diff options
Diffstat (limited to 'lib/pure/complex.nim')
-rw-r--r-- | lib/pure/complex.nim | 551 |
1 files changed, 284 insertions, 267 deletions
diff --git a/lib/pure/complex.nim b/lib/pure/complex.nim index d57adeb92..b48811eae 100644 --- a/lib/pure/complex.nim +++ b/lib/pure/complex.nim @@ -7,157 +7,186 @@ # distribution, for details about the copyright. # -## This module implements complex numbers. -## Complex numbers are currently implemented as generic on a 64-bit or 32-bit float. +## This module implements complex numbers +## and basic mathematical operations on them. +## +## Complex numbers are currently generic over 64-bit or 32-bit floats. + +runnableExamples: + from std/math import almostEqual, sqrt + + let + z1 = complex(1.0, 2.0) + z2 = complex(3.0, -4.0) + + assert almostEqual(z1 + z2, complex(4.0, -2.0)) + assert almostEqual(z1 - z2, complex(-2.0, 6.0)) + assert almostEqual(z1 * z2, complex(11.0, 2.0)) + assert almostEqual(z1 / z2, complex(-0.2, 0.4)) + + assert almostEqual(abs(z1), sqrt(5.0)) + assert almostEqual(conjugate(z1), complex(1.0, -2.0)) + + let (r, phi) = z1.polar + assert almostEqual(rect(r, phi), z1) {.push checks: off, line_dir: off, stack_trace: off, debugger: off.} # the user does not want to trace a part of the standard library! -import math +import std/[math, strformat] type Complex*[T: SomeFloat] = object - re*, im*: T ## A complex number, consisting of a real and an imaginary part. + re*, im*: T Complex64* = Complex[float64] - ## Alias for a pair of 64-bit floats. + ## Alias for a complex number using 64-bit floats. Complex32* = Complex[float32] - ## Alias for a pair of 32-bit floats. + ## Alias for a complex number using 32-bit floats. -proc complex*[T: SomeFloat](re: T; im: T = 0.0): Complex[T] = +func complex*[T: SomeFloat](re: T; im: T = 0.0): Complex[T] = + ## Returns a `Complex[T]` with real part `re` and imaginary part `im`. result.re = re result.im = im -proc complex32*(re: float32; im: float32 = 0.0): Complex[float32] = +func complex32*(re: float32; im: float32 = 0.0): Complex32 = + ## Returns a `Complex32` with real part `re` and imaginary part `im`. result.re = re result.im = im -proc complex64*(re: float64; im: float64 = 0.0): Complex[float64] = +func complex64*(re: float64; im: float64 = 0.0): Complex64 = + ## Returns a `Complex64` with real part `re` and imaginary part `im`. result.re = re result.im = im -template im*(arg: typedesc[float32]): Complex32 = complex[float32](0, 1) -template im*(arg: typedesc[float64]): Complex64 = complex[float64](0, 1) -template im*(arg: float32): Complex32 = complex[float32](0, arg) -template im*(arg: float64): Complex64 = complex[float64](0, arg) - -proc abs*[T](z: Complex[T]): T = - ## Return the distance from (0,0) to ``z``. +template im*(arg: typedesc[float32]): Complex32 = complex32(0, 1) + ## Returns the imaginary unit (`complex32(0, 1)`). +template im*(arg: typedesc[float64]): Complex64 = complex64(0, 1) + ## Returns the imaginary unit (`complex64(0, 1)`). +template im*(arg: float32): Complex32 = complex32(0, arg) + ## Returns `arg` as an imaginary number (`complex32(0, arg)`). +template im*(arg: float64): Complex64 = complex64(0, arg) + ## Returns `arg` as an imaginary number (`complex64(0, arg)`). + +func abs*[T](z: Complex[T]): T = + ## Returns the absolute value of `z`, + ## that is the distance from (0, 0) to `z`. result = hypot(z.re, z.im) -proc abs2*[T](z: Complex[T]): T = - ## Return the squared distance from (0,0) to ``z``. - result = z.re*z.re + z.im*z.im - -proc conjugate*[T](z: Complex[T]): Complex[T] = - ## Conjugate of complex number ``z``. +func abs2*[T](z: Complex[T]): T = + ## Returns the squared absolute value of `z`, + ## that is the squared distance from (0, 0) to `z`. + ## This is more efficient than `abs(z) ^ 2`. + result = z.re * z.re + z.im * z.im + +func sgn*[T](z: Complex[T]): Complex[T] = + ## Returns the phase of `z` as a unit complex number, + ## or 0 if `z` is 0. + let a = abs(z) + if a != 0: + result = z / a + +func conjugate*[T](z: Complex[T]): Complex[T] = + ## Returns the complex conjugate of `z` (`complex(z.re, -z.im)`). result.re = z.re result.im = -z.im -proc inv*[T](z: Complex[T]): Complex[T] = - ## Multiplicative inverse of complex number ``z``. +func inv*[T](z: Complex[T]): Complex[T] = + ## Returns the multiplicative inverse of `z` (`1/z`). conjugate(z) / abs2(z) -proc `==` *[T](x, y: Complex[T]): bool = - ## Compare two complex numbers ``x`` and ``y`` for equality. +func `==`*[T](x, y: Complex[T]): bool = + ## Compares two complex numbers for equality. result = x.re == y.re and x.im == y.im -proc `+` *[T](x: T; y: Complex[T]): Complex[T] = - ## Add a real number to a complex number. +func `+`*[T](x: T; y: Complex[T]): Complex[T] = + ## Adds a real number to a complex number. result.re = x + y.re result.im = y.im -proc `+` *[T](x: Complex[T]; y: T): Complex[T] = - ## Add a complex number to a real number. +func `+`*[T](x: Complex[T]; y: T): Complex[T] = + ## Adds a complex number to a real number. result.re = x.re + y result.im = x.im -proc `+` *[T](x, y: Complex[T]): Complex[T] = - ## Add two complex numbers. +func `+`*[T](x, y: Complex[T]): Complex[T] = + ## Adds two complex numbers. result.re = x.re + y.re result.im = x.im + y.im -proc `-` *[T](z: Complex[T]): Complex[T] = +func `-`*[T](z: Complex[T]): Complex[T] = ## Unary minus for complex numbers. result.re = -z.re result.im = -z.im -proc `-` *[T](x: T; y: Complex[T]): Complex[T] = - ## Subtract a complex number from a real number. - x + (-y) +func `-`*[T](x: T; y: Complex[T]): Complex[T] = + ## Subtracts a complex number from a real number. + result.re = x - y.re + result.im = -y.im -proc `-` *[T](x: Complex[T]; y: T): Complex[T] = - ## Subtract a real number from a complex number. +func `-`*[T](x: Complex[T]; y: T): Complex[T] = + ## Subtracts a real number from a complex number. result.re = x.re - y result.im = x.im -proc `-` *[T](x, y: Complex[T]): Complex[T] = - ## Subtract two complex numbers. +func `-`*[T](x, y: Complex[T]): Complex[T] = + ## Subtracts two complex numbers. result.re = x.re - y.re result.im = x.im - y.im -proc `/` *[T](x: Complex[T]; y: T): Complex[T] = - ## Divide complex number ``x`` by real number ``y``. - result.re = x.re / y - result.im = x.im / y - -proc `/` *[T](x: T; y: Complex[T]): Complex[T] = - ## Divide real number ``x`` by complex number ``y``. - result = x * inv(y) - -proc `/` *[T](x, y: Complex[T]): Complex[T] = - ## Divide ``x`` by ``y``. - var r, den: T - if abs(y.re) < abs(y.im): - r = y.re / y.im - den = y.im + r * y.re - result.re = (x.re * r + x.im) / den - result.im = (x.im * r - x.re) / den - else: - r = y.im / y.re - den = y.re + r * y.im - result.re = (x.re + r * x.im) / den - result.im = (x.im - r * x.re) / den - -proc `*` *[T](x: T; y: Complex[T]): Complex[T] = - ## Multiply a real number and a complex number. +func `*`*[T](x: T; y: Complex[T]): Complex[T] = + ## Multiplies a real number with a complex number. result.re = x * y.re result.im = x * y.im -proc `*` *[T](x: Complex[T]; y: T): Complex[T] = - ## Multiply a complex number with a real number. +func `*`*[T](x: Complex[T]; y: T): Complex[T] = + ## Multiplies a complex number with a real number. result.re = x.re * y result.im = x.im * y -proc `*` *[T](x, y: Complex[T]): Complex[T] = - ## Multiply ``x`` with ``y``. +func `*`*[T](x, y: Complex[T]): Complex[T] = + ## Multiplies two complex numbers. result.re = x.re * y.re - x.im * y.im result.im = x.im * y.re + x.re * y.im +func `/`*[T](x: Complex[T]; y: T): Complex[T] = + ## Divides a complex number by a real number. + result.re = x.re / y + result.im = x.im / y -proc `+=` *[T](x: var Complex[T]; y: Complex[T]) = - ## Add ``y`` to ``x``. +func `/`*[T](x: T; y: Complex[T]): Complex[T] = + ## Divides a real number by a complex number. + result = x * inv(y) + +func `/`*[T](x, y: Complex[T]): Complex[T] = + ## Divides two complex numbers. + x * conjugate(y) / abs2(y) + +func `+=`*[T](x: var Complex[T]; y: Complex[T]) = + ## Adds `y` to `x`. x.re += y.re x.im += y.im -proc `-=` *[T](x: var Complex[T]; y: Complex[T]) = - ## Subtract ``y`` from ``x``. +func `-=`*[T](x: var Complex[T]; y: Complex[T]) = + ## Subtracts `y` from `x`. x.re -= y.re x.im -= y.im -proc `*=` *[T](x: var Complex[T]; y: Complex[T]) = - ## Multiply ``y`` to ``x``. +func `*=`*[T](x: var Complex[T]; y: Complex[T]) = + ## Multiplies `x` by `y`. let im = x.im * y.re + x.re * y.im x.re = x.re * y.re - x.im * y.im x.im = im -proc `/=` *[T](x: var Complex[T]; y: Complex[T]) = - ## Divide ``x`` by ``y`` in place. +func `/=`*[T](x: var Complex[T]; y: Complex[T]) = + ## Divides `x` by `y` in place. x = x / y -proc sqrt*[T](z: Complex[T]): Complex[T] = - ## Square root for a complex number ``z``. +func sqrt*[T](z: Complex[T]): Complex[T] = + ## Computes the + ## ([principal](https://en.wikipedia.org/wiki/Square_root#Principal_square_root_of_a_complex_number)) + ## square root of a complex number `z`. var x, y, w, r: T if z.re == 0.0 and z.im == 0.0: @@ -179,29 +208,37 @@ proc sqrt*[T](z: Complex[T]): Complex[T] = result.im = if z.im >= 0.0: w else: -w result.re = z.im / (result.im + result.im) -proc exp*[T](z: Complex[T]): Complex[T] = - ## ``e`` raised to the power ``z``. - var +func exp*[T](z: Complex[T]): Complex[T] = + ## Computes the exponential function (`e^z`). + let rho = exp(z.re) theta = z.im result.re = rho * cos(theta) result.im = rho * sin(theta) -proc ln*[T](z: Complex[T]): Complex[T] = - ## Returns the natural log of ``z``. +func ln*[T](z: Complex[T]): Complex[T] = + ## Returns the + ## ([principal value](https://en.wikipedia.org/wiki/Complex_logarithm#Principal_value) + ## of the) natural logarithm of `z`. result.re = ln(abs(z)) result.im = arctan2(z.im, z.re) -proc log10*[T](z: Complex[T]): Complex[T] = - ## Returns the log base 10 of ``z``. +func log10*[T](z: Complex[T]): Complex[T] = + ## Returns the logarithm base 10 of `z`. + ## + ## **See also:** + ## * `ln func<#ln,Complex[T]>`_ result = ln(z) / ln(10.0) -proc log2*[T](z: Complex[T]): Complex[T] = - ## Returns the log base 2 of ``z``. +func log2*[T](z: Complex[T]): Complex[T] = + ## Returns the logarithm base 2 of `z`. + ## + ## **See also:** + ## * `ln func<#ln,Complex[T]>`_ result = ln(z) / ln(2.0) -proc pow*[T](x, y: Complex[T]): Complex[T] = - ## ``x`` raised to the power ``y``. +func pow*[T](x, y: Complex[T]): Complex[T] = + ## `x` raised to the power of `y`. if x.re == 0.0 and x.im == 0.0: if y.re == 0.0 and y.im == 0.0: result.re = 1.0 @@ -209,12 +246,33 @@ proc pow*[T](x, y: Complex[T]): Complex[T] = else: result.re = 0.0 result.im = 0.0 - elif y.re == 1.0 and y.im == 0.0: - result = x - elif y.re == -1.0 and y.im == 0.0: - result = T(1.0) / x + elif y.im == 0.0: + if y.re == 1.0: + result = x + elif y.re == -1.0: + result = T(1.0) / x + elif y.re == 2.0: + result = x * x + elif y.re == 0.5: + result = sqrt(x) + elif x.im == 0.0: + # Revert to real pow when both base and exponent are real + result.re = pow(x.re, y.re) + result.im = 0.0 + else: + # Special case when the exponent is real + let + rho = abs(x) + theta = arctan2(x.im, x.re) + s = pow(rho, y.re) + r = y.re * theta + result.re = s * cos(r) + result.im = s * sin(r) + elif x.im == 0.0 and x.re == E: + # Special case Euler's formula + result = exp(y) else: - var + let rho = abs(x) theta = arctan2(x.im, x.re) s = pow(rho, y.re) * exp(-y.im * theta) @@ -222,235 +280,194 @@ proc pow*[T](x, y: Complex[T]): Complex[T] = result.re = s * cos(r) result.im = s * sin(r) -proc pow*[T](x: Complex[T]; y: T): Complex[T] = - ## Complex number ``x`` raised to the power ``y``. +func pow*[T](x: Complex[T]; y: T): Complex[T] = + ## The complex number `x` raised to the power of the real number `y`. pow(x, complex[T](y)) -proc sin*[T](z: Complex[T]): Complex[T] = - ## Returns the sine of ``z``. +func sin*[T](z: Complex[T]): Complex[T] = + ## Returns the sine of `z`. result.re = sin(z.re) * cosh(z.im) result.im = cos(z.re) * sinh(z.im) -proc arcsin*[T](z: Complex[T]): Complex[T] = - ## Returns the inverse sine of ``z``. +func arcsin*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse sine of `z`. result = -im(T) * ln(im(T) * z + sqrt(T(1.0) - z*z)) -proc cos*[T](z: Complex[T]): Complex[T] = - ## Returns the cosine of ``z``. +func cos*[T](z: Complex[T]): Complex[T] = + ## Returns the cosine of `z`. result.re = cos(z.re) * cosh(z.im) result.im = -sin(z.re) * sinh(z.im) -proc arccos*[T](z: Complex[T]): Complex[T] = - ## Returns the inverse cosine of ``z``. +func arccos*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse cosine of `z`. result = -im(T) * ln(z + sqrt(z*z - T(1.0))) -proc tan*[T](z: Complex[T]): Complex[T] = - ## Returns the tangent of ``z``. +func tan*[T](z: Complex[T]): Complex[T] = + ## Returns the tangent of `z`. result = sin(z) / cos(z) -proc arctan*[T](z: Complex[T]): Complex[T] = - ## Returns the inverse tangent of ``z``. +func arctan*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse tangent of `z`. result = T(0.5)*im(T) * (ln(T(1.0) - im(T)*z) - ln(T(1.0) + im(T)*z)) -proc cot*[T](z: Complex[T]): Complex[T] = - ## Returns the cotangent of ``z``. +func cot*[T](z: Complex[T]): Complex[T] = + ## Returns the cotangent of `z`. result = cos(z)/sin(z) -proc arccot*[T](z: Complex[T]): Complex[T] = - ## Returns the inverse cotangent of ``z``. +func arccot*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse cotangent of `z`. result = T(0.5)*im(T) * (ln(T(1.0) - im(T)/z) - ln(T(1.0) + im(T)/z)) -proc sec*[T](z: Complex[T]): Complex[T] = - ## Returns the secant of ``z``. +func sec*[T](z: Complex[T]): Complex[T] = + ## Returns the secant of `z`. result = T(1.0) / cos(z) -proc arcsec*[T](z: Complex[T]): Complex[T] = - ## Returns the inverse secant of ``z``. +func arcsec*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse secant of `z`. result = -im(T) * ln(im(T) * sqrt(1.0 - 1.0/(z*z)) + T(1.0)/z) -proc csc*[T](z: Complex[T]): Complex[T] = - ## Returns the cosecant of ``z``. +func csc*[T](z: Complex[T]): Complex[T] = + ## Returns the cosecant of `z`. result = T(1.0) / sin(z) -proc arccsc*[T](z: Complex[T]): Complex[T] = - ## Returns the inverse cosecant of ``z``. +func arccsc*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse cosecant of `z`. result = -im(T) * ln(sqrt(T(1.0) - T(1.0)/(z*z)) + im(T)/z) -proc sinh*[T](z: Complex[T]): Complex[T] = - ## Returns the hyperbolic sine of ``z``. +func sinh*[T](z: Complex[T]): Complex[T] = + ## Returns the hyperbolic sine of `z`. result = T(0.5) * (exp(z) - exp(-z)) -proc arcsinh*[T](z: Complex[T]): Complex[T] = - ## Returns the inverse hyperbolic sine of ``z``. +func arcsinh*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse hyperbolic sine of `z`. result = ln(z + sqrt(z*z + 1.0)) -proc cosh*[T](z: Complex[T]): Complex[T] = - ## Returns the hyperbolic cosine of ``z``. +func cosh*[T](z: Complex[T]): Complex[T] = + ## Returns the hyperbolic cosine of `z`. result = T(0.5) * (exp(z) + exp(-z)) -proc arccosh*[T](z: Complex[T]): Complex[T] = - ## Returns the inverse hyperbolic cosine of ``z``. +func arccosh*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse hyperbolic cosine of `z`. result = ln(z + sqrt(z*z - T(1.0))) -proc tanh*[T](z: Complex[T]): Complex[T] = - ## Returns the hyperbolic tangent of ``z``. +func tanh*[T](z: Complex[T]): Complex[T] = + ## Returns the hyperbolic tangent of `z`. result = sinh(z) / cosh(z) -proc arctanh*[T](z: Complex[T]): Complex[T] = - ## Returns the inverse hyperbolic tangent of ``z``. +func arctanh*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse hyperbolic tangent of `z`. result = T(0.5) * (ln((T(1.0)+z) / (T(1.0)-z))) -proc sech*[T](z: Complex[T]): Complex[T] = - ## Returns the hyperbolic secant of ``z``. +func coth*[T](z: Complex[T]): Complex[T] = + ## Returns the hyperbolic cotangent of `z`. + result = cosh(z) / sinh(z) + +func arccoth*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse hyperbolic cotangent of `z`. + result = T(0.5) * (ln(T(1.0) + T(1.0)/z) - ln(T(1.0) - T(1.0)/z)) + +func sech*[T](z: Complex[T]): Complex[T] = + ## Returns the hyperbolic secant of `z`. result = T(2.0) / (exp(z) + exp(-z)) -proc arcsech*[T](z: Complex[T]): Complex[T] = - ## Returns the inverse hyperbolic secant of ``z``. +func arcsech*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse hyperbolic secant of `z`. result = ln(1.0/z + sqrt(T(1.0)/z+T(1.0)) * sqrt(T(1.0)/z-T(1.0))) -proc csch*[T](z: Complex[T]): Complex[T] = - ## Returns the hyperbolic cosecant of ``z``. +func csch*[T](z: Complex[T]): Complex[T] = + ## Returns the hyperbolic cosecant of `z`. result = T(2.0) / (exp(z) - exp(-z)) -proc arccsch*[T](z: Complex[T]): Complex[T] = - ## Returns the inverse hyperbolic cosecant of ``z``. +func arccsch*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse hyperbolic cosecant of `z`. result = ln(T(1.0)/z + sqrt(T(1.0)/(z*z) + T(1.0))) -proc coth*[T](z: Complex[T]): Complex[T] = - ## Returns the hyperbolic cotangent of ``z``. - result = cosh(z) / sinh(z) - -proc arccoth*[T](z: Complex[T]): Complex[T] = - ## Returns the inverse hyperbolic cotangent of ``z``. - result = T(0.5) * (ln(T(1.0) + T(1.0)/z) - ln(T(1.0) - T(1.0)/z)) - -proc phase*[T](z: Complex[T]): T = - ## Returns the phase of ``z``. +func phase*[T](z: Complex[T]): T = + ## Returns the phase (or argument) of `z`, that is the angle in polar representation. + ## + ## | `result = arctan2(z.im, z.re)` arctan2(z.im, z.re) -proc polar*[T](z: Complex[T]): tuple[r, phi: T] = - ## Returns ``z`` in polar coordinates. +func polar*[T](z: Complex[T]): tuple[r, phi: T] = + ## Returns `z` in polar coordinates. + ## + ## | `result.r = abs(z)` + ## | `result.phi = phase(z)` + ## + ## **See also:** + ## * `rect func<#rect,T,T>`_ for the inverse operation (r: abs(z), phi: phase(z)) -proc rect*[T](r, phi: T): Complex[T] = - ## Returns the complex number with polar coordinates ``r`` and ``phi``. +func rect*[T](r, phi: T): Complex[T] = + ## Returns the complex number with polar coordinates `r` and `phi`. + ## + ## | `result.re = r * cos(phi)` + ## | `result.im = r * sin(phi)` ## - ## | ``result.re = r * cos(phi)`` - ## | ``result.im = r * sin(phi)`` + ## **See also:** + ## * `polar func<#polar,Complex[T]>`_ for the inverse operation complex(r * cos(phi), r * sin(phi)) +func almostEqual*[T: SomeFloat](x, y: Complex[T]; unitsInLastPlace: Natural = 4): bool = + ## Checks if two complex values are almost equal, using the + ## [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon). + ## + ## Two complex values are considered almost equal if their real and imaginary + ## components are almost equal. + ## + ## `unitsInLastPlace` is the max number of + ## [units in the last place](https://en.wikipedia.org/wiki/Unit_in_the_last_place) + ## difference tolerated when comparing two numbers. The larger the value, the + ## more error is allowed. A `0` value means that two numbers must be exactly the + ## same to be considered equal. + ## + ## The machine epsilon has to be scaled to the magnitude of the values used + ## and multiplied by the desired precision in ULPs unless the difference is + ## subnormal. + almostEqual(x.re, y.re, unitsInLastPlace = unitsInLastPlace) and + almostEqual(x.im, y.im, unitsInLastPlace = unitsInLastPlace) -proc `$`*(z: Complex): string = - ## Returns ``z``'s string representation as ``"(re, im)"``. - result = "(" & $z.re & ", " & $z.im & ")" +func `$`*(z: Complex): string = + ## Returns `z`'s string representation as `"(re, im)"`. + runnableExamples: + doAssert $complex(1.0, 2.0) == "(1.0, 2.0)" -{.pop.} + result = "(" & $z.re & ", " & $z.im & ")" +proc formatValueAsTuple(result: var string; value: Complex; specifier: string) = + ## Format implementation for `Complex` representing the value as a (real, imaginary) tuple. + result.add "(" + formatValue(result, value.re, specifier) + result.add ", " + formatValue(result, value.im, specifier) + result.add ")" + +proc formatValueAsComplexNumber(result: var string; value: Complex; specifier: string) = + ## Format implementation for `Complex` representing the value as a (RE+IMj) number + ## By default, the real and imaginary parts are formatted using the general ('g') format + let specifier = if specifier.contains({'e', 'E', 'f', 'F', 'g', 'G'}): + specifier.replace("j") + else: + specifier.replace('j', 'g') + result.add "(" + formatValue(result, value.re, specifier) + if value.im >= 0 and not specifier.contains({'+', '-'}): + result.add "+" + formatValue(result, value.im, specifier) + result.add "j)" + +proc formatValue*(result: var string; value: Complex; specifier: string) = + ## Standard format implementation for `Complex`. It makes little + ## sense to call this directly, but it is required to exist + ## by the `&` macro. + ## For complex numbers, we add a specific 'j' specifier, which formats + ## the value as (A+Bj) like in mathematics. + if specifier.len == 0: + result.add $value + elif 'j' in specifier: + formatValueAsComplexNumber(result, value, specifier) + else: + formatValueAsTuple(result, value, specifier) -when isMainModule: - proc `=~`[T](x, y: Complex[T]): bool = - result = abs(x.re-y.re) < 1e-6 and abs(x.im-y.im) < 1e-6 - - proc `=~`[T](x: Complex[T]; y: T): bool = - result = abs(x.re-y) < 1e-6 and abs(x.im) < 1e-6 - - var - z: Complex64 = complex(0.0, 0.0) - oo: Complex64 = complex(1.0, 1.0) - a: Complex64 = complex(1.0, 2.0) - b: Complex64 = complex(-1.0, -2.0) - m1: Complex64 = complex(-1.0, 0.0) - i: Complex64 = complex(0.0, 1.0) - one: Complex64 = complex(1.0, 0.0) - tt: Complex64 = complex(10.0, 20.0) - ipi: Complex64 = complex(0.0, -PI) - - doAssert(a/2.0 =~ complex(0.5, 1.0)) - doAssert(a == a) - doAssert((a-a) == z) - doAssert((a+b) == z) - doAssert((a+b) =~ 0.0) - doAssert((a/b) == m1) - doAssert((1.0/a) =~ complex(0.2, -0.4)) - doAssert((a*b) == complex(3.0, -4.0)) - doAssert(10.0*a == tt) - doAssert(a*10.0 == tt) - doAssert(tt/10.0 == a) - doAssert(oo+(-1.0) == i) - doAssert( (-1.0)+oo == i) - doAssert(abs(oo) == sqrt(2.0)) - doAssert(conjugate(a) == complex(1.0, -2.0)) - doAssert(sqrt(m1) == i) - doAssert(exp(ipi) =~ m1) - - doAssert(pow(a, b) =~ complex(-3.72999124927876, -1.68815826725068)) - doAssert(pow(z, a) =~ complex(0.0, 0.0)) - doAssert(pow(z, z) =~ complex(1.0, 0.0)) - doAssert(pow(a, one) =~ a) - doAssert(pow(a, m1) =~ complex(0.2, -0.4)) - doAssert(pow(a, 2.0) =~ complex(-3.0, 4.0)) - doAssert(pow(a, 2) =~ complex(-3.0, 4.0)) - doAssert(not(pow(a, 2.0) =~ a)) - - doAssert(ln(a) =~ complex(0.804718956217050, 1.107148717794090)) - doAssert(log10(a) =~ complex(0.349485002168009, 0.480828578784234)) - doAssert(log2(a) =~ complex(1.16096404744368, 1.59727796468811)) - - doAssert(sin(a) =~ complex(3.16577851321617, 1.95960104142161)) - doAssert(cos(a) =~ complex(2.03272300701967, -3.05189779915180)) - doAssert(tan(a) =~ complex(0.0338128260798967, 1.0147936161466335)) - doAssert(cot(a) =~ 1.0 / tan(a)) - doAssert(sec(a) =~ 1.0 / cos(a)) - doAssert(csc(a) =~ 1.0 / sin(a)) - doAssert(arcsin(a) =~ complex(0.427078586392476, 1.528570919480998)) - doAssert(arccos(a) =~ complex(1.14371774040242, -1.52857091948100)) - doAssert(arctan(a) =~ complex(1.338972522294494, 0.402359478108525)) - doAssert(arccot(a) =~ complex(0.2318238045004031, -0.402359478108525)) - doAssert(arcsec(a) =~ complex(1.384478272687081, 0.3965682301123288)) - doAssert(arccsc(a) =~ complex(0.1863180541078155, -0.3965682301123291)) - - doAssert(cosh(a) =~ complex(-0.642148124715520, 1.068607421382778)) - doAssert(sinh(a) =~ complex(-0.489056259041294, 1.403119250622040)) - doAssert(tanh(a) =~ complex(1.1667362572409199, -0.243458201185725)) - doAssert(sech(a) =~ 1.0 / cosh(a)) - doAssert(csch(a) =~ 1.0 / sinh(a)) - doAssert(coth(a) =~ 1.0 / tanh(a)) - doAssert(arccosh(a) =~ complex(1.528570919480998, 1.14371774040242)) - doAssert(arcsinh(a) =~ complex(1.469351744368185, 1.06344002357775)) - doAssert(arctanh(a) =~ complex(0.173286795139986, 1.17809724509617)) - doAssert(arcsech(a) =~ arccosh(1.0/a)) - doAssert(arccsch(a) =~ arcsinh(1.0/a)) - doAssert(arccoth(a) =~ arctanh(1.0/a)) - - doAssert(phase(a) == 1.1071487177940904) - var t = polar(a) - doAssert(rect(t.r, t.phi) =~ a) - doAssert(rect(1.0, 2.0) =~ complex(-0.4161468365471424, 0.9092974268256817)) - - - var - i64: Complex32 = complex(0.0f, 1.0f) - a64: Complex32 = 2.0f*i64 + 1.0.float32 - b64: Complex32 = complex(-1.0'f32, -2.0'f32) - - doAssert(a64 == a64) - doAssert(a64 == -b64) - doAssert(a64 + b64 =~ 0.0'f32) - doAssert(not(pow(a64, b64) =~ a64)) - doAssert(pow(a64, 0.5f) =~ sqrt(a64)) - doAssert(pow(a64, 2) =~ complex(-3.0'f32, 4.0'f32)) - doAssert(sin(arcsin(b64)) =~ b64) - doAssert(cosh(arccosh(a64)) =~ a64) - - doAssert(phase(a64) - 1.107149f < 1e-6) - var t64 = polar(a64) - doAssert(rect(t64.r, t64.phi) =~ a64) - doAssert(rect(1.0f, 2.0f) =~ complex(-0.4161468f, 0.90929742f)) - doAssert(sizeof(a64) == 8) - doAssert(sizeof(a) == 16) - - doAssert 123.0.im + 456.0 == complex64(456, 123) - - var localA = complex(0.1'f32) - doAssert localA.im is float32 +{.pop.} |