summary refs log tree commit diff stats
path: root/lib/pure/collections
diff options
context:
space:
mode:
Diffstat (limited to 'lib/pure/collections')
-rw-r--r--lib/pure/collections/tableimpl.nim30
1 files changed, 30 insertions, 0 deletions
diff --git a/lib/pure/collections/tableimpl.nim b/lib/pure/collections/tableimpl.nim
index ec2806200..df9cb7517 100644
--- a/lib/pure/collections/tableimpl.nim
+++ b/lib/pure/collections/tableimpl.nim
@@ -78,6 +78,36 @@ template hasKeyOrPutImpl(enlarge) {.dirty.} =
     maybeRehashPutImpl(enlarge)
   else: result = true
 
+# delImplIdx is KnuthV3 Algo6.4R adapted to i=i+1 (from i=i-1) which has come to
+# be called "back shift delete".  It shifts elements in the collision cluster of
+# a victim backward to make things as-if the victim were never inserted in the
+# first place.  This is desirable to keep things "ageless" after many deletes.
+# It is trickier than you might guess since initial probe (aka "home") locations
+# of keys in a cluster may collide and since table addresses wrap around.
+#
+# A before-after diagram might look like ('.' means empty):
+#   slot:   0   1   2   3   4   5   6   7
+# before(1)
+#   hash1:  6   7   .   3   .   5   5   6  ; Really hash() and msk
+#   data1:  E   F   .   A   .   B   C   D  ; About to delete C @index 6
+# after(2)
+#   hash2:  7   .   .   3   .   5   6   6  ; Really hash() and msk
+#   data2:  F   .   .   A   .   B   D   E  ; After deletion of C
+#
+# This lowers total search depth over the whole table from 1+1+2+2+2+2=10 to 7.
+# Had the victim been B@5, C would need back shifting to slot 5.  Total depth is
+# always lowered by at least 1, e.g. victim A@3.  This is all quite fast when
+# empty slots are frequent (also needed to keep insert/miss searches fast) and
+# hash() is either fast or avoided (via `.hcode`).  It need not compare keys.
+#
+# delImplIdx realizes the above transformation, but only works for dense Linear
+# Probing, nextTry(h)=h+1.  This is not an important limitation since that's the
+# fastest sequence on any CPU made since the 1980s. { Performance analysis often
+# overweights "key cmp" neglecting cache behavior, giving bad ideas how big/slow
+# tables behave (when perf matters most!).  Comparing hcode first means usually
+# only 1 key cmp is needed for *any* seq.  Timing only predictable activity,
+# small tables, and/or integer keys often perpetuates such bad ideas. }
+
 template delImplIdx(t, i, makeEmpty, cellEmpty, cellHash) =
   let msk = maxHash(t)
   if i >= 0: