diff options
Diffstat (limited to 'lib/pure/complex.nim')
-rw-r--r-- | lib/pure/complex.nim | 21 |
1 files changed, 18 insertions, 3 deletions
diff --git a/lib/pure/complex.nim b/lib/pure/complex.nim index 8234db410..b48811eae 100644 --- a/lib/pure/complex.nim +++ b/lib/pure/complex.nim @@ -15,9 +15,6 @@ runnableExamples: from std/math import almostEqual, sqrt - func almostEqual(a, b: Complex): bool = - almostEqual(a.re, b.re) and almostEqual(a.im, b.im) - let z1 = complex(1.0, 2.0) z2 = complex(3.0, -4.0) @@ -412,6 +409,24 @@ func rect*[T](r, phi: T): Complex[T] = ## * `polar func<#polar,Complex[T]>`_ for the inverse operation complex(r * cos(phi), r * sin(phi)) +func almostEqual*[T: SomeFloat](x, y: Complex[T]; unitsInLastPlace: Natural = 4): bool = + ## Checks if two complex values are almost equal, using the + ## [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon). + ## + ## Two complex values are considered almost equal if their real and imaginary + ## components are almost equal. + ## + ## `unitsInLastPlace` is the max number of + ## [units in the last place](https://en.wikipedia.org/wiki/Unit_in_the_last_place) + ## difference tolerated when comparing two numbers. The larger the value, the + ## more error is allowed. A `0` value means that two numbers must be exactly the + ## same to be considered equal. + ## + ## The machine epsilon has to be scaled to the magnitude of the values used + ## and multiplied by the desired precision in ULPs unless the difference is + ## subnormal. + almostEqual(x.re, y.re, unitsInLastPlace = unitsInLastPlace) and + almostEqual(x.im, y.im, unitsInLastPlace = unitsInLastPlace) func `$`*(z: Complex): string = ## Returns `z`'s string representation as `"(re, im)"`. |