summary refs log tree commit diff stats
path: root/lib/pure/complex.nim
diff options
context:
space:
mode:
Diffstat (limited to 'lib/pure/complex.nim')
-rw-r--r--[-rwxr-xr-x]lib/pure/complex.nim483
1 files changed, 425 insertions, 58 deletions
diff --git a/lib/pure/complex.nim b/lib/pure/complex.nim
index c06451ca8..b48811eae 100755..100644
--- a/lib/pure/complex.nim
+++ b/lib/pure/complex.nim
@@ -1,88 +1,193 @@
 #
 #
-#            Nimrod's Runtime Library
+#            Nim's Runtime Library
 #        (c) Copyright 2010 Andreas Rumpf
 #
 #    See the file "copying.txt", included in this
 #    distribution, for details about the copyright.
 #
 
+## This module implements complex numbers
+## and basic mathematical operations on them.
+##
+## Complex numbers are currently generic over 64-bit or 32-bit floats.
 
+runnableExamples:
+  from std/math import almostEqual, sqrt
 
-## This module implements complex numbers.
+  let
+    z1 = complex(1.0, 2.0)
+    z2 = complex(3.0, -4.0)
 
-{.push checks:off, line_dir:off, stack_trace:off, debugger:off.}
-# the user does not want to trace a part
-# of the standard library!
+  assert almostEqual(z1 + z2, complex(4.0, -2.0))
+  assert almostEqual(z1 - z2, complex(-2.0, 6.0))
+  assert almostEqual(z1 * z2, complex(11.0, 2.0))
+  assert almostEqual(z1 / z2, complex(-0.2, 0.4))
 
-import
-  math
+  assert almostEqual(abs(z1), sqrt(5.0))
+  assert almostEqual(conjugate(z1), complex(1.0, -2.0))
+
+  let (r, phi) = z1.polar
+  assert almostEqual(rect(r, phi), z1)
+
+{.push checks: off, line_dir: off, stack_trace: off, debugger: off.}
+# the user does not want to trace a part of the standard library!
+
+import std/[math, strformat]
 
 type
-  TComplex* = tuple[re, im: float] 
-    ## a complex number, consisting of a real and an imaginary part
+  Complex*[T: SomeFloat] = object
+    ## A complex number, consisting of a real and an imaginary part.
+    re*, im*: T
+  Complex64* = Complex[float64]
+    ## Alias for a complex number using 64-bit floats.
+  Complex32* = Complex[float32]
+    ## Alias for a complex number using 32-bit floats.
+
+func complex*[T: SomeFloat](re: T; im: T = 0.0): Complex[T] =
+  ## Returns a `Complex[T]` with real part `re` and imaginary part `im`.
+  result.re = re
+  result.im = im
+
+func complex32*(re: float32; im: float32 = 0.0): Complex32 =
+  ## Returns a `Complex32` with real part `re` and imaginary part `im`.
+  result.re = re
+  result.im = im
+
+func complex64*(re: float64; im: float64 = 0.0): Complex64 =
+  ## Returns a `Complex64` with real part `re` and imaginary part `im`.
+  result.re = re
+  result.im = im
+
+template im*(arg: typedesc[float32]): Complex32 = complex32(0, 1)
+  ## Returns the imaginary unit (`complex32(0, 1)`).
+template im*(arg: typedesc[float64]): Complex64 = complex64(0, 1)
+  ## Returns the imaginary unit (`complex64(0, 1)`).
+template im*(arg: float32): Complex32 = complex32(0, arg)
+  ## Returns `arg` as an imaginary number (`complex32(0, arg)`).
+template im*(arg: float64): Complex64 = complex64(0, arg)
+  ## Returns `arg` as an imaginary number (`complex64(0, arg)`).
+
+func abs*[T](z: Complex[T]): T =
+  ## Returns the absolute value of `z`,
+  ## that is the distance from (0, 0) to `z`.
+  result = hypot(z.re, z.im)
+
+func abs2*[T](z: Complex[T]): T =
+  ## Returns the squared absolute value of `z`,
+  ## that is the squared distance from (0, 0) to `z`.
+  ## This is more efficient than `abs(z) ^ 2`.
+  result = z.re * z.re + z.im * z.im
+
+func sgn*[T](z: Complex[T]): Complex[T] =
+  ## Returns the phase of `z` as a unit complex number,
+  ## or 0 if `z` is 0.
+  let a = abs(z)
+  if a != 0:
+    result = z / a
 
-proc `==` *(x, y: TComplex): bool =
-  ## Compare two complex numbers `x` and `y` for equality.
+func conjugate*[T](z: Complex[T]): Complex[T] =
+  ## Returns the complex conjugate of `z` (`complex(z.re, -z.im)`).
+  result.re = z.re
+  result.im = -z.im
+
+func inv*[T](z: Complex[T]): Complex[T] =
+  ## Returns the multiplicative inverse of `z` (`1/z`).
+  conjugate(z) / abs2(z)
+
+func `==`*[T](x, y: Complex[T]): bool =
+  ## Compares two complex numbers for equality.
   result = x.re == y.re and x.im == y.im
 
-proc `+` *(x, y: TComplex): TComplex =
-  ## Add two complex numbers.
+func `+`*[T](x: T; y: Complex[T]): Complex[T] =
+  ## Adds a real number to a complex number.
+  result.re = x + y.re
+  result.im = y.im
+
+func `+`*[T](x: Complex[T]; y: T): Complex[T] =
+  ## Adds a complex number to a real number.
+  result.re = x.re + y
+  result.im = x.im
+
+func `+`*[T](x, y: Complex[T]): Complex[T] =
+  ## Adds two complex numbers.
   result.re = x.re + y.re
   result.im = x.im + y.im
 
-proc `-` *(x, y: TComplex): TComplex =
-  ## Subtract two complex numbers.
-  result.re = x.re - y.re
-  result.im = x.im - y.im
-
-proc `-` *(z: TComplex): TComplex =
+func `-`*[T](z: Complex[T]): Complex[T] =
   ## Unary minus for complex numbers.
   result.re = -z.re
   result.im = -z.im
 
-proc `/` *(x, y: TComplex): TComplex =
-  ## Divide `x` by `y`.
-  var
-    r, den: float
-  if abs(y.re) < abs(y.im):
-    r = y.re / y.im
-    den = y.im + r * y.re
-    result.re = (x.re * r + x.im) / den
-    result.im = (x.im * r - x.re) / den
-  else:
-    r = y.im / y.re
-    den = y.re + r * y.im
-    result.re = (x.re + r * x.im) / den
-    result.im = (x.im - r * x.re) / den
+func `-`*[T](x: T; y: Complex[T]): Complex[T] =
+  ## Subtracts a complex number from a real number.
+  result.re = x - y.re
+  result.im = -y.im
+
+func `-`*[T](x: Complex[T]; y: T): Complex[T] =
+  ## Subtracts a real number from a complex number.
+  result.re = x.re - y
+  result.im = x.im
 
-proc `*` *(x, y: TComplex): TComplex =
-  ## Multiply `x` with `y`.
+func `-`*[T](x, y: Complex[T]): Complex[T] =
+  ## Subtracts two complex numbers.
+  result.re = x.re - y.re
+  result.im = x.im - y.im
+
+func `*`*[T](x: T; y: Complex[T]): Complex[T] =
+  ## Multiplies a real number with a complex number.
+  result.re = x * y.re
+  result.im = x * y.im
+
+func `*`*[T](x: Complex[T]; y: T): Complex[T] =
+  ## Multiplies a complex number with a real number.
+  result.re = x.re * y
+  result.im = x.im * y
+
+func `*`*[T](x, y: Complex[T]): Complex[T] =
+  ## Multiplies two complex numbers.
   result.re = x.re * y.re - x.im * y.im
   result.im = x.im * y.re + x.re * y.im
 
-proc abs*(z: TComplex): float =
-  ## Return the distance from (0,0) to `z`.
-
-  # optimized by checking special cases (sqrt is expensive)
-  var x, y, temp: float
-
-  x = abs(z.re)
-  y = abs(z.im)
-  if x == 0.0:
-    result = y
-  elif y == 0.0:
-    result = x
-  elif x > y:
-    temp = y / x
-    result = x * sqrt(1.0 + temp * temp)
-  else:
-    temp = x / y
-    result = y * sqrt(1.0 + temp * temp)
+func `/`*[T](x: Complex[T]; y: T): Complex[T] =
+  ## Divides a complex number by a real number.
+  result.re = x.re / y
+  result.im = x.im / y
+
+func `/`*[T](x: T; y: Complex[T]): Complex[T] =
+  ## Divides a real number by a complex number.
+  result = x * inv(y)
+
+func `/`*[T](x, y: Complex[T]): Complex[T] =
+  ## Divides two complex numbers.
+  x * conjugate(y) / abs2(y)
+
+func `+=`*[T](x: var Complex[T]; y: Complex[T]) =
+  ## Adds `y` to `x`.
+  x.re += y.re
+  x.im += y.im
+
+func `-=`*[T](x: var Complex[T]; y: Complex[T]) =
+  ## Subtracts `y` from `x`.
+  x.re -= y.re
+  x.im -= y.im
 
-proc sqrt*(z: TComplex): TComplex =
-  ## Square root for a complex number `z`.
-  var x, y, w, r: float
+func `*=`*[T](x: var Complex[T]; y: Complex[T]) =
+  ## Multiplies `x` by `y`.
+  let im = x.im * y.re + x.re * y.im
+  x.re = x.re * y.re - x.im * y.im
+  x.im = im
+
+func `/=`*[T](x: var Complex[T]; y: Complex[T]) =
+  ## Divides `x` by `y` in place.
+  x = x / y
+
+
+func sqrt*[T](z: Complex[T]): Complex[T] =
+  ## Computes the
+  ## ([principal](https://en.wikipedia.org/wiki/Square_root#Principal_square_root_of_a_complex_number))
+  ## square root of a complex number `z`.
+  var x, y, w, r: T
 
   if z.re == 0.0 and z.im == 0.0:
     result = z
@@ -95,12 +200,274 @@ proc sqrt*(z: TComplex): TComplex =
     else:
       r = x / y
       w = sqrt(y) * sqrt(0.5 * (r + sqrt(1.0 + r * r)))
+
     if z.re >= 0.0:
       result.re = w
       result.im = z.im / (w * 2.0)
     else:
-      if z.im >= 0.0: result.im = w
-      else:           result.im = -w
+      result.im = if z.im >= 0.0: w else: -w
       result.re = z.im / (result.im + result.im)
 
+func exp*[T](z: Complex[T]): Complex[T] =
+  ## Computes the exponential function (`e^z`).
+  let
+    rho = exp(z.re)
+    theta = z.im
+  result.re = rho * cos(theta)
+  result.im = rho * sin(theta)
+
+func ln*[T](z: Complex[T]): Complex[T] =
+  ## Returns the
+  ## ([principal value](https://en.wikipedia.org/wiki/Complex_logarithm#Principal_value)
+  ## of the) natural logarithm of `z`.
+  result.re = ln(abs(z))
+  result.im = arctan2(z.im, z.re)
+
+func log10*[T](z: Complex[T]): Complex[T] =
+  ## Returns the logarithm base 10 of `z`.
+  ##
+  ## **See also:**
+  ## * `ln func<#ln,Complex[T]>`_
+  result = ln(z) / ln(10.0)
+
+func log2*[T](z: Complex[T]): Complex[T] =
+  ## Returns the logarithm base 2 of `z`.
+  ##
+  ## **See also:**
+  ## * `ln func<#ln,Complex[T]>`_
+  result = ln(z) / ln(2.0)
+
+func pow*[T](x, y: Complex[T]): Complex[T] =
+  ## `x` raised to the power of `y`.
+  if x.re == 0.0 and x.im == 0.0:
+    if y.re == 0.0 and y.im == 0.0:
+      result.re = 1.0
+      result.im = 0.0
+    else:
+      result.re = 0.0
+      result.im = 0.0
+  elif y.im == 0.0:
+    if y.re == 1.0:
+      result = x
+    elif y.re == -1.0:
+      result = T(1.0) / x
+    elif y.re == 2.0:
+      result = x * x
+    elif y.re == 0.5:
+      result = sqrt(x)
+    elif x.im == 0.0:
+      # Revert to real pow when both base and exponent are real
+      result.re = pow(x.re, y.re)
+      result.im = 0.0
+    else:
+      # Special case when the exponent is real
+      let
+        rho = abs(x)
+        theta = arctan2(x.im, x.re)
+        s = pow(rho, y.re)
+        r = y.re * theta
+      result.re = s * cos(r)
+      result.im = s * sin(r)
+  elif x.im == 0.0 and x.re == E:
+   # Special case Euler's formula
+   result = exp(y)
+  else:
+    let
+      rho = abs(x)
+      theta = arctan2(x.im, x.re)
+      s = pow(rho, y.re) * exp(-y.im * theta)
+      r = y.re * theta + y.im * ln(rho)
+    result.re = s * cos(r)
+    result.im = s * sin(r)
+
+func pow*[T](x: Complex[T]; y: T): Complex[T] =
+  ## The complex number `x` raised to the power of the real number `y`.
+  pow(x, complex[T](y))
+
+
+func sin*[T](z: Complex[T]): Complex[T] =
+  ## Returns the sine of `z`.
+  result.re = sin(z.re) * cosh(z.im)
+  result.im = cos(z.re) * sinh(z.im)
+
+func arcsin*[T](z: Complex[T]): Complex[T] =
+  ## Returns the inverse sine of `z`.
+  result = -im(T) * ln(im(T) * z + sqrt(T(1.0) - z*z))
+
+func cos*[T](z: Complex[T]): Complex[T] =
+  ## Returns the cosine of `z`.
+  result.re = cos(z.re) * cosh(z.im)
+  result.im = -sin(z.re) * sinh(z.im)
+
+func arccos*[T](z: Complex[T]): Complex[T] =
+  ## Returns the inverse cosine of `z`.
+  result = -im(T) * ln(z + sqrt(z*z - T(1.0)))
+
+func tan*[T](z: Complex[T]): Complex[T] =
+  ## Returns the tangent of `z`.
+  result = sin(z) / cos(z)
+
+func arctan*[T](z: Complex[T]): Complex[T] =
+  ## Returns the inverse tangent of `z`.
+  result = T(0.5)*im(T) * (ln(T(1.0) - im(T)*z) - ln(T(1.0) + im(T)*z))
+
+func cot*[T](z: Complex[T]): Complex[T] =
+  ## Returns the cotangent of `z`.
+  result = cos(z)/sin(z)
+
+func arccot*[T](z: Complex[T]): Complex[T] =
+  ## Returns the inverse cotangent of `z`.
+  result = T(0.5)*im(T) * (ln(T(1.0) - im(T)/z) - ln(T(1.0) + im(T)/z))
+
+func sec*[T](z: Complex[T]): Complex[T] =
+  ## Returns the secant of `z`.
+  result = T(1.0) / cos(z)
+
+func arcsec*[T](z: Complex[T]): Complex[T] =
+  ## Returns the inverse secant of `z`.
+  result = -im(T) * ln(im(T) * sqrt(1.0 - 1.0/(z*z)) + T(1.0)/z)
+
+func csc*[T](z: Complex[T]): Complex[T] =
+  ## Returns the cosecant of `z`.
+  result = T(1.0) / sin(z)
+
+func arccsc*[T](z: Complex[T]): Complex[T] =
+  ## Returns the inverse cosecant of `z`.
+  result = -im(T) * ln(sqrt(T(1.0) - T(1.0)/(z*z)) + im(T)/z)
+
+func sinh*[T](z: Complex[T]): Complex[T] =
+  ## Returns the hyperbolic sine of `z`.
+  result = T(0.5) * (exp(z) - exp(-z))
+
+func arcsinh*[T](z: Complex[T]): Complex[T] =
+  ## Returns the inverse hyperbolic sine of `z`.
+  result = ln(z + sqrt(z*z + 1.0))
+
+func cosh*[T](z: Complex[T]): Complex[T] =
+  ## Returns the hyperbolic cosine of `z`.
+  result = T(0.5) * (exp(z) + exp(-z))
+
+func arccosh*[T](z: Complex[T]): Complex[T] =
+  ## Returns the inverse hyperbolic cosine of `z`.
+  result = ln(z + sqrt(z*z - T(1.0)))
+
+func tanh*[T](z: Complex[T]): Complex[T] =
+  ## Returns the hyperbolic tangent of `z`.
+  result = sinh(z) / cosh(z)
+
+func arctanh*[T](z: Complex[T]): Complex[T] =
+  ## Returns the inverse hyperbolic tangent of `z`.
+  result = T(0.5) * (ln((T(1.0)+z) / (T(1.0)-z)))
+
+func coth*[T](z: Complex[T]): Complex[T] =
+  ## Returns the hyperbolic cotangent of `z`.
+  result = cosh(z) / sinh(z)
+
+func arccoth*[T](z: Complex[T]): Complex[T] =
+  ## Returns the inverse hyperbolic cotangent of `z`.
+  result = T(0.5) * (ln(T(1.0) + T(1.0)/z) - ln(T(1.0) - T(1.0)/z))
+
+func sech*[T](z: Complex[T]): Complex[T] =
+  ## Returns the hyperbolic secant of `z`.
+  result = T(2.0) / (exp(z) + exp(-z))
+
+func arcsech*[T](z: Complex[T]): Complex[T] =
+  ## Returns the inverse hyperbolic secant of `z`.
+  result = ln(1.0/z + sqrt(T(1.0)/z+T(1.0)) * sqrt(T(1.0)/z-T(1.0)))
+
+func csch*[T](z: Complex[T]): Complex[T] =
+  ## Returns the hyperbolic cosecant of `z`.
+  result = T(2.0) / (exp(z) - exp(-z))
+
+func arccsch*[T](z: Complex[T]): Complex[T] =
+  ## Returns the inverse hyperbolic cosecant of `z`.
+  result = ln(T(1.0)/z + sqrt(T(1.0)/(z*z) + T(1.0)))
+
+func phase*[T](z: Complex[T]): T =
+  ## Returns the phase (or argument) of `z`, that is the angle in polar representation.
+  ##
+  ## | `result = arctan2(z.im, z.re)`
+  arctan2(z.im, z.re)
+
+func polar*[T](z: Complex[T]): tuple[r, phi: T] =
+  ## Returns `z` in polar coordinates.
+  ##
+  ## | `result.r = abs(z)`
+  ## | `result.phi = phase(z)`
+  ##
+  ## **See also:**
+  ## * `rect func<#rect,T,T>`_ for the inverse operation
+  (r: abs(z), phi: phase(z))
+
+func rect*[T](r, phi: T): Complex[T] =
+  ## Returns the complex number with polar coordinates `r` and `phi`.
+  ##
+  ## | `result.re = r * cos(phi)`
+  ## | `result.im = r * sin(phi)`
+  ##
+  ## **See also:**
+  ## * `polar func<#polar,Complex[T]>`_ for the inverse operation
+  complex(r * cos(phi), r * sin(phi))
+
+func almostEqual*[T: SomeFloat](x, y: Complex[T]; unitsInLastPlace: Natural = 4): bool =
+  ## Checks if two complex values are almost equal, using the
+  ## [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon).
+  ##
+  ## Two complex values are considered almost equal if their real and imaginary
+  ## components are almost equal.
+  ##
+  ## `unitsInLastPlace` is the max number of
+  ## [units in the last place](https://en.wikipedia.org/wiki/Unit_in_the_last_place)
+  ## difference tolerated when comparing two numbers. The larger the value, the
+  ## more error is allowed. A `0` value means that two numbers must be exactly the
+  ## same to be considered equal.
+  ##
+  ## The machine epsilon has to be scaled to the magnitude of the values used
+  ## and multiplied by the desired precision in ULPs unless the difference is
+  ## subnormal.
+  almostEqual(x.re, y.re, unitsInLastPlace = unitsInLastPlace) and
+  almostEqual(x.im, y.im, unitsInLastPlace = unitsInLastPlace)
+
+func `$`*(z: Complex): string =
+  ## Returns `z`'s string representation as `"(re, im)"`.
+  runnableExamples:
+    doAssert $complex(1.0, 2.0) == "(1.0, 2.0)"
+
+  result = "(" & $z.re & ", " & $z.im & ")"
+
+proc formatValueAsTuple(result: var string; value: Complex; specifier: string) =
+  ## Format implementation for `Complex` representing the value as a (real, imaginary) tuple.
+  result.add "("
+  formatValue(result, value.re, specifier)
+  result.add ", "
+  formatValue(result, value.im, specifier)
+  result.add ")"
+
+proc formatValueAsComplexNumber(result: var string; value: Complex; specifier: string) =
+  ## Format implementation for `Complex` representing the value as a (RE+IMj) number
+  ## By default, the real and imaginary parts are formatted using the general ('g') format
+  let specifier = if specifier.contains({'e', 'E', 'f', 'F', 'g', 'G'}):
+      specifier.replace("j")
+    else:
+      specifier.replace('j', 'g')
+  result.add "("
+  formatValue(result, value.re, specifier)
+  if value.im >= 0 and not specifier.contains({'+', '-'}):
+    result.add "+"
+  formatValue(result, value.im, specifier)
+  result.add "j)"
+
+proc formatValue*(result: var string; value: Complex; specifier: string) =
+  ## Standard format implementation for `Complex`. It makes little
+  ## sense to call this directly, but it is required to exist
+  ## by the `&` macro.
+  ## For complex numbers, we add a specific 'j' specifier, which formats
+  ## the value as (A+Bj) like in mathematics.
+  if specifier.len == 0:
+    result.add $value
+  elif 'j' in specifier:
+    formatValueAsComplexNumber(result, value, specifier)
+  else:
+    formatValueAsTuple(result, value, specifier)
+
 {.pop.}