diff options
Diffstat (limited to 'lib/pure/complex.nim')
-rw-r--r-- | lib/pure/complex.nim | 443 |
1 files changed, 443 insertions, 0 deletions
diff --git a/lib/pure/complex.nim b/lib/pure/complex.nim new file mode 100644 index 000000000..8577bf7a1 --- /dev/null +++ b/lib/pure/complex.nim @@ -0,0 +1,443 @@ +# +# +# Nim's Runtime Library +# (c) Copyright 2010 Andreas Rumpf +# +# See the file "copying.txt", included in this +# distribution, for details about the copyright. +# + + + +## This module implements complex numbers. +{.push checks:off, line_dir:off, stack_trace:off, debugger:off.} +# the user does not want to trace a part +# of the standard library! + + +import + math + +const + EPS = 1.0e-7 ## Epsilon used for float comparisons. + +type + Complex* = tuple[re, im: float] + ## a complex number, consisting of a real and an imaginary part + +{.deprecated: [TComplex: Complex].} + +proc toComplex*(x: SomeInteger): Complex = + ## Convert some integer ``x`` to a complex number. + result.re = x + result.im = 0 + +proc `==` *(x, y: Complex): bool = + ## Compare two complex numbers `x` and `y` for equality. + result = x.re == y.re and x.im == y.im + +proc `=~` *(x, y: Complex): bool = + ## Compare two complex numbers `x` and `y` approximately. + result = abs(x.re-y.re)<EPS and abs(x.im-y.im)<EPS + +proc `+` *(x, y: Complex): Complex = + ## Add two complex numbers. + result.re = x.re + y.re + result.im = x.im + y.im + +proc `+` *(x: Complex, y: float): Complex = + ## Add complex `x` to float `y`. + result.re = x.re + y + result.im = x.im + +proc `+` *(x: float, y: Complex): Complex = + ## Add float `x` to complex `y`. + result.re = x + y.re + result.im = y.im + + +proc `-` *(z: Complex): Complex = + ## Unary minus for complex numbers. + result.re = -z.re + result.im = -z.im + +proc `-` *(x, y: Complex): Complex = + ## Subtract two complex numbers. + result.re = x.re - y.re + result.im = x.im - y.im + +proc `-` *(x: Complex, y: float): Complex = + ## Subtracts float `y` from complex `x`. + result = x + (-y) + +proc `-` *(x: float, y: Complex): Complex = + ## Subtracts complex `y` from float `x`. + result = x + (-y) + + +proc `/` *(x, y: Complex): Complex = + ## Divide `x` by `y`. + var + r, den: float + if abs(y.re) < abs(y.im): + r = y.re / y.im + den = y.im + r * y.re + result.re = (x.re * r + x.im) / den + result.im = (x.im * r - x.re) / den + else: + r = y.im / y.re + den = y.re + r * y.im + result.re = (x.re + r * x.im) / den + result.im = (x.im - r * x.re) / den + +proc `/` *(x : Complex, y: float ): Complex = + ## Divide complex `x` by float `y`. + result.re = x.re/y + result.im = x.im/y + +proc `/` *(x : float, y: Complex ): Complex = + ## Divide float `x` by complex `y`. + var num : Complex = (x, 0.0) + result = num/y + + +proc `*` *(x, y: Complex): Complex = + ## Multiply `x` with `y`. + result.re = x.re * y.re - x.im * y.im + result.im = x.im * y.re + x.re * y.im + +proc `*` *(x: float, y: Complex): Complex = + ## Multiply float `x` with complex `y`. + result.re = x * y.re + result.im = x * y.im + +proc `*` *(x: Complex, y: float): Complex = + ## Multiply complex `x` with float `y`. + result.re = x.re * y + result.im = x.im * y + + +proc `+=` *(x: var Complex, y: Complex) = + ## Add `y` to `x`. + x.re += y.re + x.im += y.im + +proc `+=` *(x: var Complex, y: float) = + ## Add `y` to the complex number `x`. + x.re += y + +proc `-=` *(x: var Complex, y: Complex) = + ## Subtract `y` from `x`. + x.re -= y.re + x.im -= y.im + +proc `-=` *(x: var Complex, y: float) = + ## Subtract `y` from the complex number `x`. + x.re -= y + +proc `*=` *(x: var Complex, y: Complex) = + ## Multiply `y` to `x`. + let im = x.im * y.re + x.re * y.im + x.re = x.re * y.re - x.im * y.im + x.im = im + +proc `*=` *(x: var Complex, y: float) = + ## Multiply `y` to the complex number `x`. + x.re *= y + x.im *= y + +proc `/=` *(x: var Complex, y: Complex) = + ## Divide `x` by `y` in place. + x = x / y + +proc `/=` *(x : var Complex, y: float) = + ## Divide complex `x` by float `y` in place. + x.re /= y + x.im /= y + + +proc abs*(z: Complex): float = + ## Return the distance from (0,0) to `z`. + + # optimized by checking special cases (sqrt is expensive) + var x, y, temp: float + + x = abs(z.re) + y = abs(z.im) + if x == 0.0: + result = y + elif y == 0.0: + result = x + elif x > y: + temp = y / x + result = x * sqrt(1.0 + temp * temp) + else: + temp = x / y + result = y * sqrt(1.0 + temp * temp) + + +proc conjugate*(z: Complex): Complex = + ## Conjugate of complex number `z`. + result.re = z.re + result.im = -z.im + + +proc sqrt*(z: Complex): Complex = + ## Square root for a complex number `z`. + var x, y, w, r: float + + if z.re == 0.0 and z.im == 0.0: + result = z + else: + x = abs(z.re) + y = abs(z.im) + if x >= y: + r = y / x + w = sqrt(x) * sqrt(0.5 * (1.0 + sqrt(1.0 + r * r))) + else: + r = x / y + w = sqrt(y) * sqrt(0.5 * (r + sqrt(1.0 + r * r))) + if z.re >= 0.0: + result.re = w + result.im = z.im / (w * 2.0) + else: + if z.im >= 0.0: result.im = w + else: result.im = -w + result.re = z.im / (result.im + result.im) + + +proc exp*(z: Complex): Complex = + ## e raised to the power `z`. + var rho = exp(z.re) + var theta = z.im + result.re = rho*cos(theta) + result.im = rho*sin(theta) + + +proc ln*(z: Complex): Complex = + ## Returns the natural log of `z`. + result.re = ln(abs(z)) + result.im = arctan2(z.im,z.re) + +proc log10*(z: Complex): Complex = + ## Returns the log base 10 of `z`. + result = ln(z)/ln(10.0) + +proc log2*(z: Complex): Complex = + ## Returns the log base 2 of `z`. + result = ln(z)/ln(2.0) + + +proc pow*(x, y: Complex): Complex = + ## `x` raised to the power `y`. + if x.re == 0.0 and x.im == 0.0: + if y.re == 0.0 and y.im == 0.0: + result.re = 1.0 + result.im = 0.0 + else: + result.re = 0.0 + result.im = 0.0 + elif y.re == 1.0 and y.im == 0.0: + result = x + elif y.re == -1.0 and y.im == 0.0: + result = 1.0/x + else: + var rho = sqrt(x.re*x.re + x.im*x.im) + var theta = arctan2(x.im,x.re) + var s = pow(rho,y.re) * exp(-y.im*theta) + var r = y.re*theta + y.im*ln(rho) + result.re = s*cos(r) + result.im = s*sin(r) + + +proc sin*(z: Complex): Complex = + ## Returns the sine of `z`. + result.re = sin(z.re)*cosh(z.im) + result.im = cos(z.re)*sinh(z.im) + +proc arcsin*(z: Complex): Complex = + ## Returns the inverse sine of `z`. + var i: Complex = (0.0,1.0) + result = -i*ln(i*z + sqrt(1.0-z*z)) + +proc cos*(z: Complex): Complex = + ## Returns the cosine of `z`. + result.re = cos(z.re)*cosh(z.im) + result.im = -sin(z.re)*sinh(z.im) + +proc arccos*(z: Complex): Complex = + ## Returns the inverse cosine of `z`. + var i: Complex = (0.0,1.0) + result = -i*ln(z + sqrt(z*z-1.0)) + +proc tan*(z: Complex): Complex = + ## Returns the tangent of `z`. + result = sin(z)/cos(z) + +proc arctan*(z: Complex): Complex = + ## Returns the inverse tangent of `z`. + var i: Complex = (0.0,1.0) + result = 0.5*i*(ln(1-i*z)-ln(1+i*z)) + +proc cot*(z: Complex): Complex = + ## Returns the cotangent of `z`. + result = cos(z)/sin(z) + +proc arccot*(z: Complex): Complex = + ## Returns the inverse cotangent of `z`. + var i: Complex = (0.0,1.0) + result = 0.5*i*(ln(1-i/z)-ln(1+i/z)) + +proc sec*(z: Complex): Complex = + ## Returns the secant of `z`. + result = 1.0/cos(z) + +proc arcsec*(z: Complex): Complex = + ## Returns the inverse secant of `z`. + var i: Complex = (0.0,1.0) + result = -i*ln(i*sqrt(1-1/(z*z))+1/z) + +proc csc*(z: Complex): Complex = + ## Returns the cosecant of `z`. + result = 1.0/sin(z) + +proc arccsc*(z: Complex): Complex = + ## Returns the inverse cosecant of `z`. + var i: Complex = (0.0,1.0) + result = -i*ln(sqrt(1-1/(z*z))+i/z) + + +proc sinh*(z: Complex): Complex = + ## Returns the hyperbolic sine of `z`. + result = 0.5*(exp(z)-exp(-z)) + +proc arcsinh*(z: Complex): Complex = + ## Returns the inverse hyperbolic sine of `z`. + result = ln(z+sqrt(z*z+1)) + +proc cosh*(z: Complex): Complex = + ## Returns the hyperbolic cosine of `z`. + result = 0.5*(exp(z)+exp(-z)) + +proc arccosh*(z: Complex): Complex = + ## Returns the inverse hyperbolic cosine of `z`. + result = ln(z+sqrt(z*z-1)) + +proc tanh*(z: Complex): Complex = + ## Returns the hyperbolic tangent of `z`. + result = sinh(z)/cosh(z) + +proc arctanh*(z: Complex): Complex = + ## Returns the inverse hyperbolic tangent of `z`. + result = 0.5*(ln((1+z)/(1-z))) + +proc sech*(z: Complex): Complex = + ## Returns the hyperbolic secant of `z`. + result = 2/(exp(z)+exp(-z)) + +proc arcsech*(z: Complex): Complex = + ## Returns the inverse hyperbolic secant of `z`. + result = ln(1/z+sqrt(1/z+1)*sqrt(1/z-1)) + +proc csch*(z: Complex): Complex = + ## Returns the hyperbolic cosecant of `z`. + result = 2/(exp(z)-exp(-z)) + +proc arccsch*(z: Complex): Complex = + ## Returns the inverse hyperbolic cosecant of `z`. + result = ln(1/z+sqrt(1/(z*z)+1)) + +proc coth*(z: Complex): Complex = + ## Returns the hyperbolic cotangent of `z`. + result = cosh(z)/sinh(z) + +proc arccoth*(z: Complex): Complex = + ## Returns the inverse hyperbolic cotangent of `z`. + result = 0.5*(ln(1+1/z)-ln(1-1/z)) + +proc phase*(z: Complex): float = + ## Returns the phase of `z`. + arctan2(z.im, z.re) + +proc polar*(z: Complex): tuple[r, phi: float] = + ## Returns `z` in polar coordinates. + result.r = abs(z) + result.phi = phase(z) + +proc rect*(r: float, phi: float): Complex = + ## Returns the complex number with polar coordinates `r` and `phi`. + result.re = r * cos(phi) + result.im = r * sin(phi) + + +proc `$`*(z: Complex): string = + ## Returns `z`'s string representation as ``"(re, im)"``. + result = "(" & $z.re & ", " & $z.im & ")" + +{.pop.} + + +when isMainModule: + var z = (0.0, 0.0) + var oo = (1.0,1.0) + var a = (1.0, 2.0) + var b = (-1.0, -2.0) + var m1 = (-1.0, 0.0) + var i = (0.0,1.0) + var one = (1.0,0.0) + var tt = (10.0, 20.0) + var ipi = (0.0, -PI) + + assert( a == a ) + assert( (a-a) == z ) + assert( (a+b) == z ) + assert( (a/b) == m1 ) + assert( (1.0/a) == (0.2, -0.4) ) + assert( (a*b) == (3.0, -4.0) ) + assert( 10.0*a == tt ) + assert( a*10.0 == tt ) + assert( tt/10.0 == a ) + assert( oo+(-1.0) == i ) + assert( (-1.0)+oo == i ) + assert( abs(oo) == sqrt(2.0) ) + assert( conjugate(a) == (1.0, -2.0) ) + assert( sqrt(m1) == i ) + assert( exp(ipi) =~ m1 ) + + assert( pow(a,b) =~ (-3.72999124927876, -1.68815826725068) ) + assert( pow(z,a) =~ (0.0, 0.0) ) + assert( pow(z,z) =~ (1.0, 0.0) ) + assert( pow(a,one) =~ a ) + assert( pow(a,m1) =~ (0.2, -0.4) ) + + assert( ln(a) =~ (0.804718956217050, 1.107148717794090) ) + assert( log10(a) =~ (0.349485002168009, 0.480828578784234) ) + assert( log2(a) =~ (1.16096404744368, 1.59727796468811) ) + + assert( sin(a) =~ (3.16577851321617, 1.95960104142161) ) + assert( cos(a) =~ (2.03272300701967, -3.05189779915180) ) + assert( tan(a) =~ (0.0338128260798967, 1.0147936161466335) ) + assert( cot(a) =~ 1.0/tan(a) ) + assert( sec(a) =~ 1.0/cos(a) ) + assert( csc(a) =~ 1.0/sin(a) ) + assert( arcsin(a) =~ (0.427078586392476, 1.528570919480998) ) + assert( arccos(a) =~ (1.14371774040242, -1.52857091948100) ) + assert( arctan(a) =~ (1.338972522294494, 0.402359478108525) ) + + assert( cosh(a) =~ (-0.642148124715520, 1.068607421382778) ) + assert( sinh(a) =~ (-0.489056259041294, 1.403119250622040) ) + assert( tanh(a) =~ (1.1667362572409199,-0.243458201185725) ) + assert( sech(a) =~ 1/cosh(a) ) + assert( csch(a) =~ 1/sinh(a) ) + assert( coth(a) =~ 1/tanh(a) ) + assert( arccosh(a) =~ (1.528570919480998, 1.14371774040242) ) + assert( arcsinh(a) =~ (1.469351744368185, 1.06344002357775) ) + assert( arctanh(a) =~ (0.173286795139986, 1.17809724509617) ) + assert( arcsech(a) =~ arccosh(1/a) ) + assert( arccsch(a) =~ arcsinh(1/a) ) + assert( arccoth(a) =~ arctanh(1/a) ) + + assert( phase(a) == 1.1071487177940904 ) + var t = polar(a) + assert( rect(t.r, t.phi) =~ a ) + assert( rect(1.0, 2.0) =~ (-0.4161468365471424, 0.9092974268256817) ) |