summary refs log tree commit diff stats
path: root/lib/pure/complex.nim
diff options
context:
space:
mode:
Diffstat (limited to 'lib/pure/complex.nim')
-rw-r--r--lib/pure/complex.nim161
1 files changed, 129 insertions, 32 deletions
diff --git a/lib/pure/complex.nim b/lib/pure/complex.nim
index a8709e098..8577bf7a1 100644
--- a/lib/pure/complex.nim
+++ b/lib/pure/complex.nim
@@ -19,10 +19,7 @@ import
   math
  
 const
-  EPS = 5.0e-6 ## Epsilon used for float comparisons (should be smaller
-               ## if float is really float64, but w/ the current version
-               ## it seems to be float32?)
-
+  EPS = 1.0e-7 ## Epsilon used for float comparisons.
 
 type
   Complex* = tuple[re, im: float]
@@ -30,6 +27,11 @@ type
 
 {.deprecated: [TComplex: Complex].}
 
+proc toComplex*(x: SomeInteger): Complex =
+  ## Convert some integer ``x`` to a complex number.
+  result.re = x
+  result.im = 0
+
 proc `==` *(x, y: Complex): bool =
   ## Compare two complex numbers `x` and `y` for equality.
   result = x.re == y.re and x.im == y.im
@@ -174,6 +176,12 @@ proc abs*(z: Complex): float =
     result = y * sqrt(1.0 + temp * temp)
 
 
+proc conjugate*(z: Complex): Complex =
+  ## Conjugate of complex number `z`.
+  result.re = z.re
+  result.im = -z.im
+
+
 proc sqrt*(z: Complex): Complex =
   ## Square root for a complex number `z`.
   var x, y, w, r: float
@@ -266,27 +274,101 @@ proc tan*(z: Complex): Complex =
   ## Returns the tangent of `z`.
   result = sin(z)/cos(z)
 
+proc arctan*(z: Complex): Complex =
+  ## Returns the inverse tangent of `z`.
+  var i: Complex = (0.0,1.0)
+  result = 0.5*i*(ln(1-i*z)-ln(1+i*z))
+
 proc cot*(z: Complex): Complex =
   ## Returns the cotangent of `z`.
   result = cos(z)/sin(z)
 
+proc arccot*(z: Complex): Complex =
+  ## Returns the inverse cotangent of `z`.
+  var i: Complex = (0.0,1.0)
+  result = 0.5*i*(ln(1-i/z)-ln(1+i/z))
+
 proc sec*(z: Complex): Complex =
   ## Returns the secant of `z`.
   result = 1.0/cos(z)
 
+proc arcsec*(z: Complex): Complex =
+  ## Returns the inverse secant of `z`.
+  var i: Complex = (0.0,1.0)
+  result = -i*ln(i*sqrt(1-1/(z*z))+1/z)
+
 proc csc*(z: Complex): Complex =
   ## Returns the cosecant of `z`.
   result = 1.0/sin(z)
 
+proc arccsc*(z: Complex): Complex =
+  ## Returns the inverse cosecant of `z`.
+  var i: Complex = (0.0,1.0)
+  result = -i*ln(sqrt(1-1/(z*z))+i/z)
+
 
 proc sinh*(z: Complex): Complex =
   ## Returns the hyperbolic sine of `z`.
   result = 0.5*(exp(z)-exp(-z))
 
+proc arcsinh*(z: Complex): Complex =
+  ## Returns the inverse hyperbolic sine of `z`.
+  result = ln(z+sqrt(z*z+1))
+
 proc cosh*(z: Complex): Complex =
   ## Returns the hyperbolic cosine of `z`.
   result = 0.5*(exp(z)+exp(-z))
 
+proc arccosh*(z: Complex): Complex =
+  ## Returns the inverse hyperbolic cosine of `z`.
+  result = ln(z+sqrt(z*z-1))
+
+proc tanh*(z: Complex): Complex =
+  ## Returns the hyperbolic tangent of `z`.
+  result = sinh(z)/cosh(z)
+
+proc arctanh*(z: Complex): Complex =
+  ## Returns the inverse hyperbolic tangent of `z`.
+  result = 0.5*(ln((1+z)/(1-z)))
+
+proc sech*(z: Complex): Complex =
+  ## Returns the hyperbolic secant of `z`.
+  result = 2/(exp(z)+exp(-z))
+
+proc arcsech*(z: Complex): Complex =
+  ## Returns the inverse hyperbolic secant of `z`.
+  result = ln(1/z+sqrt(1/z+1)*sqrt(1/z-1))
+
+proc csch*(z: Complex): Complex =
+  ## Returns the hyperbolic cosecant of `z`.
+  result = 2/(exp(z)-exp(-z))
+
+proc arccsch*(z: Complex): Complex =
+  ## Returns the inverse hyperbolic cosecant of `z`.
+  result = ln(1/z+sqrt(1/(z*z)+1))
+
+proc coth*(z: Complex): Complex =
+  ## Returns the hyperbolic cotangent of `z`.
+  result = cosh(z)/sinh(z)
+
+proc arccoth*(z: Complex): Complex =
+  ## Returns the inverse hyperbolic cotangent of `z`.
+  result = 0.5*(ln(1+1/z)-ln(1-1/z))
+
+proc phase*(z: Complex): float =
+  ## Returns the phase of `z`.
+  arctan2(z.im, z.re)
+
+proc polar*(z: Complex): tuple[r, phi: float] =
+  ## Returns `z` in polar coordinates.
+  result.r = abs(z)
+  result.phi = phase(z)
+
+proc rect*(r: float, phi: float): Complex =
+  ## Returns the complex number with polar coordinates `r` and `phi`.
+  result.re = r * cos(phi)
+  result.im = r * sin(phi)
+
 
 proc `$`*(z: Complex): string =
   ## Returns `z`'s string representation as ``"(re, im)"``.
@@ -306,41 +388,56 @@ when isMainModule:
   var tt = (10.0, 20.0)
   var ipi = (0.0, -PI)
  
-  assert( a         == a )
-  assert( (a-a)     == z )
-  assert( (a+b)     == z )
-  assert( (a/b)     == m1 )
-  assert( (1.0/a)   == (0.2, -0.4) )
-  assert( (a*b)     == (3.0, -4.0) )
-  assert( 10.0*a    == tt )
-  assert( a*10.0    == tt )
-  assert( tt/10.0   == a )
+  assert( a == a )
+  assert( (a-a) == z )
+  assert( (a+b) == z )
+  assert( (a/b) == m1 )
+  assert( (1.0/a) == (0.2, -0.4) )
+  assert( (a*b) == (3.0, -4.0) )
+  assert( 10.0*a == tt )
+  assert( a*10.0 == tt )
+  assert( tt/10.0 == a )
   assert( oo+(-1.0) == i )
   assert( (-1.0)+oo == i )
-  assert( abs(oo)   == sqrt(2.0) )
-  assert( sqrt(m1)  == i )
-  assert( exp(ipi)  =~ m1 )
+  assert( abs(oo) == sqrt(2.0) )
+  assert( conjugate(a) == (1.0, -2.0) )
+  assert( sqrt(m1) == i )
+  assert( exp(ipi) =~ m1 )
  
-  assert( pow(a,b)   =~ (-3.72999124927876, -1.68815826725068) )
-  assert( pow(z,a)   =~ (0.0, 0.0) )
-  assert( pow(z,z)   =~ (1.0, 0.0) )
+  assert( pow(a,b) =~ (-3.72999124927876, -1.68815826725068) )
+  assert( pow(z,a) =~ (0.0, 0.0) )
+  assert( pow(z,z) =~ (1.0, 0.0) )
   assert( pow(a,one) =~ a )
-  assert( pow(a,m1)  =~ (0.2, -0.4) )
+  assert( pow(a,m1) =~ (0.2, -0.4) )
 
-  assert( ln(a)    =~ (0.804718956217050, 1.107148717794090) )
+  assert( ln(a) =~ (0.804718956217050, 1.107148717794090) )
   assert( log10(a) =~ (0.349485002168009, 0.480828578784234) )
-  assert( log2(a)  =~ (1.16096404744368, 1.59727796468811) )
-
-  assert( sin(a)    =~ (3.16577851321617, 1.95960104142161) )
-  assert( cos(a)    =~ (2.03272300701967, -3.05189779915180) )
-  assert( tan(a)    =~ (0.0338128260798967, 1.0147936161466335) )
-  assert( cot(a)    =~ 1.0/tan(a) )
-  assert( sec(a)    =~ 1.0/cos(a) )
-  assert( csc(a)    =~ 1.0/sin(a) )
+  assert( log2(a) =~ (1.16096404744368, 1.59727796468811) )
+
+  assert( sin(a) =~ (3.16577851321617, 1.95960104142161) )
+  assert( cos(a) =~ (2.03272300701967, -3.05189779915180) )
+  assert( tan(a) =~ (0.0338128260798967, 1.0147936161466335) )
+  assert( cot(a) =~ 1.0/tan(a) )
+  assert( sec(a) =~ 1.0/cos(a) )
+  assert( csc(a) =~ 1.0/sin(a) )
   assert( arcsin(a) =~ (0.427078586392476, 1.528570919480998) )
   assert( arccos(a) =~ (1.14371774040242, -1.52857091948100) )
+  assert( arctan(a) =~ (1.338972522294494, 0.402359478108525) )
 
-  assert( cosh(a) =~ (-0.642148124715520, 1.068607421382778) ) 
+  assert( cosh(a) =~ (-0.642148124715520, 1.068607421382778) )
   assert( sinh(a) =~ (-0.489056259041294, 1.403119250622040) )
-
-
+  assert( tanh(a) =~ (1.1667362572409199,-0.243458201185725) )
+  assert( sech(a) =~ 1/cosh(a) )
+  assert( csch(a) =~ 1/sinh(a) )
+  assert( coth(a) =~ 1/tanh(a) )
+  assert( arccosh(a) =~ (1.528570919480998, 1.14371774040242) )
+  assert( arcsinh(a) =~ (1.469351744368185, 1.06344002357775) )
+  assert( arctanh(a) =~ (0.173286795139986, 1.17809724509617) )
+  assert( arcsech(a) =~ arccosh(1/a) )
+  assert( arccsch(a) =~ arcsinh(1/a) )
+  assert( arccoth(a) =~ arctanh(1/a) )
+
+  assert( phase(a) == 1.1071487177940904 )
+  var t = polar(a)
+  assert( rect(t.r, t.phi) =~ a )
+  assert( rect(1.0, 2.0) =~ (-0.4161468365471424, 0.9092974268256817) )