diff options
Diffstat (limited to 'lib/pure/complex.nim')
-rw-r--r--[-rwxr-xr-x] | lib/pure/complex.nim | 483 |
1 files changed, 425 insertions, 58 deletions
diff --git a/lib/pure/complex.nim b/lib/pure/complex.nim index c06451ca8..b48811eae 100755..100644 --- a/lib/pure/complex.nim +++ b/lib/pure/complex.nim @@ -1,88 +1,193 @@ # # -# Nimrod's Runtime Library +# Nim's Runtime Library # (c) Copyright 2010 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # +## This module implements complex numbers +## and basic mathematical operations on them. +## +## Complex numbers are currently generic over 64-bit or 32-bit floats. +runnableExamples: + from std/math import almostEqual, sqrt -## This module implements complex numbers. + let + z1 = complex(1.0, 2.0) + z2 = complex(3.0, -4.0) -{.push checks:off, line_dir:off, stack_trace:off, debugger:off.} -# the user does not want to trace a part -# of the standard library! + assert almostEqual(z1 + z2, complex(4.0, -2.0)) + assert almostEqual(z1 - z2, complex(-2.0, 6.0)) + assert almostEqual(z1 * z2, complex(11.0, 2.0)) + assert almostEqual(z1 / z2, complex(-0.2, 0.4)) -import - math + assert almostEqual(abs(z1), sqrt(5.0)) + assert almostEqual(conjugate(z1), complex(1.0, -2.0)) + + let (r, phi) = z1.polar + assert almostEqual(rect(r, phi), z1) + +{.push checks: off, line_dir: off, stack_trace: off, debugger: off.} +# the user does not want to trace a part of the standard library! + +import std/[math, strformat] type - TComplex* = tuple[re, im: float] - ## a complex number, consisting of a real and an imaginary part + Complex*[T: SomeFloat] = object + ## A complex number, consisting of a real and an imaginary part. + re*, im*: T + Complex64* = Complex[float64] + ## Alias for a complex number using 64-bit floats. + Complex32* = Complex[float32] + ## Alias for a complex number using 32-bit floats. + +func complex*[T: SomeFloat](re: T; im: T = 0.0): Complex[T] = + ## Returns a `Complex[T]` with real part `re` and imaginary part `im`. + result.re = re + result.im = im + +func complex32*(re: float32; im: float32 = 0.0): Complex32 = + ## Returns a `Complex32` with real part `re` and imaginary part `im`. + result.re = re + result.im = im + +func complex64*(re: float64; im: float64 = 0.0): Complex64 = + ## Returns a `Complex64` with real part `re` and imaginary part `im`. + result.re = re + result.im = im + +template im*(arg: typedesc[float32]): Complex32 = complex32(0, 1) + ## Returns the imaginary unit (`complex32(0, 1)`). +template im*(arg: typedesc[float64]): Complex64 = complex64(0, 1) + ## Returns the imaginary unit (`complex64(0, 1)`). +template im*(arg: float32): Complex32 = complex32(0, arg) + ## Returns `arg` as an imaginary number (`complex32(0, arg)`). +template im*(arg: float64): Complex64 = complex64(0, arg) + ## Returns `arg` as an imaginary number (`complex64(0, arg)`). + +func abs*[T](z: Complex[T]): T = + ## Returns the absolute value of `z`, + ## that is the distance from (0, 0) to `z`. + result = hypot(z.re, z.im) + +func abs2*[T](z: Complex[T]): T = + ## Returns the squared absolute value of `z`, + ## that is the squared distance from (0, 0) to `z`. + ## This is more efficient than `abs(z) ^ 2`. + result = z.re * z.re + z.im * z.im + +func sgn*[T](z: Complex[T]): Complex[T] = + ## Returns the phase of `z` as a unit complex number, + ## or 0 if `z` is 0. + let a = abs(z) + if a != 0: + result = z / a -proc `==` *(x, y: TComplex): bool = - ## Compare two complex numbers `x` and `y` for equality. +func conjugate*[T](z: Complex[T]): Complex[T] = + ## Returns the complex conjugate of `z` (`complex(z.re, -z.im)`). + result.re = z.re + result.im = -z.im + +func inv*[T](z: Complex[T]): Complex[T] = + ## Returns the multiplicative inverse of `z` (`1/z`). + conjugate(z) / abs2(z) + +func `==`*[T](x, y: Complex[T]): bool = + ## Compares two complex numbers for equality. result = x.re == y.re and x.im == y.im -proc `+` *(x, y: TComplex): TComplex = - ## Add two complex numbers. +func `+`*[T](x: T; y: Complex[T]): Complex[T] = + ## Adds a real number to a complex number. + result.re = x + y.re + result.im = y.im + +func `+`*[T](x: Complex[T]; y: T): Complex[T] = + ## Adds a complex number to a real number. + result.re = x.re + y + result.im = x.im + +func `+`*[T](x, y: Complex[T]): Complex[T] = + ## Adds two complex numbers. result.re = x.re + y.re result.im = x.im + y.im -proc `-` *(x, y: TComplex): TComplex = - ## Subtract two complex numbers. - result.re = x.re - y.re - result.im = x.im - y.im - -proc `-` *(z: TComplex): TComplex = +func `-`*[T](z: Complex[T]): Complex[T] = ## Unary minus for complex numbers. result.re = -z.re result.im = -z.im -proc `/` *(x, y: TComplex): TComplex = - ## Divide `x` by `y`. - var - r, den: float - if abs(y.re) < abs(y.im): - r = y.re / y.im - den = y.im + r * y.re - result.re = (x.re * r + x.im) / den - result.im = (x.im * r - x.re) / den - else: - r = y.im / y.re - den = y.re + r * y.im - result.re = (x.re + r * x.im) / den - result.im = (x.im - r * x.re) / den +func `-`*[T](x: T; y: Complex[T]): Complex[T] = + ## Subtracts a complex number from a real number. + result.re = x - y.re + result.im = -y.im + +func `-`*[T](x: Complex[T]; y: T): Complex[T] = + ## Subtracts a real number from a complex number. + result.re = x.re - y + result.im = x.im -proc `*` *(x, y: TComplex): TComplex = - ## Multiply `x` with `y`. +func `-`*[T](x, y: Complex[T]): Complex[T] = + ## Subtracts two complex numbers. + result.re = x.re - y.re + result.im = x.im - y.im + +func `*`*[T](x: T; y: Complex[T]): Complex[T] = + ## Multiplies a real number with a complex number. + result.re = x * y.re + result.im = x * y.im + +func `*`*[T](x: Complex[T]; y: T): Complex[T] = + ## Multiplies a complex number with a real number. + result.re = x.re * y + result.im = x.im * y + +func `*`*[T](x, y: Complex[T]): Complex[T] = + ## Multiplies two complex numbers. result.re = x.re * y.re - x.im * y.im result.im = x.im * y.re + x.re * y.im -proc abs*(z: TComplex): float = - ## Return the distance from (0,0) to `z`. - - # optimized by checking special cases (sqrt is expensive) - var x, y, temp: float - - x = abs(z.re) - y = abs(z.im) - if x == 0.0: - result = y - elif y == 0.0: - result = x - elif x > y: - temp = y / x - result = x * sqrt(1.0 + temp * temp) - else: - temp = x / y - result = y * sqrt(1.0 + temp * temp) +func `/`*[T](x: Complex[T]; y: T): Complex[T] = + ## Divides a complex number by a real number. + result.re = x.re / y + result.im = x.im / y + +func `/`*[T](x: T; y: Complex[T]): Complex[T] = + ## Divides a real number by a complex number. + result = x * inv(y) + +func `/`*[T](x, y: Complex[T]): Complex[T] = + ## Divides two complex numbers. + x * conjugate(y) / abs2(y) + +func `+=`*[T](x: var Complex[T]; y: Complex[T]) = + ## Adds `y` to `x`. + x.re += y.re + x.im += y.im + +func `-=`*[T](x: var Complex[T]; y: Complex[T]) = + ## Subtracts `y` from `x`. + x.re -= y.re + x.im -= y.im -proc sqrt*(z: TComplex): TComplex = - ## Square root for a complex number `z`. - var x, y, w, r: float +func `*=`*[T](x: var Complex[T]; y: Complex[T]) = + ## Multiplies `x` by `y`. + let im = x.im * y.re + x.re * y.im + x.re = x.re * y.re - x.im * y.im + x.im = im + +func `/=`*[T](x: var Complex[T]; y: Complex[T]) = + ## Divides `x` by `y` in place. + x = x / y + + +func sqrt*[T](z: Complex[T]): Complex[T] = + ## Computes the + ## ([principal](https://en.wikipedia.org/wiki/Square_root#Principal_square_root_of_a_complex_number)) + ## square root of a complex number `z`. + var x, y, w, r: T if z.re == 0.0 and z.im == 0.0: result = z @@ -95,12 +200,274 @@ proc sqrt*(z: TComplex): TComplex = else: r = x / y w = sqrt(y) * sqrt(0.5 * (r + sqrt(1.0 + r * r))) + if z.re >= 0.0: result.re = w result.im = z.im / (w * 2.0) else: - if z.im >= 0.0: result.im = w - else: result.im = -w + result.im = if z.im >= 0.0: w else: -w result.re = z.im / (result.im + result.im) +func exp*[T](z: Complex[T]): Complex[T] = + ## Computes the exponential function (`e^z`). + let + rho = exp(z.re) + theta = z.im + result.re = rho * cos(theta) + result.im = rho * sin(theta) + +func ln*[T](z: Complex[T]): Complex[T] = + ## Returns the + ## ([principal value](https://en.wikipedia.org/wiki/Complex_logarithm#Principal_value) + ## of the) natural logarithm of `z`. + result.re = ln(abs(z)) + result.im = arctan2(z.im, z.re) + +func log10*[T](z: Complex[T]): Complex[T] = + ## Returns the logarithm base 10 of `z`. + ## + ## **See also:** + ## * `ln func<#ln,Complex[T]>`_ + result = ln(z) / ln(10.0) + +func log2*[T](z: Complex[T]): Complex[T] = + ## Returns the logarithm base 2 of `z`. + ## + ## **See also:** + ## * `ln func<#ln,Complex[T]>`_ + result = ln(z) / ln(2.0) + +func pow*[T](x, y: Complex[T]): Complex[T] = + ## `x` raised to the power of `y`. + if x.re == 0.0 and x.im == 0.0: + if y.re == 0.0 and y.im == 0.0: + result.re = 1.0 + result.im = 0.0 + else: + result.re = 0.0 + result.im = 0.0 + elif y.im == 0.0: + if y.re == 1.0: + result = x + elif y.re == -1.0: + result = T(1.0) / x + elif y.re == 2.0: + result = x * x + elif y.re == 0.5: + result = sqrt(x) + elif x.im == 0.0: + # Revert to real pow when both base and exponent are real + result.re = pow(x.re, y.re) + result.im = 0.0 + else: + # Special case when the exponent is real + let + rho = abs(x) + theta = arctan2(x.im, x.re) + s = pow(rho, y.re) + r = y.re * theta + result.re = s * cos(r) + result.im = s * sin(r) + elif x.im == 0.0 and x.re == E: + # Special case Euler's formula + result = exp(y) + else: + let + rho = abs(x) + theta = arctan2(x.im, x.re) + s = pow(rho, y.re) * exp(-y.im * theta) + r = y.re * theta + y.im * ln(rho) + result.re = s * cos(r) + result.im = s * sin(r) + +func pow*[T](x: Complex[T]; y: T): Complex[T] = + ## The complex number `x` raised to the power of the real number `y`. + pow(x, complex[T](y)) + + +func sin*[T](z: Complex[T]): Complex[T] = + ## Returns the sine of `z`. + result.re = sin(z.re) * cosh(z.im) + result.im = cos(z.re) * sinh(z.im) + +func arcsin*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse sine of `z`. + result = -im(T) * ln(im(T) * z + sqrt(T(1.0) - z*z)) + +func cos*[T](z: Complex[T]): Complex[T] = + ## Returns the cosine of `z`. + result.re = cos(z.re) * cosh(z.im) + result.im = -sin(z.re) * sinh(z.im) + +func arccos*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse cosine of `z`. + result = -im(T) * ln(z + sqrt(z*z - T(1.0))) + +func tan*[T](z: Complex[T]): Complex[T] = + ## Returns the tangent of `z`. + result = sin(z) / cos(z) + +func arctan*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse tangent of `z`. + result = T(0.5)*im(T) * (ln(T(1.0) - im(T)*z) - ln(T(1.0) + im(T)*z)) + +func cot*[T](z: Complex[T]): Complex[T] = + ## Returns the cotangent of `z`. + result = cos(z)/sin(z) + +func arccot*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse cotangent of `z`. + result = T(0.5)*im(T) * (ln(T(1.0) - im(T)/z) - ln(T(1.0) + im(T)/z)) + +func sec*[T](z: Complex[T]): Complex[T] = + ## Returns the secant of `z`. + result = T(1.0) / cos(z) + +func arcsec*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse secant of `z`. + result = -im(T) * ln(im(T) * sqrt(1.0 - 1.0/(z*z)) + T(1.0)/z) + +func csc*[T](z: Complex[T]): Complex[T] = + ## Returns the cosecant of `z`. + result = T(1.0) / sin(z) + +func arccsc*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse cosecant of `z`. + result = -im(T) * ln(sqrt(T(1.0) - T(1.0)/(z*z)) + im(T)/z) + +func sinh*[T](z: Complex[T]): Complex[T] = + ## Returns the hyperbolic sine of `z`. + result = T(0.5) * (exp(z) - exp(-z)) + +func arcsinh*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse hyperbolic sine of `z`. + result = ln(z + sqrt(z*z + 1.0)) + +func cosh*[T](z: Complex[T]): Complex[T] = + ## Returns the hyperbolic cosine of `z`. + result = T(0.5) * (exp(z) + exp(-z)) + +func arccosh*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse hyperbolic cosine of `z`. + result = ln(z + sqrt(z*z - T(1.0))) + +func tanh*[T](z: Complex[T]): Complex[T] = + ## Returns the hyperbolic tangent of `z`. + result = sinh(z) / cosh(z) + +func arctanh*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse hyperbolic tangent of `z`. + result = T(0.5) * (ln((T(1.0)+z) / (T(1.0)-z))) + +func coth*[T](z: Complex[T]): Complex[T] = + ## Returns the hyperbolic cotangent of `z`. + result = cosh(z) / sinh(z) + +func arccoth*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse hyperbolic cotangent of `z`. + result = T(0.5) * (ln(T(1.0) + T(1.0)/z) - ln(T(1.0) - T(1.0)/z)) + +func sech*[T](z: Complex[T]): Complex[T] = + ## Returns the hyperbolic secant of `z`. + result = T(2.0) / (exp(z) + exp(-z)) + +func arcsech*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse hyperbolic secant of `z`. + result = ln(1.0/z + sqrt(T(1.0)/z+T(1.0)) * sqrt(T(1.0)/z-T(1.0))) + +func csch*[T](z: Complex[T]): Complex[T] = + ## Returns the hyperbolic cosecant of `z`. + result = T(2.0) / (exp(z) - exp(-z)) + +func arccsch*[T](z: Complex[T]): Complex[T] = + ## Returns the inverse hyperbolic cosecant of `z`. + result = ln(T(1.0)/z + sqrt(T(1.0)/(z*z) + T(1.0))) + +func phase*[T](z: Complex[T]): T = + ## Returns the phase (or argument) of `z`, that is the angle in polar representation. + ## + ## | `result = arctan2(z.im, z.re)` + arctan2(z.im, z.re) + +func polar*[T](z: Complex[T]): tuple[r, phi: T] = + ## Returns `z` in polar coordinates. + ## + ## | `result.r = abs(z)` + ## | `result.phi = phase(z)` + ## + ## **See also:** + ## * `rect func<#rect,T,T>`_ for the inverse operation + (r: abs(z), phi: phase(z)) + +func rect*[T](r, phi: T): Complex[T] = + ## Returns the complex number with polar coordinates `r` and `phi`. + ## + ## | `result.re = r * cos(phi)` + ## | `result.im = r * sin(phi)` + ## + ## **See also:** + ## * `polar func<#polar,Complex[T]>`_ for the inverse operation + complex(r * cos(phi), r * sin(phi)) + +func almostEqual*[T: SomeFloat](x, y: Complex[T]; unitsInLastPlace: Natural = 4): bool = + ## Checks if two complex values are almost equal, using the + ## [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon). + ## + ## Two complex values are considered almost equal if their real and imaginary + ## components are almost equal. + ## + ## `unitsInLastPlace` is the max number of + ## [units in the last place](https://en.wikipedia.org/wiki/Unit_in_the_last_place) + ## difference tolerated when comparing two numbers. The larger the value, the + ## more error is allowed. A `0` value means that two numbers must be exactly the + ## same to be considered equal. + ## + ## The machine epsilon has to be scaled to the magnitude of the values used + ## and multiplied by the desired precision in ULPs unless the difference is + ## subnormal. + almostEqual(x.re, y.re, unitsInLastPlace = unitsInLastPlace) and + almostEqual(x.im, y.im, unitsInLastPlace = unitsInLastPlace) + +func `$`*(z: Complex): string = + ## Returns `z`'s string representation as `"(re, im)"`. + runnableExamples: + doAssert $complex(1.0, 2.0) == "(1.0, 2.0)" + + result = "(" & $z.re & ", " & $z.im & ")" + +proc formatValueAsTuple(result: var string; value: Complex; specifier: string) = + ## Format implementation for `Complex` representing the value as a (real, imaginary) tuple. + result.add "(" + formatValue(result, value.re, specifier) + result.add ", " + formatValue(result, value.im, specifier) + result.add ")" + +proc formatValueAsComplexNumber(result: var string; value: Complex; specifier: string) = + ## Format implementation for `Complex` representing the value as a (RE+IMj) number + ## By default, the real and imaginary parts are formatted using the general ('g') format + let specifier = if specifier.contains({'e', 'E', 'f', 'F', 'g', 'G'}): + specifier.replace("j") + else: + specifier.replace('j', 'g') + result.add "(" + formatValue(result, value.re, specifier) + if value.im >= 0 and not specifier.contains({'+', '-'}): + result.add "+" + formatValue(result, value.im, specifier) + result.add "j)" + +proc formatValue*(result: var string; value: Complex; specifier: string) = + ## Standard format implementation for `Complex`. It makes little + ## sense to call this directly, but it is required to exist + ## by the `&` macro. + ## For complex numbers, we add a specific 'j' specifier, which formats + ## the value as (A+Bj) like in mathematics. + if specifier.len == 0: + result.add $value + elif 'j' in specifier: + formatValueAsComplexNumber(result, value, specifier) + else: + formatValueAsTuple(result, value, specifier) + {.pop.} |