summary refs log tree commit diff stats
path: root/lib/pure/collections/sequtils.nim
diff options
context:
space:
mode:
Diffstat (limited to 'lib/pure/collections/sequtils.nim')
-rw-r--r--lib/pure/collections/sequtils.nim712
1 files changed, 409 insertions, 303 deletions
diff --git a/lib/pure/collections/sequtils.nim b/lib/pure/collections/sequtils.nim
index 39ba6df49..b0d50bce2 100644
--- a/lib/pure/collections/sequtils.nim
+++ b/lib/pure/collections/sequtils.nim
@@ -7,16 +7,71 @@
 #    distribution, for details about the copyright.
 #
 
-## :Author: Alexander Mitchell-Robinson (Amrykid)
+## Although this module has ``seq`` in its name, it implements operations
+## not only for `seq`:idx: type, but for three built-in container types under
+## the ``openArray`` umbrella:
+## * sequences
+## * strings
+## * array
 ##
-## This module implements operations for the built-in `seq`:idx: type which
-## were inspired by functional programming languages.
+## The system module defines several common functions, such as:
+## * ``newseq[T]`` for creating new sequences of type ``T``
+## * ``@`` for converting arrays and strings to sequences
+## * ``add`` for adding new elements to strings and sequences
+## * ``&`` for string and seq concatenation
+## * ``in`` (alias for ``contains``) and ``notin`` for checking if an item is
+##   in a container
 ##
-## For functional style programming you may want to pass `anonymous procs
-## <manual.html#procedures-anonymous-procs>`_ to procs like ``filter`` to
-## reduce typing. Anonymous procs can use `the special do notation
-## <manual.html#procedures-do-notation>`_
-## which is more convenient in certain situations.
+## This module builds upon that, providing additional functionality in form of
+## procs, iterators and templates inspired by functional programming
+## languages.
+##
+## For functional style programming you have different options at your disposal:
+## * pass `anonymous proc<manual.html#procedures-anonymous-procs>`_
+## * import `sugar module<sugar.html>`_  and use
+##   `=> macro<sugar.html#%3D>.m,untyped,untyped>`_
+## * use `...It templates<#18>`_
+##   (`mapIt<#mapIt.t,typed,untyped>`_,
+##   `filterIt<#filterIt.t,untyped,untyped>`_, etc.)
+##
+## The chaining of functions is possible thanks to the
+## `method call syntax<manual.html#procs-method-call-syntax>`_.
+##
+## .. code-block::
+##   import sequtils, sugar
+##
+##   # Creating a sequence from 1 to 10, multiplying each member by 2,
+##   # keeping only the members which are not divisible by 6.
+##   let
+##     foo = toSeq(1..10).map(x => x*2).filter(x => x mod 6 != 0)
+##     bar = toSeq(1..10).mapIt(it*2).filterIt(it mod 6 != 0)
+##
+##   doAssert foo == bar
+##   echo foo                  # @[2, 4, 8, 10, 14, 16, 20]
+##
+##   echo foo.any(x => x > 17) # true
+##   echo bar.allIt(it < 20)   # false
+##   echo foo.foldl(a + b)     # 74; sum of all members
+##
+## .. code-block::
+##   import sequtils
+##   from strutils import join
+##
+##   let
+##     vowels = @"aeiou" # creates a sequence @['a', 'e', 'i', 'o', 'u']
+##     foo = "sequtils is an awesome module"
+##
+##   echo foo.filterIt(it notin vowels).join # "sqtls s n wsm mdl"
+##
+## ----
+##
+## **See also**:
+## * `strutils module<strutils.html>`_ for common string functions
+## * `sugar module<sugar.html>`_ for syntactic sugar macros
+## * `algorithm module<algorithm.html>`_ for common generic algorithms
+## * `json module<json.html>`_ for a structure which allows
+##   heterogeneous members
+
 
 include "system/inclrtl"
 
@@ -31,7 +86,7 @@ macro evalOnceAs(expAlias, exp: untyped, letAssigneable: static[bool]): untyped
   ##  substitution in macro arguments such as
   ## https://github.com/nim-lang/Nim/issues/7187
   ## ``evalOnceAs(myAlias, myExp)`` will behave as ``let myAlias = myExp``
-  ## except when ``letAssigneable`` is false (eg to handle openArray) where
+  ## except when ``letAssigneable`` is false (e.g. to handle openArray) where
   ## it just forwards ``exp`` unchanged
   expectKind(expAlias, nnkIdent)
   var val = exp
@@ -49,16 +104,20 @@ macro evalOnceAs(expAlias, exp: untyped, letAssigneable: static[bool]): untyped
 
 proc concat*[T](seqs: varargs[seq[T]]): seq[T] =
   ## Takes several sequences' items and returns them inside a new sequence.
+  ## All sequences must be of the same type.
   ##
-  ## Example:
+  ## See also:
+  ## * `distribute proc<#distribute,seq[T],Positive>`_ for a reverse
+  ##   operation
   ##
-  ## .. code-block::
-  ##   let
-  ##     s1 = @[1, 2, 3]
-  ##     s2 = @[4, 5]
-  ##     s3 = @[6, 7]
-  ##     total = concat(s1, s2, s3)
-  ##   assert total == @[1, 2, 3, 4, 5, 6, 7]
+  runnableExamples:
+    let
+      s1 = @[1, 2, 3]
+      s2 = @[4, 5]
+      s3 = @[6, 7]
+      total = concat(s1, s2, s3)
+    assert total == @[1, 2, 3, 4, 5, 6, 7]
+
   var L = 0
   for seqitm in items(seqs): inc(L, len(seqitm))
   newSeq(result, L)
@@ -71,13 +130,14 @@ proc concat*[T](seqs: varargs[seq[T]]): seq[T] =
 proc count*[T](s: openArray[T], x: T): int =
   ## Returns the number of occurrences of the item `x` in the container `s`.
   ##
-  ## Example:
-  ##
-  ## .. code-block::
-  ##   let
-  ##     s = @[1, 2, 2, 3, 2, 4, 2]
-  ##     c = count(s, 2)
-  ##   assert c == 4
+  runnableExamples:
+    let
+      a = @[1, 2, 2, 3, 2, 4, 2]
+      b = "abracadabra"
+    assert count(a, 2) == 4
+    assert count(a, 99) == 0
+    assert count(b, 'r') == 2
+
   for itm in items(s):
     if itm == x:
       inc result
@@ -85,15 +145,14 @@ proc count*[T](s: openArray[T], x: T): int =
 proc cycle*[T](s: openArray[T], n: Natural): seq[T] =
   ## Returns a new sequence with the items of the container `s` repeated
   ## `n` times.
+  ## `n` must be a non-negative number (zero or more).
   ##
-  ## Example:
-  ##
-  ## .. code-block::
-  ##
-  ##   let
-  ##     s = @[1, 2, 3]
-  ##     total = s.cycle(3)
-  ##   assert total == @[1, 2, 3, 1, 2, 3, 1, 2, 3]
+  runnableExamples:
+    let
+      s = @[1, 2, 3]
+      total = s.cycle(3)
+    assert total == @[1, 2, 3, 1, 2, 3, 1, 2, 3]
+
   result = newSeq[T](n * s.len)
   var o = 0
   for x in 0 ..< n:
@@ -103,14 +162,13 @@ proc cycle*[T](s: openArray[T], n: Natural): seq[T] =
 
 proc repeat*[T](x: T, n: Natural): seq[T] =
   ## Returns a new sequence with the item `x` repeated `n` times.
+  ## `n` must be a non-negative number (zero or more).
   ##
-  ## Example:
-  ##
-  ## .. code-block::
-  ##
-  ##   let
-  ##     total = repeat(5, 3)
-  ##   assert total == @[5, 5, 5]
+  runnableExamples:
+    let
+      total = repeat(5, 3)
+    assert total == @[5, 5, 5]
+
   result = newSeq[T](n)
   for i in 0 ..< n:
     result[i] = x
@@ -118,16 +176,18 @@ proc repeat*[T](x: T, n: Natural): seq[T] =
 proc deduplicate*[T](s: openArray[T], isSorted: bool = false): seq[T] =
   ## Returns a new sequence without duplicates.
   ##
-  ## Example:
+  ## Setting the optional argument ``isSorted`` to ``true`` (default: false)
+  ## uses a faster algorithm for deduplication.
   ##
-  ## .. code-block::
-  ##   let
-  ##     dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4]
-  ##     dup2 = @["a", "a", "c", "d", "d"]
-  ##     unique1 = deduplicate(dup1)
-  ##     unique2 = deduplicate(dup2)
-  ##   assert unique1 == @[1, 3, 4, 2, 8]
-  ##   assert unique2 == @["a", "c", "d"]
+  runnableExamples:
+    let
+      dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4]
+      dup2 = @["a", "a", "c", "d", "d"]
+      unique1 = deduplicate(dup1)
+      unique2 = deduplicate(dup2, isSorted = true)
+    assert unique1 == @[1, 3, 4, 2, 8]
+    assert unique2 == @["a", "c", "d"]
+
   result = @[]
   if s.len > 0:
     if isSorted:
@@ -144,39 +204,44 @@ proc deduplicate*[T](s: openArray[T], isSorted: bool = false): seq[T] =
 proc zip*[S, T](s1: openArray[S], s2: openArray[T]): seq[tuple[a: S, b: T]] =
   ## Returns a new sequence with a combination of the two input containers.
   ##
-  ## For convenience you can access the returned tuples through the named
-  ## fields `a` and `b`. If one container is shorter, the remaining items in
-  ## the longer container are discarded.
+  ## The input containers can be of different types.
+  ## If one container is shorter, the remaining items in the longer container
+  ## are discarded.
   ##
-  ## Example:
+  ## For convenience you can access the returned tuples through the named
+  ## fields `a` and `b`.
   ##
-  ## .. code-block::
-  ##   let
-  ##     short = @[1, 2, 3]
-  ##     long = @[6, 5, 4, 3, 2, 1]
-  ##     words = @["one", "two", "three"]
-  ##     zip1 = zip(short, long)
-  ##     zip2 = zip(short, words)
-  ##   assert zip1 == @[(1, 6), (2, 5), (3, 4)]
-  ##   assert zip2 == @[(1, "one"), (2, "two"), (3, "three")]
-  ##   assert zip1[2].b == 4
-  ##   assert zip2[2].b == "three"
+  runnableExamples:
+    let
+      short = @[1, 2, 3]
+      long = @[6, 5, 4, 3, 2, 1]
+      words = @["one", "two", "three"]
+      letters = "abcd"
+      zip1 = zip(short, long)
+      zip2 = zip(short, words)
+      zip3 = zip(long, letters)
+    assert zip1 == @[(1, 6), (2, 5), (3, 4)]
+    assert zip2 == @[(1, "one"), (2, "two"), (3, "three")]
+    assert zip3 == @[(a: 6, b: 'a'), (a: 5, b: 'b'), (a: 4, b: 'c'),
+                     (a: 3, b: 'd')]
+    assert zip1[2].b == 4
+    assert zip2[2].b == "three"
+
   var m = min(s1.len, s2.len)
   newSeq(result, m)
   for i in 0 ..< m:
     result[i] = (s1[i], s2[i])
 
 proc distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] =
-  ## Splits and distributes a sequence `s` into `num` sub sequences.
+  ## Splits and distributes a sequence `s` into `num` sub-sequences.
   ##
-  ## Returns a sequence of `num` sequences. For some input values this is the
-  ## inverse of the `concat <#concat>`_ proc. The proc will assert in debug
-  ## builds if `s` is nil or `num` is less than one, and will likely crash on
-  ## release builds.  The input sequence `s` can be empty, which will produce
+  ## Returns a sequence of `num` sequences. For *some* input values this is the
+  ## inverse of the `concat <#concat,varargs[seq[T]]>`_ proc.
+  ## The input sequence `s` can be empty, which will produce
   ## `num` empty sequences.
   ##
   ## If `spread` is false and the length of `s` is not a multiple of `num`, the
-  ## proc will max out the first sub sequences with ``1 + len(s) div num``
+  ## proc will max out the first sub-sequence with ``1 + len(s) div num``
   ## entries, leaving the remainder of elements to the last sequence.
   ##
   ## On the other hand, if `spread` is true, the proc will distribute evenly
@@ -184,18 +249,16 @@ proc distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] =
   ## more suited to multithreading where you are passing equal sized work units
   ## to a thread pool and want to maximize core usage.
   ##
-  ## Example:
-  ##
-  ## .. code-block::
-  ##   let numbers = @[1, 2, 3, 4, 5, 6, 7]
-  ##   assert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
-  ##   assert numbers.distribute(3, false)  == @[@[1, 2, 3], @[4, 5, 6], @[7]]
-  ##   assert numbers.distribute(6)[0] == @[1, 2]
-  ##   assert numbers.distribute(6)[5] == @[7]
+  runnableExamples:
+    let numbers = @[1, 2, 3, 4, 5, 6, 7]
+    assert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
+    assert numbers.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]]
+    assert numbers.distribute(6)[0] == @[1, 2]
+    assert numbers.distribute(6)[1] == @[3]
+
   if num < 2:
     result = @[s]
     return
-
   let num = int(num) # XXX probably only needed because of .. bug
 
   # Create the result and calculate the stride size and the remainder if any.
@@ -209,13 +272,11 @@ proc distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] =
   if extra == 0 or spread == false:
     # Use an algorithm which overcounts the stride and minimizes reading limits.
     if extra > 0: inc(stride)
-
     for i in 0 ..< num:
       result[i] = newSeq[T]()
       for g in first ..< min(s.len, first + stride):
         result[i].add(s[g])
       first += stride
-
   else:
     # Use an undercounting algorithm which *adds* the remainder each iteration.
     for i in 0 ..< num:
@@ -223,7 +284,6 @@ proc distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] =
       if extra > 0:
         extra -= 1
         inc(last)
-
       result[i] = newSeq[T]()
       for g in first ..< last:
         result[i].add(s[g])
@@ -231,110 +291,103 @@ proc distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] =
 
 proc map*[T, S](s: openArray[T], op: proc (x: T): S {.closure.}):
                                                             seq[S]{.inline.} =
-  ## Returns a new sequence with the results of `op` applied to every item in
-  ## the container `s`.
+  ## Returns a new sequence with the results of `op` proc applied to every
+  ## item in the container `s`.
   ##
-  ## Since the input is not modified you can use this version of ``map`` to
+  ## Since the input is not modified you can use it to
   ## transform the type of the elements in the input container.
   ##
-  ## Example:
+  ## See also:
+  ## * `mapIt template<#mapIt.t,typed,untyped>`_
+  ## * `apply proc<#apply,openArray[T],proc(T)_2>`_ for the in-place version
   ##
-  ## .. code-block:: nim
-  ##   let
-  ##     a = @[1, 2, 3, 4]
-  ##     b = map(a, proc(x: int): string = $x)
-  ##   assert b == @["1", "2", "3", "4"]
+  runnableExamples:
+    let
+      a = @[1, 2, 3, 4]
+      b = map(a, proc(x: int): string = $x)
+    assert b == @["1", "2", "3", "4"]
+
   newSeq(result, s.len)
   for i in 0 ..< s.len:
     result[i] = op(s[i])
 
-proc map*[T](s: var openArray[T], op: proc (x: var T) {.closure.})
-                                                              {.deprecated.} =
-  ## Applies `op` to every item in `s` modifying it directly.
-  ##
-  ## Note that this version of ``map`` requires your input and output types to
-  ## be the same, since they are modified in-place.
-  ##
-  ## Example:
-  ##
-  ## .. code-block:: nim
-  ##   var a = @["1", "2", "3", "4"]
-  ##   echo repr(a)
-  ##   # --> ["1", "2", "3", "4"]
-  ##   map(a, proc(x: var string) = x &= "42")
-  ##   echo repr(a)
-  ##   # --> ["142", "242", "342", "442"]
-  ## **Deprecated since version 0.12.0:** Use the ``apply`` proc instead.
-  for i in 0 ..< s.len: op(s[i])
-
 proc apply*[T](s: var openArray[T], op: proc (x: var T) {.closure.})
                                                               {.inline.} =
   ## Applies `op` to every item in `s` modifying it directly.
   ##
-  ## Note that this requires your input and output types to
-  ## be the same, since they are modified in-place.
+  ## Note that container `s` must be declared as a ``var``
+  ## and it is required for your input and output types to
+  ## be the same, since `s` is modified in-place.
   ## The parameter function takes a ``var T`` type parameter.
   ##
-  ## Example:
-  ##
-  ## .. code-block:: nim
-  ##   var a = @["1", "2", "3", "4"]
-  ##   echo repr(a)
-  ##   # --> ["1", "2", "3", "4"]
-  ##   apply(a, proc(x: var string) = x &= "42")
-  ##   echo repr(a)
-  ##   # --> ["142", "242", "342", "442"]
+  ## See also:
+  ## * `applyIt template<#applyIt.t,untyped,untyped>`_
+  ## * `map proc<#map,openArray[T],proc(T)>`_
   ##
+  runnableExamples:
+    var a = @["1", "2", "3", "4"]
+    apply(a, proc(x: var string) = x &= "42")
+    assert a == @["142", "242", "342", "442"]
+
   for i in 0 ..< s.len: op(s[i])
 
 proc apply*[T](s: var openArray[T], op: proc (x: T): T {.closure.})
                                                               {.inline.} =
   ## Applies `op` to every item in `s` modifying it directly.
   ##
-  ## Note that this requires your input and output types to
-  ## be the same, since they are modified in-place.
+  ## Note that container `s` must be declared as a ``var``
+  ## and it is required for your input and output types to
+  ## be the same, since `s` is modified in-place.
   ## The parameter function takes and returns a ``T`` type variable.
   ##
-  ## Example:
-  ##
-  ## .. code-block:: nim
-  ##   var a = @["1", "2", "3", "4"]
-  ##   echo repr(a)
-  ##   # --> ["1", "2", "3", "4"]
-  ##   apply(a, proc(x: string): string = x & "42")
-  ##   echo repr(a)
-  ##   # --> ["142", "242", "342", "442"]
+  ## See also:
+  ## * `applyIt template<#applyIt.t,untyped,untyped>`_
+  ## * `map proc<#map,openArray[T],proc(T)>`_
   ##
+  runnableExamples:
+    var a = @["1", "2", "3", "4"]
+    apply(a, proc(x: string): string = x & "42")
+    assert a == @["142", "242", "342", "442"]
+
   for i in 0 ..< s.len: s[i] = op(s[i])
 
 iterator filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): T =
-  ## Iterates through a container and yields every item that fulfills the
-  ## predicate.
+  ## Iterates through a container `s` and yields every item that fulfills the
+  ## predicate `pred` (function that returns a `bool`).
   ##
-  ## Example:
+  ## See also:
+  ## * `fliter proc<#filter,openArray[T],proc(T)>`_
+  ## * `filterIt template<#filterIt.t,untyped,untyped>`_
   ##
-  ## .. code-block::
-  ##   let numbers = @[1, 4, 5, 8, 9, 7, 4]
-  ##   for n in filter(numbers, proc (x: int): bool = x mod 2 == 0):
-  ##     echo($n)
-  ##   # echoes 4, 8, 4 in separate lines
+  runnableExamples:
+    let numbers = @[1, 4, 5, 8, 9, 7, 4]
+    var evens = newSeq[int]()
+    for n in filter(numbers, proc (x: int): bool = x mod 2 == 0):
+      evens.add(n)
+    assert evens == @[4, 8, 4]
+
   for i in 0 ..< s.len:
     if pred(s[i]):
       yield s[i]
 
 proc filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): seq[T]
                                                                   {.inline.} =
-  ## Returns a new sequence with all the items that fulfilled the predicate.
+  ## Returns a new sequence with all the items of `s` that fulfilled the
+  ## predicate `pred` (function that returns a `bool`).
   ##
-  ## Example:
+  ## See also:
+  ## * `filterIt template<#filterIt.t,untyped,untyped>`_
+  ## * `filter iterator<#filter.i,openArray[T],proc(T)>`_
+  ## * `keepIf proc<#keepIf,seq[T],proc(T)>`_ for the in-place version
   ##
-  ## .. code-block::
-  ##   let
-  ##     colors = @["red", "yellow", "black"]
-  ##     f1 = filter(colors, proc(x: string): bool = x.len < 6)
-  ##     f2 = filter(colors) do (x: string) -> bool : x.len > 5
-  ##   assert f1 == @["red", "black"]
-  ##   assert f2 == @["yellow"]
+  runnableExamples:
+    let
+      colors = @["red", "yellow", "black"]
+      f1 = filter(colors, proc(x: string): bool = x.len < 6)
+      f2 = filter(colors, proc(x: string): bool = x.contains('y'))
+    assert f1 == @["red", "black"]
+    assert f2 == @["yellow"]
+
   result = newSeq[T]()
   for i in 0 ..< s.len:
     if pred(s[i]):
@@ -342,15 +395,23 @@ proc filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): seq[T]
 
 proc keepIf*[T](s: var seq[T], pred: proc(x: T): bool {.closure.})
                                                                 {.inline.} =
-  ## Keeps the items in the passed sequence if they fulfilled the predicate.
-  ## Same as the ``filter`` proc, but modifies the sequence directly.
+  ## Keeps the items in the passed sequence `s` if they fulfilled the
+  ## predicate `pred` (function that returns a `bool`).
   ##
-  ## Example:
+  ## Note that `s` must be declared as a ``var``.
   ##
-  ## .. code-block::
-  ##   var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1]
-  ##   keepIf(floats, proc(x: float): bool = x > 10)
-  ##   assert floats == @[13.0, 12.5, 10.1]
+  ## Similar to the `filter proc<#filter,openArray[T],proc(T)>`_,
+  ## but modifies the sequence directly.
+  ##
+  ## See also:
+  ## * `keepItIf template<#keepItIf.t,seq,untyped>`_
+  ## * `filter proc<#filter,openArray[T],proc(T)>`_
+  ##
+  runnableExamples:
+    var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1]
+    keepIf(floats, proc(x: float): bool = x > 10)
+    assert floats == @[13.0, 12.5, 10.1]
+
   var pos = 0
   for i in 0 ..< len(s):
     if pred(s[i]):
@@ -360,16 +421,15 @@ proc keepIf*[T](s: var seq[T], pred: proc(x: T): bool {.closure.})
   setLen(s, pos)
 
 proc delete*[T](s: var seq[T]; first, last: Natural) =
-  ## Deletes in `s` the items at position `first` .. `last`. This modifies
-  ## `s` itself, it does not return a copy.
-  ##
-  ## Example:
+  ## Deletes in the items of a sequence `s` at positions ``first..last``
+  ## (including both ends of a range).
+  ## This modifies `s` itself, it does not return a copy.
   ##
-  ##.. code-block::
-  ##   let outcome = @[1,1,1,1,1,1,1,1]
-  ##   var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
-  ##   dest.delete(3, 8)
-  ##   assert outcome == dest
+  runnableExamples:
+    let outcome = @[1,1,1,1,1,1,1,1]
+    var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
+    dest.delete(3, 8)
+    assert outcome == dest
 
   var i = first
   var j = last+1
@@ -384,15 +444,15 @@ proc insert*[T](dest: var seq[T], src: openArray[T], pos=0) =
   ## Inserts items from `src` into `dest` at position `pos`. This modifies
   ## `dest` itself, it does not return a copy.
   ##
-  ## Example:
+  ## Notice that `src` and `dest` must be of the same type.
   ##
-  ##.. code-block::
-  ##   var dest = @[1,1,1,1,1,1,1,1]
-  ##   let
-  ##     src = @[2,2,2,2,2,2]
-  ##     outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
-  ##   dest.insert(src, 3)
-  ##   assert dest == outcome
+  runnableExamples:
+    var dest = @[1,1,1,1,1,1,1,1]
+    let
+      src = @[2,2,2,2,2,2]
+      outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
+    dest.insert(src, 3)
+    assert dest == outcome
 
   var j = len(dest) - 1
   var i = len(dest) + len(src) - 1
@@ -411,37 +471,48 @@ proc insert*[T](dest: var seq[T], src: openArray[T], pos=0) =
 
 
 template filterIt*(s, pred: untyped): untyped =
-  ## Returns a new sequence with all the items that fulfilled the predicate.
+  ## Returns a new sequence with all the items of `s` that fulfilled the
+  ## predicate `pred`.
   ##
-  ## Unlike the `proc` version, the predicate needs to be an expression using
-  ## the ``it`` variable for testing, like: ``filterIt("abcxyz", it == 'x')``.
+  ## Unlike the `filter proc<#filter,openArray[T],proc(T)>`_ and
+  ## `filter iterator<#filter.i,openArray[T],proc(T)>`_,
+  ## the predicate needs to be an expression using the ``it`` variable
+  ## for testing, like: ``filterIt("abcxyz", it == 'x')``.
   ##
-  ## Example:
+  ## See also:
+  ## * `fliter proc<#filter,openArray[T],proc(T)>`_
+  ## * `filter iterator<#filter.i,openArray[T],proc(T)>`_
   ##
-  ## .. code-block::
-  ##    let
-  ##      temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44]
-  ##      acceptable = filterIt(temperatures, it < 50 and it > -10)
-  ##      notAcceptable = filterIt(temperatures, it > 50 or it < -10)
-  ##    assert acceptable == @[-2.0, 24.5, 44.31]
-  ##    assert notAcceptable == @[-272.15, 99.9, -113.44]
+  runnableExamples:
+    let
+      temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44]
+      acceptable = temperatures.filterIt(it < 50 and it > -10)
+      notAcceptable = temperatures.filterIt(it > 50 or it < -10)
+    assert acceptable == @[-2.0, 24.5, 44.31]
+    assert notAcceptable == @[-272.15, 99.9, -113.44]
+
   var result = newSeq[type(s[0])]()
   for it {.inject.} in items(s):
     if pred: result.add(it)
   result
 
 template keepItIf*(varSeq: seq, pred: untyped) =
-  ## Convenience template around the ``keepIf`` proc to reduce typing.
+  ## Keeps the items in the passed sequence (must be declared as a ``var``)
+  ## if they fulfilled the predicate.
   ##
-  ## Unlike the `proc` version, the predicate needs to be an expression using
+  ## Unlike the `keepIf proc<#keepIf,seq[T],proc(T)>`_,
+  ## the predicate needs to be an expression using
   ## the ``it`` variable for testing, like: ``keepItIf("abcxyz", it == 'x')``.
   ##
-  ## Example:
+  ## See also:
+  ## * `keepIf proc<#keepIf,seq[T],proc(T)>`_
+  ## * `filterIt template<#filterIt.t,untyped,untyped>`_
   ##
-  ## .. code-block::
-  ##   var candidates = @["foo", "bar", "baz", "foobar"]
-  ##   keepItIf(candidates, it.len == 3 and it[0] == 'b')
-  ##   assert candidates == @["bar", "baz"]
+  runnableExamples:
+    var candidates = @["foo", "bar", "baz", "foobar"]
+    candidates.keepItIf(it.len == 3 and it[0] == 'b')
+    assert candidates == @["bar", "baz"]
+
   var pos = 0
   for i in 0 ..< len(varSeq):
     let it {.inject.} = varSeq[i]
@@ -455,26 +526,37 @@ proc all*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool =
   ## Iterates through a container and checks if every item fulfills the
   ## predicate.
   ##
-  ## Example:
+  ## See also:
+  ## * `allIt template<#allIt.t,untyped,untyped>`_
+  ## * `any proc<#any,openArray[T],proc(T)>`_
   ##
-  ## .. code-block::
-  ##   let numbers = @[1, 4, 5, 8, 9, 7, 4]
-  ##   assert all(numbers, proc (x: int): bool = return x < 10) == true
-  ##   assert all(numbers, proc (x: int): bool = return x < 9) == false
+  runnableExamples:
+     let numbers = @[1, 4, 5, 8, 9, 7, 4]
+     assert all(numbers, proc (x: int): bool = return x < 10) == true
+     assert all(numbers, proc (x: int): bool = return x < 9) == false
+
   for i in s:
     if not pred(i):
       return false
   return true
 
 template allIt*(s, pred: untyped): bool =
-  ## Checks if every item fulfills the predicate.
+  ## Iterates through a container and checks if every item fulfills the
+  ## predicate.
   ##
-  ## Example:
+  ## Unlike the `all proc<#all,openArray[T],proc(T)>`_,
+  ## the predicate needs to be an expression using
+  ## the ``it`` variable for testing, like: ``allIt("abba", it == 'a')``.
   ##
-  ## .. code-block::
-  ##   let numbers = @[1, 4, 5, 8, 9, 7, 4]
-  ##   assert allIt(numbers, it < 10) == true
-  ##   assert allIt(numbers, it < 9) == false
+  ## See also:
+  ## * `all proc<#all,openArray[T],proc(T)>`_
+  ## * `anyIt template<#anyIt.t,untyped,untyped>`_
+  ##
+  runnableExamples:
+    let numbers = @[1, 4, 5, 8, 9, 7, 4]
+    assert numbers.allIt(it < 10) == true
+    assert numbers.allIt(it < 9) == false
+
   var result = true
   for it {.inject.} in items(s):
     if not pred:
@@ -486,26 +568,37 @@ proc any*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool =
   ## Iterates through a container and checks if some item fulfills the
   ## predicate.
   ##
-  ## Example:
+  ## See also:
+  ## * `anyIt template<#anyIt.t,untyped,untyped>`_
+  ## * `all proc<#all,openArray[T],proc(T)>`_
   ##
-  ## .. code-block::
-  ##   let numbers = @[1, 4, 5, 8, 9, 7, 4]
-  ##   assert any(numbers, proc (x: int): bool = return x > 8) == true
-  ##   assert any(numbers, proc (x: int): bool = return x > 9) == false
+  runnableExamples:
+    let numbers = @[1, 4, 5, 8, 9, 7, 4]
+    assert any(numbers, proc (x: int): bool = return x > 8) == true
+    assert any(numbers, proc (x: int): bool = return x > 9) == false
+
   for i in s:
     if pred(i):
       return true
   return false
 
 template anyIt*(s, pred: untyped): bool =
-  ## Checks if some item fulfills the predicate.
+  ## Iterates through a container and checks if some item fulfills the
+  ## predicate.
   ##
-  ## Example:
+  ## Unlike the `any proc<#any,openArray[T],proc(T)>`_,
+  ## the predicate needs to be an expression using
+  ## the ``it`` variable for testing, like: ``anyIt("abba", it == 'a')``.
   ##
-  ## .. code-block::
-  ##   let numbers = @[1, 4, 5, 8, 9, 7, 4]
-  ##   assert anyIt(numbers, it > 8) == true
-  ##   assert anyIt(numbers, it > 9) == false
+  ## See also:
+  ## * `any proc<#any,openArray[T],proc(T)>`_
+  ## * `allIt template<#allIt.t,untyped,untyped>`_
+  ##
+  runnableExamples:
+    let numbers = @[1, 4, 5, 8, 9, 7, 4]
+    assert numbers.anyIt(it > 8) == true
+    assert numbers.anyIt(it > 9) == false
+
   var result = false
   for it {.inject.} in items(s):
     if pred:
@@ -555,19 +648,28 @@ template toSeq2(iter: iterator): untyped =
     result
 
 template toSeq*(iter: untyped): untyped =
-  ## Transforms any iterable into a sequence.
+  ## Transforms any iterable (anything that can be iterated over, e.g. with
+  ## a for-loop) into a sequence.
+  ##
   runnableExamples:
     let
-      numeric = @[1, 2, 3, 4, 5, 6, 7, 8, 9]
-      odd_numbers = toSeq(filter(numeric, proc(x: int): bool = x mod 2 == 1))
-    doAssert odd_numbers == @[1, 3, 5, 7, 9]
+      myRange = 1..5
+      mySet: set[int8] = {5'i8, 3, 1}
+    assert type(myRange) is HSlice[system.int, system.int]
+    assert type(mySet) is set[int8]
+
+    let
+      mySeq1 = toSeq(myRange)
+      mySeq2 = toSeq(mySet)
+    assert mySeq1 == @[1, 2, 3, 4, 5]
+    assert mySeq2 == @[1'i8, 3, 5]
 
   when compiles(toSeq1(iter)):
     toSeq1(iter)
   elif compiles(toSeq2(iter)):
     toSeq2(iter)
   else:
-    # overload for untyped, eg: `toSeq(myInlineIterator(3))`
+    # overload for untyped, e.g.: `toSeq(myInlineIterator(3))`
     when compiles(iter.len):
       block:
         evalOnceAs(iter2, iter, true)
@@ -597,20 +699,23 @@ template foldl*(sequence, operation: untyped): untyped =
   ## the sequence of numbers 1, 2 and 3 will be parenthesized as (((1) - 2) -
   ## 3).
   ##
-  ## Example:
+  ## See also:
+  ## * `foldl template<#foldl.t,,,>`_ with a starting parameter
+  ## * `foldr template<#foldr.t,untyped,untyped>`_
   ##
-  ## .. code-block::
-  ##   let
-  ##     numbers = @[5, 9, 11]
-  ##     addition = foldl(numbers, a + b)
-  ##     subtraction = foldl(numbers, a - b)
-  ##     multiplication = foldl(numbers, a * b)
-  ##     words = @["nim", "is", "cool"]
-  ##     concatenation = foldl(words, a & b)
-  ##   assert addition == 25, "Addition is (((5)+9)+11)"
-  ##   assert subtraction == -15, "Subtraction is (((5)-9)-11)"
-  ##   assert multiplication == 495, "Multiplication is (((5)*9)*11)"
-  ##   assert concatenation == "nimiscool"
+  runnableExamples:
+    let
+      numbers = @[5, 9, 11]
+      addition = foldl(numbers, a + b)
+      subtraction = foldl(numbers, a - b)
+      multiplication = foldl(numbers, a * b)
+      words = @["nim", "is", "cool"]
+      concatenation = foldl(words, a & b)
+    assert addition == 25, "Addition is (((5)+9)+11)"
+    assert subtraction == -15, "Subtraction is (((5)-9)-11)"
+    assert multiplication == 495, "Multiplication is (((5)*9)*11)"
+    assert concatenation == "nimiscool"
+
   let s = sequence
   assert s.len > 0, "Can't fold empty sequences"
   var result: type(s[0])
@@ -625,20 +730,22 @@ template foldl*(sequence, operation: untyped): untyped =
 template foldl*(sequence, operation, first): untyped =
   ## Template to fold a sequence from left to right, returning the accumulation.
   ##
-  ## This version of ``foldl`` gets a starting parameter. This makes it possible
+  ## This version of ``foldl`` gets a **starting parameter**. This makes it possible
   ## to accumulate the sequence into a different type than the sequence elements.
   ##
   ## The ``operation`` parameter should be an expression which uses the variables
   ## ``a`` and ``b`` for each step of the fold. The ``first`` parameter is the
   ## start value (the first ``a``) and therefor defines the type of the result.
   ##
-  ## Example:
+  ## See also:
+  ## * `foldr template<#foldr.t,untyped,untyped>`_
   ##
-  ## .. code-block::
-  ##   let
-  ##     numbers = @[0, 8, 1, 5]
-  ##     digits = foldl(numbers, a & (chr(b + ord('0'))), "")
-  ##   assert digits == "0815"
+  runnableExamples:
+    let
+      numbers = @[0, 8, 1, 5]
+      digits = foldl(numbers, a & (chr(b + ord('0'))), "")
+    assert digits == "0815"
+
   var result: type(first)
   result = first
   for x in items(sequence):
@@ -662,20 +769,23 @@ template foldr*(sequence, operation: untyped): untyped =
   ## the sequence of numbers 1, 2 and 3 will be parenthesized as (1 - (2 -
   ## (3))).
   ##
-  ## Example:
+  ## See also:
+  ## * `foldl template<#foldl.t,untyped,untyped>`_
+  ## * `foldl template<#foldl.t,,,>`_ with a starting parameter
   ##
-  ## .. code-block::
-  ##   let
-  ##     numbers = @[5, 9, 11]
-  ##     addition = foldr(numbers, a + b)
-  ##     subtraction = foldr(numbers, a - b)
-  ##     multiplication = foldr(numbers, a * b)
-  ##     words = @["nim", "is", "cool"]
-  ##     concatenation = foldr(words, a & b)
-  ##   assert addition == 25, "Addition is (5+(9+(11)))"
-  ##   assert subtraction == 7, "Subtraction is (5-(9-(11)))"
-  ##   assert multiplication == 495, "Multiplication is (5*(9*(11)))"
-  ##   assert concatenation == "nimiscool"
+  runnableExamples:
+    let
+      numbers = @[5, 9, 11]
+      addition = foldr(numbers, a + b)
+      subtraction = foldr(numbers, a - b)
+      multiplication = foldr(numbers, a * b)
+      words = @["nim", "is", "cool"]
+      concatenation = foldr(words, a & b)
+    assert addition == 25, "Addition is (5+(9+(11)))"
+    assert subtraction == 7, "Subtraction is (5-(9-(11)))"
+    assert multiplication == 495, "Multiplication is (5*(9*(11)))"
+    assert concatenation == "nimiscool"
+
   let s = sequence
   assert s.len > 0, "Can't fold empty sequences"
   var result: type(s[0])
@@ -687,41 +797,26 @@ template foldr*(sequence, operation: untyped): untyped =
     result = operation
   result
 
-template mapIt*(s, typ, op: untyped): untyped =
-  ## Convenience template around the ``map`` proc to reduce typing.
-  ##
-  ## The template injects the ``it`` variable which you can use directly in an
-  ## expression. You also need to pass as `typ` the type of the expression,
-  ## since the new returned sequence can have a different type than the
-  ## original.
-  ##
-  ## Example:
-  ##
-  ## .. code-block::
-  ##   let
-  ##     nums = @[1, 2, 3, 4]
-  ##     strings = nums.mapIt(string, $(4 * it))
-  ##   assert strings == @["4", "8", "12", "16"]
-  ## **Deprecated since version 0.12.0:** Use the ``mapIt(seq1, op)``
-  ##   template instead.
-  var result: seq[typ] = @[]
-  for it {.inject.} in items(s):
-    result.add(op)
-  result
-
 template mapIt*(s: typed, op: untyped): untyped =
-  ## Convenience template around the ``map`` proc to reduce typing.
+  ## Returns a new sequence with the results of `op` proc applied to every
+  ## item in the container `s`.
+  ##
+  ## Since the input is not modified you can use it to
+  ## transform the type of the elements in the input container.
   ##
   ## The template injects the ``it`` variable which you can use directly in an
   ## expression.
   ##
-  ## Example:
+  ## See also:
+  ## * `map proc<#map,openArray[T],proc(T)>`_
+  ## * `applyIt template<#applyIt.t,untyped,untyped>`_ for the in-place version
   ##
-  ## .. code-block::
-  ##   let
-  ##     nums = @[1, 2, 3, 4]
-  ##     strings = nums.mapIt($(4 * it))
-  ##   assert strings == @["4", "8", "12", "16"]
+  runnableExamples:
+    let
+      nums = @[1, 2, 3, 4]
+      strings = nums.mapIt($(4 * it))
+    assert strings == @["4", "8", "12", "16"]
+
   when defined(nimHasTypeof):
     type outType = typeof((
       block:
@@ -758,31 +853,38 @@ template applyIt*(varSeq, op: untyped) =
   ## expression. The expression has to return the same type as the sequence you
   ## are mutating.
   ##
-  ## Example:
+  ## See also:
+  ## * `apply proc<#apply,openArray[T],proc(T)_2>`_
+  ## * `mapIt template<#mapIt.t,typed,untyped>`_
   ##
-  ## .. code-block::
-  ##   var nums = @[1, 2, 3, 4]
-  ##   nums.applyIt(it * 3)
-  ##   assert nums[0] + nums[3] == 15
+  runnableExamples:
+     var nums = @[1, 2, 3, 4]
+     nums.applyIt(it * 3)
+     assert nums[0] + nums[3] == 15
+
   for i in low(varSeq) .. high(varSeq):
     let it {.inject.} = varSeq[i]
     varSeq[i] = op
 
 
 template newSeqWith*(len: int, init: untyped): untyped =
-  ## creates a new sequence, calling `init` to initialize each value.
+  ## Creates a new sequence of length `len`, calling `init` to initialize
+  ## each value of the sequence.
   ##
-  ## Example:
+  ## Useful for creating "2D" sequences - sequences containing other sequences
+  ## or to populate fields of the created sequence.
   ##
-  ## .. code-block::
-  ##   var seq2D = newSeqWith(20, newSeq[bool](10))
-  ##   seq2D[0][0] = true
-  ##   seq2D[1][0] = true
-  ##   seq2D[0][1] = true
-  ##
-  ##   import random
-  ##   var seqRand = newSeqWith(20, random(10))
-  ##   echo seqRand
+  runnableExamples:
+    ## Creates a seqence containing 5 bool sequences, each of length of 3.
+    var seq2D = newSeqWith(5, newSeq[bool](3))
+    assert seq2D.len == 5
+    assert seq2D[0].len == 3
+    assert seq2D[4][2] == false
+
+    ## Creates a sequence of 20 random numbers from 1 to 10
+    import random
+    var seqRand = newSeqWith(20, random(10))
+
   var result = newSeq[type(init)](len)
   for i in 0 ..< len:
     result[i] = init
@@ -804,7 +906,7 @@ proc mapLitsImpl(constructor: NimNode; op: NimNode; nested: bool;
 
 macro mapLiterals*(constructor, op: untyped;
                    nested = true): untyped =
-  ## applies ``op`` to each of the **atomic** literals like ``3``
+  ## Applies ``op`` to each of the **atomic** literals like ``3``
   ## or ``"abc"`` in the specified ``constructor`` AST. This can
   ## be used to map every array element to some target type:
   ##
@@ -819,16 +921,20 @@ macro mapLiterals*(constructor, op: untyped;
   ## .. code-block::
   ##   let x = [int(0.1), int(1.2), int(2.3), int(3.4)]
   ##
-  ## If ``nested`` is true, the literals are replaced everywhere
-  ## in the ``constructor`` AST, otherwise only the first level
+  ## If ``nested`` is true (which is the default), the literals are replaced
+  ## everywhere in the ``constructor`` AST, otherwise only the first level
   ## is considered:
   ##
   ## .. code-block::
-  ##   mapLiterals((1, ("abc"), 2), float, nested=false)
-  ##
-  ## Produces::
-  ##
-  ##   (float(1), ("abc"), float(2))
+  ##   let a = mapLiterals((1.2, (2.3, 3.4), 4.8), int)
+  ##   let b = mapLiterals((1.2, (2.3, 3.4), 4.8), int, nested=false)
+  ##   assert a == (1, (2, 3), 4)
+  ##   assert b == (1, (2.3, 3.4), 4)
+  ##
+  ##   let c = mapLiterals((1, (2, 3), 4, (5, 6)), `$`)
+  ##   let d = mapLiterals((1, (2, 3), 4, (5, 6)), `$`, nested=false)
+  ##   assert c == ("1", ("2", "3"), "4", ("5", "6"))
+  ##   assert d == ("1", (2, 3), "4", (5, 6))
   ##
   ## There are no constraints for the ``constructor`` AST, it
   ## works for nested tuples of arrays of sets etc.