diff options
Diffstat (limited to 'lib/pure/collections/sequtils.nim')
-rw-r--r-- | lib/pure/collections/sequtils.nim | 1162 |
1 files changed, 1162 insertions, 0 deletions
diff --git a/lib/pure/collections/sequtils.nim b/lib/pure/collections/sequtils.nim new file mode 100644 index 000000000..3c0d8dc0e --- /dev/null +++ b/lib/pure/collections/sequtils.nim @@ -0,0 +1,1162 @@ +# +# +# Nim's Runtime Library +# (c) Copyright 2011 Alexander Mitchell-Robinson +# +# See the file "copying.txt", included in this +# distribution, for details about the copyright. +# + +## Although this module has `seq` in its name, it implements operations +## not only for the `seq`:idx: type, but for three built-in container types +## under the `openArray` umbrella: +## * sequences +## * strings +## * array +## +## The `system` module defines several common functions, such as: +## * `newSeq[T]` for creating new sequences of type `T` +## * `@` for converting arrays and strings to sequences +## * `add` for adding new elements to strings and sequences +## * `&` for string and seq concatenation +## * `in` (alias for `contains`) and `notin` for checking if an item is +## in a container +## +## This module builds upon that, providing additional functionality in form of +## procs, iterators and templates inspired by functional programming +## languages. +## +## For functional style programming you have different options at your disposal: +## * the `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_ +## * pass an `anonymous proc<manual.html#procedures-anonymous-procs>`_ +## * import the `sugar module<sugar.html>`_ and use +## the `=> macro<sugar.html#%3D>.m,untyped,untyped>`_ +## * use `...It templates<#18>`_ +## (`mapIt<#mapIt.t,typed,untyped>`_, +## `filterIt<#filterIt.t,untyped,untyped>`_, etc.) +## +## Chaining of functions is possible thanks to the +## `method call syntax<manual.html#procedures-method-call-syntax>`_. + +runnableExamples: + import std/sugar + + # Creating a sequence from 1 to 10, multiplying each member by 2, + # keeping only the members which are not divisible by 6. + let + foo = toSeq(1..10).map(x => x * 2).filter(x => x mod 6 != 0) + bar = toSeq(1..10).mapIt(it * 2).filterIt(it mod 6 != 0) + baz = collect: + for i in 1..10: + let j = 2 * i + if j mod 6 != 0: + j + + doAssert foo == bar + doAssert foo == baz + doAssert foo == @[2, 4, 8, 10, 14, 16, 20] + + doAssert foo.any(x => x > 17) + doAssert not bar.allIt(it < 20) + doAssert foo.foldl(a + b) == 74 # sum of all members + + +runnableExamples: + from std/strutils import join + + let + vowels = @"aeiou" + foo = "sequtils is an awesome module" + + doAssert (vowels is seq[char]) and (vowels == @['a', 'e', 'i', 'o', 'u']) + doAssert foo.filterIt(it notin vowels).join == "sqtls s n wsm mdl" + +## See also +## ======== +## * `strutils module<strutils.html>`_ for common string functions +## * `sugar module<sugar.html>`_ for syntactic sugar macros +## * `algorithm module<algorithm.html>`_ for common generic algorithms +## * `json module<json.html>`_ for a structure which allows +## heterogeneous members + + +import std/private/since + +import std/macros +from std/typetraits import supportsCopyMem + +when defined(nimPreviewSlimSystem): + import std/assertions + + +when defined(nimHasEffectsOf): + {.experimental: "strictEffects".} +else: + {.pragma: effectsOf.} + +macro evalOnceAs(expAlias, exp: untyped, + letAssigneable: static[bool]): untyped = + ## Injects `expAlias` in caller scope, to avoid bugs involving multiple + ## substitution in macro arguments such as + ## https://github.com/nim-lang/Nim/issues/7187. + ## `evalOnceAs(myAlias, myExp)` will behave as `let myAlias = myExp` + ## except when `letAssigneable` is false (e.g. to handle openArray) where + ## it just forwards `exp` unchanged. + expectKind(expAlias, nnkIdent) + var val = exp + + result = newStmtList() + # If `exp` is not a symbol we evaluate it once here and then use the temporary + # symbol as alias + if exp.kind != nnkSym and letAssigneable: + val = genSym() + result.add(newLetStmt(val, exp)) + + result.add( + newProc(name = genSym(nskTemplate, $expAlias), params = [getType(untyped)], + body = val, procType = nnkTemplateDef)) + +func concat*[T](seqs: varargs[seq[T]]): seq[T] = + ## Takes several sequences' items and returns them inside a new sequence. + ## All sequences must be of the same type. + ## + ## **See also:** + ## * `distribute func<#distribute,seq[T],Positive>`_ for a reverse + ## operation + ## + runnableExamples: + let + s1 = @[1, 2, 3] + s2 = @[4, 5] + s3 = @[6, 7] + total = concat(s1, s2, s3) + assert total == @[1, 2, 3, 4, 5, 6, 7] + + var L = 0 + for seqitm in items(seqs): inc(L, len(seqitm)) + newSeq(result, L) + var i = 0 + for s in items(seqs): + for itm in items(s): + result[i] = itm + inc(i) + +func addUnique*[T](s: var seq[T], x: sink T) = + ## Adds `x` to the container `s` if it is not already present. + ## Uses `==` to check if the item is already present. + runnableExamples: + var a = @[1, 2, 3] + a.addUnique(4) + a.addUnique(4) + assert a == @[1, 2, 3, 4] + + for i in 0..high(s): + if s[i] == x: return + when declared(ensureMove): + s.add ensureMove(x) + else: + s.add x + +func count*[T](s: openArray[T], x: T): int = + ## Returns the number of occurrences of the item `x` in the container `s`. + ## + runnableExamples: + let + a = @[1, 2, 2, 3, 2, 4, 2] + b = "abracadabra" + assert count(a, 2) == 4 + assert count(a, 99) == 0 + assert count(b, 'r') == 2 + + for itm in items(s): + if itm == x: + inc result + +func cycle*[T](s: openArray[T], n: Natural): seq[T] = + ## Returns a new sequence with the items of the container `s` repeated + ## `n` times. + ## `n` must be a non-negative number (zero or more). + ## + runnableExamples: + let + s = @[1, 2, 3] + total = s.cycle(3) + assert total == @[1, 2, 3, 1, 2, 3, 1, 2, 3] + + result = newSeq[T](n * s.len) + var o = 0 + for x in 0 ..< n: + for e in s: + result[o] = e + inc o + +proc repeat*[T](x: T, n: Natural): seq[T] = + ## Returns a new sequence with the item `x` repeated `n` times. + ## `n` must be a non-negative number (zero or more). + ## + runnableExamples: + let + total = repeat(5, 3) + assert total == @[5, 5, 5] + + result = newSeq[T](n) + for i in 0 ..< n: + result[i] = x + +func deduplicate*[T](s: openArray[T], isSorted: bool = false): seq[T] = + ## Returns a new sequence without duplicates. + ## + ## Setting the optional argument `isSorted` to true (default: false) + ## uses a faster algorithm for deduplication. + ## + runnableExamples: + let + dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4] + dup2 = @["a", "a", "c", "d", "d"] + unique1 = deduplicate(dup1) + unique2 = deduplicate(dup2, isSorted = true) + assert unique1 == @[1, 3, 4, 2, 8] + assert unique2 == @["a", "c", "d"] + + result = @[] + if s.len > 0: + if isSorted: + var prev = s[0] + result.add(prev) + for i in 1..s.high: + if s[i] != prev: + prev = s[i] + result.add(prev) + else: + for itm in items(s): + if not result.contains(itm): result.add(itm) + +func minIndex*[T](s: openArray[T]): int {.since: (1, 1).} = + ## Returns the index of the minimum value of `s`. + ## `T` needs to have a `<` operator. + runnableExamples: + let + a = @[1, 2, 3, 4] + b = @[6, 5, 4, 3] + c = [2, -7, 8, -5] + d = "ziggy" + assert minIndex(a) == 0 + assert minIndex(b) == 3 + assert minIndex(c) == 1 + assert minIndex(d) == 2 + + for i in 1..high(s): + if s[i] < s[result]: result = i + +func maxIndex*[T](s: openArray[T]): int {.since: (1, 1).} = + ## Returns the index of the maximum value of `s`. + ## `T` needs to have a `<` operator. + runnableExamples: + let + a = @[1, 2, 3, 4] + b = @[6, 5, 4, 3] + c = [2, -7, 8, -5] + d = "ziggy" + assert maxIndex(a) == 3 + assert maxIndex(b) == 0 + assert maxIndex(c) == 2 + assert maxIndex(d) == 0 + + for i in 1..high(s): + if s[i] > s[result]: result = i + +func minmax*[T](x: openArray[T]): (T, T) = + ## The minimum and maximum values of `x`. `T` needs to have a `<` operator. + var l = x[0] + var h = x[0] + for i in 1..high(x): + if x[i] < l: l = x[i] + if h < x[i]: h = x[i] + result = (l, h) + + +template zipImpl(s1, s2, retType: untyped): untyped = + proc zip*[S, T](s1: openArray[S], s2: openArray[T]): retType = + ## Returns a new sequence with a combination of the two input containers. + ## + ## The input containers can be of different types. + ## If one container is shorter, the remaining items in the longer container + ## are discarded. + ## + ## **Note**: For Nim 1.0.x and older version, `zip` returned a seq of + ## named tuples with fields `a` and `b`. For Nim versions 1.1.x and newer, + ## `zip` returns a seq of unnamed tuples. + runnableExamples: + let + short = @[1, 2, 3] + long = @[6, 5, 4, 3, 2, 1] + words = @["one", "two", "three"] + letters = "abcd" + zip1 = zip(short, long) + zip2 = zip(short, words) + assert zip1 == @[(1, 6), (2, 5), (3, 4)] + assert zip2 == @[(1, "one"), (2, "two"), (3, "three")] + assert zip1[2][0] == 3 + assert zip2[1][1] == "two" + when (NimMajor, NimMinor) <= (1, 0): + let + zip3 = zip(long, letters) + assert zip3 == @[(a: 6, b: 'a'), (5, 'b'), (4, 'c'), (3, 'd')] + assert zip3[0].b == 'a' + else: + let + zip3: seq[tuple[num: int, letter: char]] = zip(long, letters) + assert zip3 == @[(6, 'a'), (5, 'b'), (4, 'c'), (3, 'd')] + assert zip3[0].letter == 'a' + + var m = min(s1.len, s2.len) + newSeq(result, m) + for i in 0 ..< m: + result[i] = (s1[i], s2[i]) + +when (NimMajor, NimMinor) <= (1, 0): + zipImpl(s1, s2, seq[tuple[a: S, b: T]]) +else: + zipImpl(s1, s2, seq[(S, T)]) + +proc unzip*[S, T](s: openArray[(S, T)]): (seq[S], seq[T]) {.since: (1, 1).} = + ## Returns a tuple of two sequences split out from a sequence of 2-field tuples. + runnableExamples: + let + zipped = @[(1, 'a'), (2, 'b'), (3, 'c')] + unzipped1 = @[1, 2, 3] + unzipped2 = @['a', 'b', 'c'] + assert zipped.unzip() == (unzipped1, unzipped2) + assert zip(unzipped1, unzipped2).unzip() == (unzipped1, unzipped2) + result = (newSeq[S](s.len), newSeq[T](s.len)) + for i in 0..<s.len: + result[0][i] = s[i][0] + result[1][i] = s[i][1] + +func distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] = + ## Splits and distributes a sequence `s` into `num` sub-sequences. + ## + ## Returns a sequence of `num` sequences. For *some* input values this is the + ## inverse of the `concat <#concat,varargs[seq[T]]>`_ func. + ## The input sequence `s` can be empty, which will produce + ## `num` empty sequences. + ## + ## If `spread` is false and the length of `s` is not a multiple of `num`, the + ## func will max out the first sub-sequence with `1 + len(s) div num` + ## entries, leaving the remainder of elements to the last sequence. + ## + ## On the other hand, if `spread` is true, the func will distribute evenly + ## the remainder of the division across all sequences, which makes the result + ## more suited to multithreading where you are passing equal sized work units + ## to a thread pool and want to maximize core usage. + ## + runnableExamples: + let numbers = @[1, 2, 3, 4, 5, 6, 7] + assert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]] + assert numbers.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]] + assert numbers.distribute(6)[0] == @[1, 2] + assert numbers.distribute(6)[1] == @[3] + + if num < 2: + result = @[s] + return + + # Create the result and calculate the stride size and the remainder if any. + result = newSeq[seq[T]](num) + var + stride = s.len div num + first = 0 + last = 0 + extra = s.len mod num + + if extra == 0 or spread == false: + # Use an algorithm which overcounts the stride and minimizes reading limits. + if extra > 0: inc(stride) + for i in 0 ..< num: + result[i] = newSeq[T]() + for g in first ..< min(s.len, first + stride): + result[i].add(s[g]) + first += stride + else: + # Use an undercounting algorithm which *adds* the remainder each iteration. + for i in 0 ..< num: + last = first + stride + if extra > 0: + extra -= 1 + inc(last) + result[i] = newSeq[T]() + for g in first ..< last: + result[i].add(s[g]) + first = last + +proc map*[T, S](s: openArray[T], op: proc (x: T): S {.closure.}): + seq[S] {.inline, effectsOf: op.} = + ## Returns a new sequence with the results of the `op` proc applied to every + ## item in the container `s`. + ## + ## Since the input is not modified, you can use it to + ## transform the type of the elements in the input container. + ## + ## Instead of using `map` and `filter`, consider using the `collect` macro + ## from the `sugar` module. + ## + ## **See also:** + ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_ + ## * `mapIt template<#mapIt.t,typed,untyped>`_ + ## * `apply proc<#apply,openArray[T],proc(T)_2>`_ for the in-place version + ## + runnableExamples: + let + a = @[1, 2, 3, 4] + b = map(a, proc(x: int): string = $x) + assert b == @["1", "2", "3", "4"] + + newSeq(result, s.len) + for i in 0 ..< s.len: + result[i] = op(s[i]) + +proc apply*[T](s: var openArray[T], op: proc (x: var T) {.closure.}) + {.inline, effectsOf: op.} = + ## Applies `op` to every item in `s`, modifying it directly. + ## + ## Note that the container `s` must be declared as a `var`, + ## since `s` is modified in-place. + ## The parameter function takes a `var T` type parameter. + ## + ## **See also:** + ## * `applyIt template<#applyIt.t,untyped,untyped>`_ + ## * `map proc<#map,openArray[T],proc(T)>`_ + ## + runnableExamples: + var a = @["1", "2", "3", "4"] + apply(a, proc(x: var string) = x &= "42") + assert a == @["142", "242", "342", "442"] + + for i in 0 ..< s.len: op(s[i]) + +proc apply*[T](s: var openArray[T], op: proc (x: T): T {.closure.}) + {.inline, effectsOf: op.} = + ## Applies `op` to every item in `s` modifying it directly. + ## + ## Note that the container `s` must be declared as a `var` + ## and it is required for your input and output types to + ## be the same, since `s` is modified in-place. + ## The parameter function takes and returns a `T` type variable. + ## + ## **See also:** + ## * `applyIt template<#applyIt.t,untyped,untyped>`_ + ## * `map proc<#map,openArray[T],proc(T)>`_ + ## + runnableExamples: + var a = @["1", "2", "3", "4"] + apply(a, proc(x: string): string = x & "42") + assert a == @["142", "242", "342", "442"] + + for i in 0 ..< s.len: s[i] = op(s[i]) + +proc apply*[T](s: openArray[T], op: proc (x: T) {.closure.}) {.inline, since: (1, 3), effectsOf: op.} = + ## Same as `apply` but for a proc that does not return anything + ## and does not mutate `s` directly. + runnableExamples: + var message: string + apply([0, 1, 2, 3, 4], proc(item: int) = message.addInt item) + assert message == "01234" + for i in 0 ..< s.len: op(s[i]) + +iterator filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): T {.effectsOf: pred.} = + ## Iterates through a container `s` and yields every item that fulfills the + ## predicate `pred` (a function that returns a `bool`). + ## + ## Instead of using `map` and `filter`, consider using the `collect` macro + ## from the `sugar` module. + ## + ## **See also:** + ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_ + ## * `filter proc<#filter,openArray[T],proc(T)>`_ + ## * `filterIt template<#filterIt.t,untyped,untyped>`_ + ## + runnableExamples: + let numbers = @[1, 4, 5, 8, 9, 7, 4] + var evens = newSeq[int]() + for n in filter(numbers, proc (x: int): bool = x mod 2 == 0): + evens.add(n) + assert evens == @[4, 8, 4] + + for i in 0 ..< s.len: + if pred(s[i]): + yield s[i] + +proc filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): seq[T] + {.inline, effectsOf: pred.} = + ## Returns a new sequence with all the items of `s` that fulfill the + ## predicate `pred` (a function that returns a `bool`). + ## + ## Instead of using `map` and `filter`, consider using the `collect` macro + ## from the `sugar` module. + ## + ## **See also:** + ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_ + ## * `filterIt template<#filterIt.t,untyped,untyped>`_ + ## * `filter iterator<#filter.i,openArray[T],proc(T)>`_ + ## * `keepIf proc<#keepIf,seq[T],proc(T)>`_ for the in-place version + ## + runnableExamples: + let + colors = @["red", "yellow", "black"] + f1 = filter(colors, proc(x: string): bool = x.len < 6) + f2 = filter(colors, proc(x: string): bool = x.contains('y')) + assert f1 == @["red", "black"] + assert f2 == @["yellow"] + + result = newSeq[T]() + for i in 0 ..< s.len: + if pred(s[i]): + result.add(s[i]) + +proc keepIf*[T](s: var seq[T], pred: proc(x: T): bool {.closure.}) + {.inline, effectsOf: pred.} = + ## Keeps the items in the passed sequence `s` if they fulfill the + ## predicate `pred` (a function that returns a `bool`). + ## + ## Note that `s` must be declared as a `var`. + ## + ## Similar to the `filter proc<#filter,openArray[T],proc(T)>`_, + ## but modifies the sequence directly. + ## + ## **See also:** + ## * `keepItIf template<#keepItIf.t,seq,untyped>`_ + ## * `filter proc<#filter,openArray[T],proc(T)>`_ + ## + runnableExamples: + var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1] + keepIf(floats, proc(x: float): bool = x > 10) + assert floats == @[13.0, 12.5, 10.1] + + var pos = 0 + for i in 0 ..< len(s): + if pred(s[i]): + if pos != i: + when defined(gcDestructors): + s[pos] = move(s[i]) + else: + shallowCopy(s[pos], s[i]) + inc(pos) + setLen(s, pos) + +func delete*[T](s: var seq[T]; slice: Slice[int]) = + ## Deletes the items `s[slice]`, raising `IndexDefect` if the slice contains + ## elements out of range. + ## + ## This operation moves all elements after `s[slice]` in linear time. + runnableExamples: + var a = @[10, 11, 12, 13, 14] + doAssertRaises(IndexDefect): a.delete(4..5) + assert a == @[10, 11, 12, 13, 14] + a.delete(4..4) + assert a == @[10, 11, 12, 13] + a.delete(1..2) + assert a == @[10, 13] + a.delete(1..<1) # empty slice + assert a == @[10, 13] + when compileOption("boundChecks"): + if not (slice.a < s.len and slice.a >= 0 and slice.b < s.len): + raise newException(IndexDefect, $(slice: slice, len: s.len)) + if slice.b >= slice.a: + template defaultImpl = + var i = slice.a + var j = slice.b + 1 + var newLen = s.len - j + i + while i < newLen: + when defined(gcDestructors): + s[i] = move(s[j]) + else: + s[i].shallowCopy(s[j]) + inc(i) + inc(j) + setLen(s, newLen) + when nimvm: defaultImpl() + else: + when defined(js): + let n = slice.b - slice.a + 1 + let first = slice.a + {.emit: "`s`.splice(`first`, `n`);".} + else: + defaultImpl() + +func delete*[T](s: var seq[T]; first, last: Natural) {.deprecated: "use `delete(s, first..last)`".} = + ## Deletes the items of a sequence `s` at positions `first..last` + ## (including both ends of the range). + ## This modifies `s` itself, it does not return a copy. + runnableExamples("--warning:deprecated:off"): + let outcome = @[1, 1, 1, 1, 1, 1, 1, 1] + var dest = @[1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1] + dest.delete(3, 8) + assert outcome == dest + doAssert first <= last + if first >= s.len: + return + var i = first + var j = min(len(s), last + 1) + var newLen = len(s) - j + i + while i < newLen: + when defined(gcDestructors): + s[i] = move(s[j]) + else: + s[i].shallowCopy(s[j]) + inc(i) + inc(j) + setLen(s, newLen) + +func insert*[T](dest: var seq[T], src: openArray[T], pos = 0) = + ## Inserts items from `src` into `dest` at position `pos`. This modifies + ## `dest` itself, it does not return a copy. + ## + ## Note that the elements of `src` and `dest` must be of the same type. + ## + runnableExamples: + var dest = @[1, 1, 1, 1, 1, 1, 1, 1] + let + src = @[2, 2, 2, 2, 2, 2] + outcome = @[1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1] + dest.insert(src, 3) + assert dest == outcome + + var j = len(dest) - 1 + var i = j + len(src) + if i == j: return + dest.setLen(i + 1) + + # Move items after `pos` to the end of the sequence. + while j >= pos: + when defined(gcDestructors): + dest[i] = move(dest[j]) + else: + dest[i].shallowCopy(dest[j]) + dec(i) + dec(j) + # Insert items from `dest` into `dest` at `pos` + inc(j) + for item in src: + dest[j] = item + inc(j) + + +template filterIt*(s, pred: untyped): untyped = + ## Returns a new sequence with all the items of `s` that fulfill the + ## predicate `pred`. + ## + ## Unlike the `filter proc<#filter,openArray[T],proc(T)>`_ and + ## `filter iterator<#filter.i,openArray[T],proc(T)>`_, + ## the predicate needs to be an expression using the `it` variable + ## for testing, like: `filterIt("abcxyz", it == 'x')`. + ## + ## Instead of using `mapIt` and `filterIt`, consider using the `collect` macro + ## from the `sugar` module. + ## + ## **See also:** + ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_ + ## * `filter proc<#filter,openArray[T],proc(T)>`_ + ## * `filter iterator<#filter.i,openArray[T],proc(T)>`_ + ## + runnableExamples: + let + temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44] + acceptable = temperatures.filterIt(it < 50 and it > -10) + notAcceptable = temperatures.filterIt(it > 50 or it < -10) + assert acceptable == @[-2.0, 24.5, 44.31] + assert notAcceptable == @[-272.15, 99.9, -113.44] + + var result = newSeq[typeof(s[0])]() + for it {.inject.} in items(s): + if pred: result.add(it) + result + +template keepItIf*(varSeq: seq, pred: untyped) = + ## Keeps the items in the passed sequence (must be declared as a `var`) + ## if they fulfill the predicate. + ## + ## Unlike the `keepIf proc<#keepIf,seq[T],proc(T)>`_, + ## the predicate needs to be an expression using + ## the `it` variable for testing, like: `keepItIf("abcxyz", it == 'x')`. + ## + ## **See also:** + ## * `keepIf proc<#keepIf,seq[T],proc(T)>`_ + ## * `filterIt template<#filterIt.t,untyped,untyped>`_ + ## + runnableExamples: + var candidates = @["foo", "bar", "baz", "foobar"] + candidates.keepItIf(it.len == 3 and it[0] == 'b') + assert candidates == @["bar", "baz"] + + var pos = 0 + for i in 0 ..< len(varSeq): + let it {.inject.} = varSeq[i] + if pred: + if pos != i: + when defined(gcDestructors): + varSeq[pos] = move(varSeq[i]) + else: + shallowCopy(varSeq[pos], varSeq[i]) + inc(pos) + setLen(varSeq, pos) + +since (1, 1): + template countIt*(s, pred: untyped): int = + ## Returns a count of all the items that fulfill the predicate. + ## + ## The predicate needs to be an expression using + ## the `it` variable for testing, like: `countIt(@[1, 2, 3], it > 2)`. + ## + runnableExamples: + let numbers = @[-3, -2, -1, 0, 1, 2, 3, 4, 5, 6] + iterator iota(n: int): int = + for i in 0..<n: yield i + assert numbers.countIt(it < 0) == 3 + assert countIt(iota(10), it < 2) == 2 + + var result = 0 + for it {.inject.} in s: + if pred: result += 1 + result + +proc all*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool {.effectsOf: pred.} = + ## Iterates through a container and checks if every item fulfills the + ## predicate. + ## + ## **See also:** + ## * `allIt template<#allIt.t,untyped,untyped>`_ + ## * `any proc<#any,openArray[T],proc(T)>`_ + ## + runnableExamples: + let numbers = @[1, 4, 5, 8, 9, 7, 4] + assert all(numbers, proc (x: int): bool = x < 10) == true + assert all(numbers, proc (x: int): bool = x < 9) == false + + for i in s: + if not pred(i): + return false + true + +template allIt*(s, pred: untyped): bool = + ## Iterates through a container and checks if every item fulfills the + ## predicate. + ## + ## Unlike the `all proc<#all,openArray[T],proc(T)>`_, + ## the predicate needs to be an expression using + ## the `it` variable for testing, like: `allIt("abba", it == 'a')`. + ## + ## **See also:** + ## * `all proc<#all,openArray[T],proc(T)>`_ + ## * `anyIt template<#anyIt.t,untyped,untyped>`_ + ## + runnableExamples: + let numbers = @[1, 4, 5, 8, 9, 7, 4] + assert numbers.allIt(it < 10) == true + assert numbers.allIt(it < 9) == false + + var result = true + for it {.inject.} in items(s): + if not pred: + result = false + break + result + +proc any*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool {.effectsOf: pred.} = + ## Iterates through a container and checks if at least one item + ## fulfills the predicate. + ## + ## **See also:** + ## * `anyIt template<#anyIt.t,untyped,untyped>`_ + ## * `all proc<#all,openArray[T],proc(T)>`_ + ## + runnableExamples: + let numbers = @[1, 4, 5, 8, 9, 7, 4] + assert any(numbers, proc (x: int): bool = x > 8) == true + assert any(numbers, proc (x: int): bool = x > 9) == false + + for i in s: + if pred(i): + return true + false + +template anyIt*(s, pred: untyped): bool = + ## Iterates through a container and checks if at least one item + ## fulfills the predicate. + ## + ## Unlike the `any proc<#any,openArray[T],proc(T)>`_, + ## the predicate needs to be an expression using + ## the `it` variable for testing, like: `anyIt("abba", it == 'a')`. + ## + ## **See also:** + ## * `any proc<#any,openArray[T],proc(T)>`_ + ## * `allIt template<#allIt.t,untyped,untyped>`_ + ## + runnableExamples: + let numbers = @[1, 4, 5, 8, 9, 7, 4] + assert numbers.anyIt(it > 8) == true + assert numbers.anyIt(it > 9) == false + + var result = false + for it {.inject.} in items(s): + if pred: + result = true + break + result + +template toSeq1(s: not iterator): untyped = + # overload for typed but not iterator + type OutType = typeof(items(s)) + when compiles(s.len): + block: + evalOnceAs(s2, s, compiles((let _ = s))) + var i = 0 + var result = newSeq[OutType](s2.len) + for it in s2: + result[i] = it + i += 1 + result + else: + var result: seq[OutType]# = @[] + for it in s: + result.add(it) + result + +template toSeq2(iter: iterator): untyped = + # overload for iterator + evalOnceAs(iter2, iter(), false) + when compiles(iter2.len): + var i = 0 + var result = newSeq[typeof(iter2)](iter2.len) + for x in iter2: + result[i] = x + inc i + result + else: + type OutType = typeof(iter2()) + var result: seq[OutType]# = @[] + when compiles(iter2()): + evalOnceAs(iter4, iter, false) + let iter3 = iter4() + for x in iter3(): + result.add(x) + else: + for x in iter2(): + result.add(x) + result + +template toSeq*(iter: untyped): untyped = + ## Transforms any iterable (anything that can be iterated over, e.g. with + ## a for-loop) into a sequence. + ## + runnableExamples: + let + myRange = 1..5 + mySet: set[int8] = {5'i8, 3, 1} + assert typeof(myRange) is HSlice[system.int, system.int] + assert typeof(mySet) is set[int8] + + let + mySeq1 = toSeq(myRange) + mySeq2 = toSeq(mySet) + assert mySeq1 == @[1, 2, 3, 4, 5] + assert mySeq2 == @[1'i8, 3, 5] + + when compiles(toSeq1(iter)): + toSeq1(iter) + elif compiles(toSeq2(iter)): + toSeq2(iter) + else: + # overload for untyped, e.g.: `toSeq(myInlineIterator(3))` + when compiles(iter.len): + block: + evalOnceAs(iter2, iter, true) + var result = newSeq[typeof(iter)](iter2.len) + var i = 0 + for x in iter2: + result[i] = x + inc i + result + else: + var result: seq[typeof(iter)] = @[] + for x in iter: + result.add(x) + result + +template foldl*(sequence, operation: untyped): untyped = + ## Template to fold a sequence from left to right, returning the accumulation. + ## + ## The sequence is required to have at least a single element. Debug versions + ## of your program will assert in this situation but release versions will + ## happily go ahead. If the sequence has a single element it will be returned + ## without applying `operation`. + ## + ## The `operation` parameter should be an expression which uses the + ## variables `a` and `b` for each step of the fold. Since this is a left + ## fold, for non associative binary operations like subtraction think that + ## the sequence of numbers 1, 2 and 3 will be parenthesized as (((1) - 2) - + ## 3). + ## + ## **See also:** + ## * `foldl template<#foldl.t,,,>`_ with a starting parameter + ## * `foldr template<#foldr.t,untyped,untyped>`_ + ## + runnableExamples: + let + numbers = @[5, 9, 11] + addition = foldl(numbers, a + b) + subtraction = foldl(numbers, a - b) + multiplication = foldl(numbers, a * b) + words = @["nim", "is", "cool"] + concatenation = foldl(words, a & b) + procs = @["proc", "Is", "Also", "Fine"] + + + func foo(acc, cur: string): string = + result = acc & cur + + assert addition == 25, "Addition is (((5)+9)+11)" + assert subtraction == -15, "Subtraction is (((5)-9)-11)" + assert multiplication == 495, "Multiplication is (((5)*9)*11)" + assert concatenation == "nimiscool" + assert foldl(procs, foo(a, b)) == "procIsAlsoFine" + + let s = sequence + assert s.len > 0, "Can't fold empty sequences" + var result: typeof(s[0]) + result = s[0] + for i in 1..<s.len: + let + a {.inject.} = result + b {.inject.} = s[i] + result = operation + result + +template foldl*(sequence, operation, first): untyped = + ## Template to fold a sequence from left to right, returning the accumulation. + ## + ## This version of `foldl` gets a **starting parameter**. This makes it possible + ## to accumulate the sequence into a different type than the sequence elements. + ## + ## The `operation` parameter should be an expression which uses the variables + ## `a` and `b` for each step of the fold. The `first` parameter is the + ## start value (the first `a`) and therefore defines the type of the result. + ## + ## **See also:** + ## * `foldr template<#foldr.t,untyped,untyped>`_ + ## + runnableExamples: + let + numbers = @[0, 8, 1, 5] + digits = foldl(numbers, a & (chr(b + ord('0'))), "") + assert digits == "0815" + + var result: typeof(first) = first + for x in items(sequence): + let + a {.inject.} = result + b {.inject.} = x + result = operation + result + +template foldr*(sequence, operation: untyped): untyped = + ## Template to fold a sequence from right to left, returning the accumulation. + ## + ## The sequence is required to have at least a single element. Debug versions + ## of your program will assert in this situation but release versions will + ## happily go ahead. If the sequence has a single element it will be returned + ## without applying `operation`. + ## + ## The `operation` parameter should be an expression which uses the + ## variables `a` and `b` for each step of the fold. Since this is a right + ## fold, for non associative binary operations like subtraction think that + ## the sequence of numbers 1, 2 and 3 will be parenthesized as (1 - (2 - + ## (3))). + ## + ## **See also:** + ## * `foldl template<#foldl.t,untyped,untyped>`_ + ## * `foldl template<#foldl.t,,,>`_ with a starting parameter + ## + runnableExamples: + let + numbers = @[5, 9, 11] + addition = foldr(numbers, a + b) + subtraction = foldr(numbers, a - b) + multiplication = foldr(numbers, a * b) + words = @["nim", "is", "cool"] + concatenation = foldr(words, a & b) + assert addition == 25, "Addition is (5+(9+(11)))" + assert subtraction == 7, "Subtraction is (5-(9-(11)))" + assert multiplication == 495, "Multiplication is (5*(9*(11)))" + assert concatenation == "nimiscool" + + let s = sequence # xxx inefficient, use {.evalonce.} pending #13750 + let n = s.len + assert n > 0, "Can't fold empty sequences" + var result = s[n - 1] + for i in countdown(n - 2, 0): + let + a {.inject.} = s[i] + b {.inject.} = result + result = operation + result + +template mapIt*(s: typed, op: untyped): untyped = + ## Returns a new sequence with the results of the `op` proc applied to every + ## item in the container `s`. + ## + ## Since the input is not modified you can use it to + ## transform the type of the elements in the input container. + ## + ## The template injects the `it` variable which you can use directly in an + ## expression. + ## + ## Instead of using `mapIt` and `filterIt`, consider using the `collect` macro + ## from the `sugar` module. + ## + ## **See also:** + ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_ + ## * `map proc<#map,openArray[T],proc(T)>`_ + ## * `applyIt template<#applyIt.t,untyped,untyped>`_ for the in-place version + ## + runnableExamples: + let + nums = @[1, 2, 3, 4] + strings = nums.mapIt($(4 * it)) + assert strings == @["4", "8", "12", "16"] + + type OutType = typeof(( + block: + var it{.inject.}: typeof(items(s), typeOfIter); + op), typeOfProc) + when OutType is not (proc): + # Here, we avoid to create closures in loops. + # This avoids https://github.com/nim-lang/Nim/issues/12625 + when compiles(s.len): + block: # using a block avoids https://github.com/nim-lang/Nim/issues/8580 + + # BUG: `evalOnceAs(s2, s, false)` would lead to C compile errors + # (`error: use of undeclared identifier`) instead of Nim compile errors + evalOnceAs(s2, s, compiles((let _ = s))) + + var i = 0 + var result = newSeq[OutType](s2.len) + for it {.inject.} in s2: + result[i] = op + i += 1 + result + else: + var result: seq[OutType]# = @[] + # use `items` to avoid https://github.com/nim-lang/Nim/issues/12639 + for it {.inject.} in items(s): + result.add(op) + result + else: + # `op` is going to create closures in loops, let's fallback to `map`. + # NOTE: Without this fallback, developers have to define a helper function and + # call `map`: + # [1, 2].map((it) => ((x: int) => it + x)) + # With this fallback, above code can be simplified to: + # [1, 2].mapIt((x: int) => it + x) + # In this case, `mapIt` is just syntax sugar for `map`. + type InType = typeof(items(s), typeOfIter) + # Use a help proc `f` to create closures for each element in `s` + let f = proc (x: InType): OutType = + let it {.inject.} = x + op + map(s, f) + +template applyIt*(varSeq, op: untyped) = + ## Convenience template around the mutable `apply` proc to reduce typing. + ## + ## The template injects the `it` variable which you can use directly in an + ## expression. The expression has to return the same type as the elements + ## of the sequence you are mutating. + ## + ## **See also:** + ## * `apply proc<#apply,openArray[T],proc(T)_2>`_ + ## * `mapIt template<#mapIt.t,typed,untyped>`_ + ## + runnableExamples: + var nums = @[1, 2, 3, 4] + nums.applyIt(it * 3) + assert nums[0] + nums[3] == 15 + + for i in low(varSeq) .. high(varSeq): + let it {.inject.} = varSeq[i] + varSeq[i] = op + + +template newSeqWith*(len: int, init: untyped): untyped = + ## Creates a new `seq` of length `len`, calling `init` to initialize + ## each value of the seq. + ## + ## Useful for creating "2D" seqs - seqs containing other seqs + ## or to populate fields of the created seq. + runnableExamples: + ## Creates a seq containing 5 bool seqs, each of length of 3. + var seq2D = newSeqWith(5, newSeq[bool](3)) + assert seq2D.len == 5 + assert seq2D[0].len == 3 + assert seq2D[4][2] == false + + ## Creates a seq with random numbers + import std/random + var seqRand = newSeqWith(20, rand(1.0)) + assert seqRand[0] != seqRand[1] + type T = typeof(init) + let newLen = len + when supportsCopyMem(T) and declared(newSeqUninit): + var result = newSeqUninit[T](newLen) + else: # TODO: use `newSeqUnsafe` when that's available + var result = newSeq[T](newLen) + for i in 0 ..< newLen: + result[i] = init + move(result) # refs bug #7295 + +func mapLitsImpl(constructor: NimNode; op: NimNode; nested: bool; + filter = nnkLiterals): NimNode = + if constructor.kind in filter: + result = newNimNode(nnkCall, lineInfoFrom = constructor) + result.add op + result.add constructor + else: + result = copyNimNode(constructor) + for v in constructor: + if nested or v.kind in filter: + result.add mapLitsImpl(v, op, nested, filter) + else: + result.add v + +macro mapLiterals*(constructor, op: untyped; + nested = true): untyped = + ## Applies `op` to each of the **atomic** literals like `3` + ## or `"abc"` in the specified `constructor` AST. This can + ## be used to map every array element to some target type: + runnableExamples: + let x = mapLiterals([0.1, 1.2, 2.3, 3.4], int) + doAssert x is array[4, int] + doAssert x == [int(0.1), int(1.2), int(2.3), int(3.4)] + ## If `nested` is true (which is the default), the literals are replaced + ## everywhere in the `constructor` AST, otherwise only the first level + ## is considered: + runnableExamples: + let a = mapLiterals((1.2, (2.3, 3.4), 4.8), int) + let b = mapLiterals((1.2, (2.3, 3.4), 4.8), int, nested=false) + assert a == (1, (2, 3), 4) + assert b == (1, (2.3, 3.4), 4) + + let c = mapLiterals((1, (2, 3), 4, (5, 6)), `$`) + let d = mapLiterals((1, (2, 3), 4, (5, 6)), `$`, nested=false) + assert c == ("1", ("2", "3"), "4", ("5", "6")) + assert d == ("1", (2, 3), "4", (5, 6)) + ## There are no constraints for the `constructor` AST, it + ## works for nested tuples of arrays of sets etc. + result = mapLitsImpl(constructor, op, nested.boolVal) + +iterator items*[T](xs: iterator: T): T = + ## Iterates over each element yielded by a closure iterator. This may + ## not seem particularly useful on its own, but this allows closure + ## iterators to be used by the mapIt, filterIt, allIt, anyIt, etc. + ## templates. + for x in xs(): + yield x |