq.
+  runnableExamples:
+    ## Creates a seq containing 5 bool seqs, each of length of 3.
+    var seq2D = newSeqWith(5, newSeq[bool](3))
+    assert seq2D.len == 5
+    assert seq2D[0].len == 3
+    assert seq2D[4][2] == false
+
+    ## Creates a seq with random numbers
+    import std/random
+    var seqRand = newSeqWith(20, rand(1.0))
+    assert seqRand[0] != seqRand[1]
+  type T = typeof(init)
+  let newLen = len
+  when supportsCopyMem(T) and declared(newSeqUninit):
+    var result = newSeqUninit[T](newLen)
+  else: # TODO: use `newSeqUnsafe` when that's available
+    var result = newSeq[T](newLen)
+  for i in 0 ..< newLen:
+    result[i] = init
+  move(result) # refs bug #7295
+
+func mapLitsImpl(constructor: NimNode; op: NimNode; nested: bool;
+                 filter = nnkLiterals): NimNode =
+  if constructor.kind in filter:
+    result = newNimNode(nnkCall, lineInfoFrom = constructor)
+    result.add op
+    result.add constructor
+  else:
+    result = copyNimNode(constructor)
+    for v in constructor:
+      if nested or v.kind in filter:
+        result.add mapLitsImpl(v, op, nested, filter)
+      else:
+        result.add v
+
+macro mapLiterals*(constructor, op: untyped;
+                   nested = true): untyped =
+  ## Applies `op` to each of the **atomic** literals like `3`
+  ## or `"abc"` in the specified `constructor` AST. This can
+  ## be used to map every array element to some target type:
+  runnableExamples:
+    let x = mapLiterals([0.1, 1.2, 2.3, 3.4], int)
+    doAssert x is array[4, int]
+    doAssert x == [int(0.1), int(1.2), int(2.3), int(3.4)]
+  ## If `nested` is true (which is the default), the literals are replaced
+  ## everywhere in the `constructor` AST, otherwise only the first level
+  ## is considered:
+  runnableExamples:
+    let a = mapLiterals((1.2, (2.3, 3.4), 4.8), int)
+    let b = mapLiterals((1.2, (2.3, 3.4), 4.8), int, nested=false)
+    assert a == (1, (2, 3), 4)
+    assert b == (1, (2.3, 3.4), 4)
 
-    doAssert a.repeat(3) == @[1, 2, 3, 1, 2, 3, 1, 2, 3]
-    doAssert a.repeat(0) == @[]
-    #doAssert a.repeat(-1) == @[] # will not compile!
-    doAssert b.repeat(3) == @[]
+    let c = mapLiterals((1, (2, 3), 4, (5, 6)), `$`)
+    let d = mapLiterals((1, (2, 3), 4, (5, 6)), `$`, nested=false)
+    assert c == ("1", ("2", "3"), "4", ("5", "6"))
+    assert d == ("1", (2, 3), "4", (5, 6))
+  ## There are no constraints for the `constructor` AST, it
+  ## works for nested tuples of arrays of sets etc.
+  result = mapLitsImpl(constructor, op, nested.boolVal)
 
-  echo "Finished doc tests"
+iterator items*[T](xs: iterator: T): T =
+  ## Iterates over each element yielded by a closure iterator. This may
+  ## not seem particularly useful on its own, but this allows closure
+  ## iterators to be used by the mapIt, filterIt, allIt, anyIt, etc.
+  ## templates.
+  for x in xs():
+    yield x