summary refs log tree commit diff stats
path: root/lib/pure/complex.nim
diff options
context:
space:
mode:
Diffstat (limited to 'lib/pure/complex.nim')
-rw-r--r--lib/pure/complex.nim443
1 files changed, 443 insertions, 0 deletions
diff --git a/lib/pure/complex.nim b/lib/pure/complex.nim
new file mode 100644
index 000000000..8577bf7a1
--- /dev/null
+++ b/lib/pure/complex.nim
@@ -0,0 +1,443 @@
+#
+#
+#            Nim's Runtime Library
+#        (c) Copyright 2010 Andreas Rumpf
+#
+#    See the file "copying.txt", included in this
+#    distribution, for details about the copyright.
+#
+
+
+
+## This module implements complex numbers.
+{.push checks:off, line_dir:off, stack_trace:off, debugger:off.}
+# the user does not want to trace a part
+# of the standard library!
+
+
+import
+  math
+ 
+const
+  EPS = 1.0e-7 ## Epsilon used for float comparisons.
+
+type
+  Complex* = tuple[re, im: float]
+    ## a complex number, consisting of a real and an imaginary part
+
+{.deprecated: [TComplex: Complex].}
+
+proc toComplex*(x: SomeInteger): Complex =
+  ## Convert some integer ``x`` to a complex number.
+  result.re = x
+  result.im = 0
+
+proc `==` *(x, y: Complex): bool =
+  ## Compare two complex numbers `x` and `y` for equality.
+  result = x.re == y.re and x.im == y.im
+
+proc `=~` *(x, y: Complex): bool =
+  ## Compare two complex numbers `x` and `y` approximately.
+  result = abs(x.re-y.re)<EPS and abs(x.im-y.im)<EPS
+
+proc `+` *(x, y: Complex): Complex =
+  ## Add two complex numbers.
+  result.re = x.re + y.re
+  result.im = x.im + y.im
+
+proc `+` *(x: Complex, y: float): Complex =
+  ## Add complex `x` to float `y`.
+  result.re = x.re + y
+  result.im = x.im
+
+proc `+` *(x: float, y: Complex): Complex =
+  ## Add float `x` to complex `y`.
+  result.re = x + y.re
+  result.im = y.im
+
+
+proc `-` *(z: Complex): Complex =
+  ## Unary minus for complex numbers.
+  result.re = -z.re
+  result.im = -z.im
+
+proc `-` *(x, y: Complex): Complex =
+  ## Subtract two complex numbers.
+  result.re = x.re - y.re
+  result.im = x.im - y.im
+
+proc `-` *(x: Complex, y: float): Complex =
+  ## Subtracts float `y` from complex `x`.
+  result = x + (-y)
+
+proc `-` *(x: float, y: Complex): Complex =
+  ## Subtracts complex `y` from float `x`.
+  result = x + (-y)
+
+
+proc `/` *(x, y: Complex): Complex =
+  ## Divide `x` by `y`.
+  var
+    r, den: float
+  if abs(y.re) < abs(y.im):
+    r = y.re / y.im
+    den = y.im + r * y.re
+    result.re = (x.re * r + x.im) / den
+    result.im = (x.im * r - x.re) / den
+  else:
+    r = y.im / y.re
+    den = y.re + r * y.im
+    result.re = (x.re + r * x.im) / den
+    result.im = (x.im - r * x.re) / den
+
+proc `/` *(x : Complex, y: float ): Complex =
+  ## Divide complex `x` by float `y`.
+  result.re = x.re/y
+  result.im = x.im/y
+
+proc `/` *(x : float, y: Complex ): Complex =
+  ## Divide float `x` by complex `y`.
+  var num : Complex = (x, 0.0)
+  result = num/y
+
+
+proc `*` *(x, y: Complex): Complex =
+  ## Multiply `x` with `y`.
+  result.re = x.re * y.re - x.im * y.im
+  result.im = x.im * y.re + x.re * y.im
+
+proc `*` *(x: float, y: Complex): Complex =
+  ## Multiply float `x` with complex `y`.
+  result.re = x * y.re
+  result.im = x * y.im
+
+proc `*` *(x: Complex, y: float): Complex =
+  ## Multiply complex `x` with float `y`.
+  result.re = x.re * y
+  result.im = x.im * y
+
+
+proc `+=` *(x: var Complex, y: Complex) =
+  ## Add `y` to `x`.
+  x.re += y.re
+  x.im += y.im
+
+proc `+=` *(x: var Complex, y: float) =
+  ## Add `y` to the complex number `x`.
+  x.re += y
+
+proc `-=` *(x: var Complex, y: Complex) =
+  ## Subtract `y` from `x`.
+  x.re -= y.re
+  x.im -= y.im
+
+proc `-=` *(x: var Complex, y: float) =
+  ## Subtract `y` from the complex number `x`.
+  x.re -= y
+
+proc `*=` *(x: var Complex, y: Complex) =
+  ## Multiply `y` to `x`.
+  let im = x.im * y.re + x.re * y.im
+  x.re = x.re * y.re - x.im * y.im
+  x.im = im
+
+proc `*=` *(x: var Complex, y: float) =
+  ## Multiply `y` to the complex number `x`.
+  x.re *= y
+  x.im *= y
+
+proc `/=` *(x: var Complex, y: Complex) =
+  ## Divide `x` by `y` in place.
+  x = x / y
+
+proc `/=` *(x : var Complex, y: float) =
+  ## Divide complex `x` by float `y` in place.
+  x.re /= y
+  x.im /= y
+
+
+proc abs*(z: Complex): float =
+  ## Return the distance from (0,0) to `z`.
+
+  # optimized by checking special cases (sqrt is expensive)
+  var x, y, temp: float
+
+  x = abs(z.re)
+  y = abs(z.im)
+  if x == 0.0:
+    result = y
+  elif y == 0.0:
+    result = x
+  elif x > y:
+    temp = y / x
+    result = x * sqrt(1.0 + temp * temp)
+  else:
+    temp = x / y
+    result = y * sqrt(1.0 + temp * temp)
+
+
+proc conjugate*(z: Complex): Complex =
+  ## Conjugate of complex number `z`.
+  result.re = z.re
+  result.im = -z.im
+
+
+proc sqrt*(z: Complex): Complex =
+  ## Square root for a complex number `z`.
+  var x, y, w, r: float
+
+  if z.re == 0.0 and z.im == 0.0:
+    result = z
+  else:
+    x = abs(z.re)
+    y = abs(z.im)
+    if x >= y:
+      r = y / x
+      w = sqrt(x) * sqrt(0.5 * (1.0 + sqrt(1.0 + r * r)))
+    else:
+      r = x / y
+      w = sqrt(y) * sqrt(0.5 * (r + sqrt(1.0 + r * r)))
+    if z.re >= 0.0:
+      result.re = w
+      result.im = z.im / (w * 2.0)
+    else:
+      if z.im >= 0.0: result.im = w
+      else:           result.im = -w
+      result.re = z.im / (result.im + result.im)
+
+
+proc exp*(z: Complex): Complex =
+  ## e raised to the power `z`.
+  var rho   = exp(z.re)
+  var theta = z.im
+  result.re = rho*cos(theta)
+  result.im = rho*sin(theta)
+
+
+proc ln*(z: Complex): Complex =
+  ## Returns the natural log of `z`.
+  result.re = ln(abs(z))
+  result.im = arctan2(z.im,z.re)
+
+proc log10*(z: Complex): Complex =
+  ## Returns the log base 10 of `z`.
+  result = ln(z)/ln(10.0)
+
+proc log2*(z: Complex): Complex =
+  ## Returns the log base 2 of `z`.
+  result = ln(z)/ln(2.0)
+
+
+proc pow*(x, y: Complex): Complex =
+  ## `x` raised to the power `y`.
+  if x.re == 0.0  and  x.im == 0.0:
+    if y.re == 0.0  and  y.im == 0.0:
+      result.re = 1.0
+      result.im = 0.0
+    else:
+      result.re = 0.0
+      result.im = 0.0
+  elif y.re == 1.0  and  y.im == 0.0:
+    result = x
+  elif y.re == -1.0  and  y.im == 0.0:
+    result = 1.0/x
+  else:
+    var rho   = sqrt(x.re*x.re + x.im*x.im)
+    var theta = arctan2(x.im,x.re)
+    var s     = pow(rho,y.re) * exp(-y.im*theta)
+    var r     = y.re*theta + y.im*ln(rho)
+    result.re = s*cos(r)
+    result.im = s*sin(r)
+           
+
+proc sin*(z: Complex): Complex =
+  ## Returns the sine of `z`.
+  result.re = sin(z.re)*cosh(z.im)
+  result.im = cos(z.re)*sinh(z.im)
+
+proc arcsin*(z: Complex): Complex =
+  ## Returns the inverse sine of `z`.
+  var i: Complex = (0.0,1.0)
+  result = -i*ln(i*z + sqrt(1.0-z*z))
+
+proc cos*(z: Complex): Complex =
+  ## Returns the cosine of `z`.
+  result.re = cos(z.re)*cosh(z.im)
+  result.im = -sin(z.re)*sinh(z.im)
+
+proc arccos*(z: Complex): Complex =
+  ## Returns the inverse cosine of `z`.
+  var i: Complex = (0.0,1.0)
+  result = -i*ln(z + sqrt(z*z-1.0))
+
+proc tan*(z: Complex): Complex =
+  ## Returns the tangent of `z`.
+  result = sin(z)/cos(z)
+
+proc arctan*(z: Complex): Complex =
+  ## Returns the inverse tangent of `z`.
+  var i: Complex = (0.0,1.0)
+  result = 0.5*i*(ln(1-i*z)-ln(1+i*z))
+
+proc cot*(z: Complex): Complex =
+  ## Returns the cotangent of `z`.
+  result = cos(z)/sin(z)
+
+proc arccot*(z: Complex): Complex =
+  ## Returns the inverse cotangent of `z`.
+  var i: Complex = (0.0,1.0)
+  result = 0.5*i*(ln(1-i/z)-ln(1+i/z))
+
+proc sec*(z: Complex): Complex =
+  ## Returns the secant of `z`.
+  result = 1.0/cos(z)
+
+proc arcsec*(z: Complex): Complex =
+  ## Returns the inverse secant of `z`.
+  var i: Complex = (0.0,1.0)
+  result = -i*ln(i*sqrt(1-1/(z*z))+1/z)
+
+proc csc*(z: Complex): Complex =
+  ## Returns the cosecant of `z`.
+  result = 1.0/sin(z)
+
+proc arccsc*(z: Complex): Complex =
+  ## Returns the inverse cosecant of `z`.
+  var i: Complex = (0.0,1.0)
+  result = -i*ln(sqrt(1-1/(z*z))+i/z)
+
+
+proc sinh*(z: Complex): Complex =
+  ## Returns the hyperbolic sine of `z`.
+  result = 0.5*(exp(z)-exp(-z))
+
+proc arcsinh*(z: Complex): Complex =
+  ## Returns the inverse hyperbolic sine of `z`.
+  result = ln(z+sqrt(z*z+1))
+
+proc cosh*(z: Complex): Complex =
+  ## Returns the hyperbolic cosine of `z`.
+  result = 0.5*(exp(z)+exp(-z))
+
+proc arccosh*(z: Complex): Complex =
+  ## Returns the inverse hyperbolic cosine of `z`.
+  result = ln(z+sqrt(z*z-1))
+
+proc tanh*(z: Complex): Complex =
+  ## Returns the hyperbolic tangent of `z`.
+  result = sinh(z)/cosh(z)
+
+proc arctanh*(z: Complex): Complex =
+  ## Returns the inverse hyperbolic tangent of `z`.
+  result = 0.5*(ln((1+z)/(1-z)))
+
+proc sech*(z: Complex): Complex =
+  ## Returns the hyperbolic secant of `z`.
+  result = 2/(exp(z)+exp(-z))
+
+proc arcsech*(z: Complex): Complex =
+  ## Returns the inverse hyperbolic secant of `z`.
+  result = ln(1/z+sqrt(1/z+1)*sqrt(1/z-1))
+
+proc csch*(z: Complex): Complex =
+  ## Returns the hyperbolic cosecant of `z`.
+  result = 2/(exp(z)-exp(-z))
+
+proc arccsch*(z: Complex): Complex =
+  ## Returns the inverse hyperbolic cosecant of `z`.
+  result = ln(1/z+sqrt(1/(z*z)+1))
+
+proc coth*(z: Complex): Complex =
+  ## Returns the hyperbolic cotangent of `z`.
+  result = cosh(z)/sinh(z)
+
+proc arccoth*(z: Complex): Complex =
+  ## Returns the inverse hyperbolic cotangent of `z`.
+  result = 0.5*(ln(1+1/z)-ln(1-1/z))
+
+proc phase*(z: Complex): float =
+  ## Returns the phase of `z`.
+  arctan2(z.im, z.re)
+
+proc polar*(z: Complex): tuple[r, phi: float] =
+  ## Returns `z` in polar coordinates.
+  result.r = abs(z)
+  result.phi = phase(z)
+
+proc rect*(r: float, phi: float): Complex =
+  ## Returns the complex number with polar coordinates `r` and `phi`.
+  result.re = r * cos(phi)
+  result.im = r * sin(phi)
+
+
+proc `$`*(z: Complex): string =
+  ## Returns `z`'s string representation as ``"(re, im)"``.
+  result = "(" & $z.re & ", " & $z.im & ")"
+
+{.pop.}
+
+
+when isMainModule:
+  var z = (0.0, 0.0)
+  var oo = (1.0,1.0)
+  var a = (1.0, 2.0)
+  var b = (-1.0, -2.0)
+  var m1 = (-1.0, 0.0)
+  var i = (0.0,1.0)
+  var one = (1.0,0.0)
+  var tt = (10.0, 20.0)
+  var ipi = (0.0, -PI)
+ 
+  assert( a == a )
+  assert( (a-a) == z )
+  assert( (a+b) == z )
+  assert( (a/b) == m1 )
+  assert( (1.0/a) == (0.2, -0.4) )
+  assert( (a*b) == (3.0, -4.0) )
+  assert( 10.0*a == tt )
+  assert( a*10.0 == tt )
+  assert( tt/10.0 == a )
+  assert( oo+(-1.0) == i )
+  assert( (-1.0)+oo == i )
+  assert( abs(oo) == sqrt(2.0) )
+  assert( conjugate(a) == (1.0, -2.0) )
+  assert( sqrt(m1) == i )
+  assert( exp(ipi) =~ m1 )
+ 
+  assert( pow(a,b) =~ (-3.72999124927876, -1.68815826725068) )
+  assert( pow(z,a) =~ (0.0, 0.0) )
+  assert( pow(z,z) =~ (1.0, 0.0) )
+  assert( pow(a,one) =~ a )
+  assert( pow(a,m1) =~ (0.2, -0.4) )
+
+  assert( ln(a) =~ (0.804718956217050, 1.107148717794090) )
+  assert( log10(a) =~ (0.349485002168009, 0.480828578784234) )
+  assert( log2(a) =~ (1.16096404744368, 1.59727796468811) )
+
+  assert( sin(a) =~ (3.16577851321617, 1.95960104142161) )
+  assert( cos(a) =~ (2.03272300701967, -3.05189779915180) )
+  assert( tan(a) =~ (0.0338128260798967, 1.0147936161466335) )
+  assert( cot(a) =~ 1.0/tan(a) )
+  assert( sec(a) =~ 1.0/cos(a) )
+  assert( csc(a) =~ 1.0/sin(a) )
+  assert( arcsin(a) =~ (0.427078586392476, 1.528570919480998) )
+  assert( arccos(a) =~ (1.14371774040242, -1.52857091948100) )
+  assert( arctan(a) =~ (1.338972522294494, 0.402359478108525) )
+
+  assert( cosh(a) =~ (-0.642148124715520, 1.068607421382778) )
+  assert( sinh(a) =~ (-0.489056259041294, 1.403119250622040) )
+  assert( tanh(a) =~ (1.1667362572409199,-0.243458201185725) )
+  assert( sech(a) =~ 1/cosh(a) )
+  assert( csch(a) =~ 1/sinh(a) )
+  assert( coth(a) =~ 1/tanh(a) )
+  assert( arccosh(a) =~ (1.528570919480998, 1.14371774040242) )
+  assert( arcsinh(a) =~ (1.469351744368185, 1.06344002357775) )
+  assert( arctanh(a) =~ (0.173286795139986, 1.17809724509617) )
+  assert( arcsech(a) =~ arccosh(1/a) )
+  assert( arccsch(a) =~ arcsinh(1/a) )
+  assert( arccoth(a) =~ arctanh(1/a) )
+
+  assert( phase(a) == 1.1071487177940904 )
+  var t = polar(a)
+  assert( rect(t.r, t.phi) =~ a )
+  assert( rect(1.0, 2.0) =~ (-0.4161468365471424, 0.9092974268256817) )