diff options
Diffstat (limited to 'lib/pure/concurrency/threadpool.nim')
-rw-r--r-- | lib/pure/concurrency/threadpool.nim | 404 |
1 files changed, 257 insertions, 147 deletions
diff --git a/lib/pure/concurrency/threadpool.nim b/lib/pure/concurrency/threadpool.nim index 2603835dd..06ed2fe54 100644 --- a/lib/pure/concurrency/threadpool.nim +++ b/lib/pure/concurrency/threadpool.nim @@ -7,12 +7,25 @@ # distribution, for details about the copyright. # -## Implements Nim's 'spawn'. +{.deprecated: "use the nimble packages `malebolgia`, `taskpools` or `weave` instead".} + +## Implements Nim's `parallel & spawn statements <manual_experimental.html#parallel-amp-spawn>`_. +## +## Unstable API. +## +## See also +## ======== +## * `threads module <typedthreads.html>`_ for basic thread support +## * `locks module <locks.html>`_ for locks and condition variables +## * `asyncdispatch module <asyncdispatch.html>`_ for asynchronous IO when not compileOption("threads"): {.error: "Threadpool requires --threads:on option.".} -import cpuinfo, cpuload, locks +import std/[cpuinfo, cpuload, locks, os] + +when defined(nimPreviewSlimSystem): + import std/[assertions, typedthreads, sysatomics] {.push stackTrace:off.} @@ -22,15 +35,15 @@ type L: Lock counter: int -proc createSemaphore(): Semaphore = - initCond(result.c) - initLock(result.L) +proc initSemaphore(cv: var Semaphore) = + initCond(cv.c) + initLock(cv.L) proc destroySemaphore(cv: var Semaphore) {.inline.} = deinitCond(cv.c) deinitLock(cv.L) -proc await(cv: var Semaphore) = +proc blockUntil(cv: var Semaphore) = acquire(cv.L) while cv.counter <= 0: wait(cv.c, cv.L) @@ -43,45 +56,42 @@ proc signal(cv: var Semaphore) = release(cv.L) signal(cv.c) -const CacheLineSize = 32 # true for most archs +const CacheLineSize = 64 # true for most archs type - Barrier {.compilerProc.} = object + Barrier {.compilerproc.} = object entered: int cv: Semaphore # Semaphore takes 3 words at least - when sizeof(int) < 8: - cacheAlign: array[CacheLineSize-4*sizeof(int), byte] - left: int - cacheAlign2: array[CacheLineSize-sizeof(int), byte] - interest: bool ## wether the master is interested in the "all done" event + left {.align(CacheLineSize).}: int + interest {.align(CacheLineSize).} : bool # whether the master is interested in the "all done" event -proc barrierEnter(b: ptr Barrier) {.compilerProc, inline.} = +proc barrierEnter(b: ptr Barrier) {.compilerproc, inline.} = # due to the signaling between threads, it is ensured we are the only # one with access to 'entered' so we don't need 'atomicInc' here: inc b.entered # also we need no 'fence' instructions here as soon 'nimArgsPassingDone' # will be called which already will perform a fence for us. -proc barrierLeave(b: ptr Barrier) {.compilerProc, inline.} = +proc barrierLeave(b: ptr Barrier) {.compilerproc, inline.} = atomicInc b.left when not defined(x86): fence() # We may not have seen the final value of b.entered yet, # so we need to check for >= instead of ==. if b.interest and b.left >= b.entered: signal(b.cv) -proc openBarrier(b: ptr Barrier) {.compilerProc, inline.} = +proc openBarrier(b: ptr Barrier) {.compilerproc, inline.} = b.entered = 0 b.left = 0 b.interest = false -proc closeBarrier(b: ptr Barrier) {.compilerProc.} = +proc closeBarrier(b: ptr Barrier) {.compilerproc.} = fence() if b.left != b.entered: - b.cv = createSemaphore() + b.cv.initSemaphore() fence() b.interest = true fence() - while b.left != b.entered: await(b.cv) + while b.left != b.entered: blockUntil(b.cv) destroySemaphore(b.cv) {.pop.} @@ -89,27 +99,24 @@ proc closeBarrier(b: ptr Barrier) {.compilerProc.} = # ---------------------------------------------------------------------------- type - foreign* = object ## a region that indicates the pointer comes from a - ## foreign thread heap. AwaitInfo = object cv: Semaphore idx: int - FlowVarBase* = ref FlowVarBaseObj ## untyped base class for 'FlowVar[T]' - FlowVarBaseObj = object of RootObj + FlowVarBase* = ref FlowVarBaseObj ## Untyped base class for `FlowVar[T] <#FlowVar>`_. + FlowVarBaseObj {.acyclic.} = object of RootObj ready, usesSemaphore, awaited: bool - cv: Semaphore #\ - # for 'awaitAny' support + cv: Semaphore # for 'blockUntilAny' support ai: ptr AwaitInfo idx: int data: pointer # we incRef and unref it to keep it alive; note this MUST NOT # be RootRef here otherwise the wrong GC keeps track of it! owner: pointer # ptr Worker - FlowVarObj[T] = object of FlowVarBaseObj + FlowVarObj[T] {.acyclic.} = object of FlowVarBaseObj blob: T - FlowVar*{.compilerProc.}[T] = ref FlowVarObj[T] ## a data flow variable + FlowVar*[T] {.compilerproc.} = ref FlowVarObj[T] ## A data flow variable. ToFreeQueue = object len: int @@ -130,12 +137,15 @@ type q: ToFreeQueue readyForTask: Semaphore -proc await*(fv: FlowVarBase) = - ## waits until the value for the flowVar arrives. Usually it is not necessary - ## to call this explicitly. +const threadpoolWaitMs {.intdefine.}: int = 100 + +proc blockUntil*(fv: var FlowVarBaseObj) = + ## Waits until the value for `fv` arrives. + ## + ## Usually it is not necessary to call this explicitly. if fv.usesSemaphore and not fv.awaited: fv.awaited = true - await(fv.cv) + blockUntil(fv.cv) destroySemaphore(fv.cv) proc selectWorker(w: ptr Worker; fn: WorkerProc; data: pointer): bool = @@ -143,13 +153,13 @@ proc selectWorker(w: ptr Worker; fn: WorkerProc; data: pointer): bool = w.data = data w.f = fn signal(w.taskArrived) - await(w.taskStarted) + blockUntil(w.taskStarted) result = true proc cleanFlowVars(w: ptr Worker) = let q = addr(w.q) acquire(q.lock) - for i in 0 .. <q.len: + for i in 0 ..< q.len: GC_unref(cast[RootRef](q.data[i])) #echo "GC_unref" q.len = 0 @@ -168,12 +178,21 @@ proc wakeupWorkerToProcessQueue(w: ptr Worker) = signal(w.q.empty) signal(w.taskArrived) -proc finished(fv: FlowVarBase) = - doAssert fv.ai.isNil, "flowVar is still attached to an 'awaitAny'" +proc attach(fv: FlowVarBase; i: int): bool = + acquire(fv.cv.L) + if fv.cv.counter <= 0: + fv.idx = i + result = true + else: + result = false + release(fv.cv.L) + +proc finished(fv: var FlowVarBaseObj) = + doAssert fv.ai.isNil, "flowVar is still attached to an 'blockUntilAny'" # we have to protect against the rare cases where the owner of the flowVar # simply disregards the flowVar and yet the "flowVar" has not yet written # anything to it: - await(fv) + blockUntil(fv) if fv.data.isNil: return let owner = cast[ptr Worker](fv.owner) let q = addr(owner.q) @@ -182,23 +201,27 @@ proc finished(fv: FlowVarBase) = #echo "EXHAUSTED!" release(q.lock) wakeupWorkerToProcessQueue(owner) - await(q.empty) + blockUntil(q.empty) acquire(q.lock) q.data[q.len] = cast[pointer](fv.data) inc q.len release(q.lock) fv.data = nil + # the worker thread waits for "data" to be set to nil before shutting down + owner.data = nil -proc fvFinalizer[T](fv: FlowVar[T]) = finished(fv) +proc `=destroy`[T](fv: var FlowVarObj[T]) = + finished(fv) + `=destroy`(fv.blob) -proc nimCreateFlowVar[T](): FlowVar[T] {.compilerProc.} = - new(result, fvFinalizer) +proc nimCreateFlowVar[T](): FlowVar[T] {.compilerproc.} = + new(result) -proc nimFlowVarCreateSemaphore(fv: FlowVarBase) {.compilerProc.} = - fv.cv = createSemaphore() +proc nimFlowVarCreateSemaphore(fv: FlowVarBase) {.compilerproc.} = + fv.cv.initSemaphore() fv.usesSemaphore = true -proc nimFlowVarSignal(fv: FlowVarBase) {.compilerProc.} = +proc nimFlowVarSignal(fv: FlowVarBase) {.compilerproc.} = if fv.ai != nil: acquire(fv.ai.cv.L) fv.ai.idx = fv.idx @@ -209,68 +232,74 @@ proc nimFlowVarSignal(fv: FlowVarBase) {.compilerProc.} = signal(fv.cv) proc awaitAndThen*[T](fv: FlowVar[T]; action: proc (x: T) {.closure.}) = - ## blocks until the ``fv`` is available and then passes its value - ## to ``action``. Note that due to Nim's parameter passing semantics this - ## means that ``T`` doesn't need to be copied and so ``awaitAndThen`` can - ## sometimes be more efficient than ``^``. - await(fv) - when T is string or T is seq: + ## Blocks until `fv` is available and then passes its value + ## to `action`. + ## + ## Note that due to Nim's parameter passing semantics, this + ## means that `T` doesn't need to be copied, so `awaitAndThen` can + ## sometimes be more efficient than the `^ proc <#^,FlowVar[T]>`_. + blockUntil(fv[]) + when defined(nimV2): + action(fv.blob) + elif T is string or T is seq: action(cast[T](fv.data)) elif T is ref: {.error: "'awaitAndThen' not available for FlowVar[ref]".} else: action(fv.blob) - finished(fv) - -proc unsafeRead*[T](fv: FlowVar[ref T]): foreign ptr T = - ## blocks until the value is available and then returns this value. - await(fv) - result = cast[foreign ptr T](fv.data) + finished(fv[]) -proc `^`*[T](fv: FlowVar[ref T]): ref T = - ## blocks until the value is available and then returns this value. - await(fv) - let src = cast[ref T](fv.data) - deepCopy result, src +proc unsafeRead*[T](fv: FlowVar[ref T]): ptr T = + ## Blocks until the value is available and then returns this value. + blockUntil(fv[]) + when defined(nimV2): + result = cast[ptr T](fv.blob) + else: + result = cast[ptr T](fv.data) + finished(fv[]) proc `^`*[T](fv: FlowVar[T]): T = - ## blocks until the value is available and then returns this value. - await(fv) - when T is string or T is seq: - # XXX closures? deepCopy? - result = cast[T](fv.data) + ## Blocks until the value is available and then returns this value. + blockUntil(fv[]) + when not defined(nimV2) and (T is string or T is seq or T is ref): + deepCopy result, cast[T](fv.data) else: result = fv.blob + finished(fv[]) -proc awaitAny*(flowVars: openArray[FlowVarBase]): int = - ## awaits any of the given flowVars. Returns the index of one flowVar for - ## which a value arrived. A flowVar only supports one call to 'awaitAny' at - ## the same time. That means if you await([a,b]) and await([b,c]) the second - ## call will only await 'c'. If there is no flowVar left to be able to wait - ## on, -1 is returned. - ## **Note**: This results in non-deterministic behaviour and so should be - ## avoided. +proc blockUntilAny*(flowVars: openArray[FlowVarBase]): int = + ## Awaits any of the given `flowVars`. Returns the index of one `flowVar` + ## for which a value arrived. + ## + ## A `flowVar` only supports one call to `blockUntilAny` at the same time. + ## That means if you `blockUntilAny([a,b])` and `blockUntilAny([b,c])` + ## the second call will only block until `c`. If there is no `flowVar` left + ## to be able to wait on, -1 is returned. + ## + ## **Note:** This results in non-deterministic behaviour and should be avoided. var ai: AwaitInfo - ai.cv = createSemaphore() + ai.cv.initSemaphore() var conflicts = 0 + result = -1 for i in 0 .. flowVars.high: if cas(addr flowVars[i].ai, nil, addr ai): - flowVars[i].idx = i + if not attach(flowVars[i], i): + result = i + break else: inc conflicts if conflicts < flowVars.len: - await(ai.cv) - result = ai.idx + if result < 0: + blockUntil(ai.cv) + result = ai.idx for i in 0 .. flowVars.high: discard cas(addr flowVars[i].ai, addr ai, nil) - else: - result = -1 destroySemaphore(ai.cv) proc isReady*(fv: FlowVarBase): bool = - ## Determines whether the specified ``FlowVarBase``'s value is available. + ## Determines whether the specified `FlowVarBase`'s value is available. ## - ## If ``true`` awaiting ``fv`` will not block. + ## If `true`, awaiting `fv` will not block. if fv.usesSemaphore and not fv.awaited: acquire(fv.cv.L) result = fv.cv.counter > 0 @@ -278,42 +307,74 @@ proc isReady*(fv: FlowVarBase): bool = else: result = true -proc nimArgsPassingDone(p: pointer) {.compilerProc.} = +proc nimArgsPassingDone(p: pointer) {.compilerproc.} = let w = cast[ptr Worker](p) signal(w.taskStarted) const - MaxThreadPoolSize* = 256 ## maximal size of the thread pool. 256 threads - ## should be good enough for anybody ;-) - MaxDistinguishedThread* = 32 ## maximal number of "distinguished" threads. + MaxThreadPoolSize* {.intdefine.} = 256 ## Maximum size of the thread pool. 256 threads + ## should be good enough for anybody ;-) + MaxDistinguishedThread* {.intdefine.} = 32 ## Maximum number of "distinguished" threads. type - ThreadId* = range[0..MaxDistinguishedThread-1] + ThreadId* = range[0..MaxDistinguishedThread-1] ## A thread identifier. var currentPoolSize: int maxPoolSize = MaxThreadPoolSize minPoolSize = 4 - gSomeReady = createSemaphore() + gSomeReady: Semaphore readyWorker: ptr Worker +# A workaround for recursion deadlock issue +# https://github.com/nim-lang/Nim/issues/4597 +var + numSlavesLock: Lock + numSlavesRunning {.guard: numSlavesLock.}: int + numSlavesWaiting {.guard: numSlavesLock.}: int + isSlave {.threadvar.}: bool + +numSlavesLock.initLock + +gSomeReady.initSemaphore() + proc slave(w: ptr Worker) {.thread.} = + isSlave = true while true: + if w.shutdown: + w.shutdown = false + atomicDec currentPoolSize + while true: + if w.data != nil: + sleep(threadpoolWaitMs) + else: + # The flowvar finalizer ("finished()") set w.data to nil, so we can + # safely terminate the thread. + # + # TODO: look for scenarios in which the flowvar is never finalized, so + # a shut down thread gets stuck in this loop until the main thread exits. + break + break when declared(atomicStoreN): atomicStoreN(addr(w.ready), true, ATOMIC_SEQ_CST) else: w.ready = true readyWorker = w signal(gSomeReady) - await(w.taskArrived) + blockUntil(w.taskArrived) # XXX Somebody needs to look into this (why does this assertion fail # in Visual Studio?) - when not defined(vcc): assert(not w.ready) + when not defined(vcc) and not defined(tcc): assert(not w.ready) + + withLock numSlavesLock: + inc numSlavesRunning + w.f(w, w.data) + + withLock numSlavesLock: + dec numSlavesRunning + if w.q.len != 0: w.cleanFlowVars - if w.shutdown: - w.shutdown = false - atomicDec currentPoolSize proc distinguishedSlave(w: ptr Worker) {.thread.} = while true: @@ -322,28 +383,28 @@ proc distinguishedSlave(w: ptr Worker) {.thread.} = else: w.ready = true signal(w.readyForTask) - await(w.taskArrived) + blockUntil(w.taskArrived) assert(not w.ready) w.f(w, w.data) if w.q.len != 0: w.cleanFlowVars var - workers: array[MaxThreadPoolSize, TThread[ptr Worker]] + workers: array[MaxThreadPoolSize, Thread[ptr Worker]] workersData: array[MaxThreadPoolSize, Worker] - distinguished: array[MaxDistinguishedThread, TThread[ptr Worker]] + distinguished: array[MaxDistinguishedThread, Thread[ptr Worker]] distinguishedData: array[MaxDistinguishedThread, Worker] when defined(nimPinToCpu): var gCpus: Natural proc setMinPoolSize*(size: range[1..MaxThreadPoolSize]) = - ## sets the minimal thread pool size. The default value of this is 4. + ## Sets the minimum thread pool size. The default value of this is 4. minPoolSize = size proc setMaxPoolSize*(size: range[1..MaxThreadPoolSize]) = - ## sets the maximal thread pool size. The default value of this - ## is ``MaxThreadPoolSize``. + ## Sets the maximum thread pool size. The default value of this + ## is `MaxThreadPoolSize <#MaxThreadPoolSize>`_. maxPoolSize = size if currentPoolSize > maxPoolSize: for i in maxPoolSize..currentPoolSize-1: @@ -354,10 +415,10 @@ when defined(nimRecursiveSpawn): var localThreadId {.threadvar.}: int proc activateWorkerThread(i: int) {.noinline.} = - workersData[i].taskArrived = createSemaphore() - workersData[i].taskStarted = createSemaphore() + workersData[i].taskArrived.initSemaphore() + workersData[i].taskStarted.initSemaphore() workersData[i].initialized = true - workersData[i].q.empty = createSemaphore() + workersData[i].q.empty.initSemaphore() initLock(workersData[i].q.lock) createThread(workers[i], slave, addr(workersData[i])) when defined(nimRecursiveSpawn): @@ -366,12 +427,12 @@ proc activateWorkerThread(i: int) {.noinline.} = if gCpus > 0: pinToCpu(workers[i], i mod gCpus) proc activateDistinguishedThread(i: int) {.noinline.} = - distinguishedData[i].taskArrived = createSemaphore() - distinguishedData[i].taskStarted = createSemaphore() + distinguishedData[i].taskArrived.initSemaphore() + distinguishedData[i].taskStarted.initSemaphore() distinguishedData[i].initialized = true - distinguishedData[i].q.empty = createSemaphore() + distinguishedData[i].q.empty.initSemaphore() initLock(distinguishedData[i].q.lock) - distinguishedData[i].readyForTask = createSemaphore() + distinguishedData[i].readyForTask.initSemaphore() createThread(distinguished[i], distinguishedSlave, addr(distinguishedData[i])) proc setup() = @@ -380,40 +441,51 @@ proc setup() = gCpus = p currentPoolSize = min(p, MaxThreadPoolSize) readyWorker = addr(workersData[0]) - for i in 0.. <currentPoolSize: activateWorkerThread(i) + for i in 0..<currentPoolSize: activateWorkerThread(i) proc preferSpawn*(): bool = - ## Use this proc to determine quickly if a 'spawn' or a direct call is - ## preferable. If it returns 'true' a 'spawn' may make sense. In general - ## it is not necessary to call this directly; use 'spawnX' instead. + ## Use this proc to determine quickly if a `spawn` or a direct call is + ## preferable. + ## + ## If it returns `true`, a `spawn` may make sense. In general + ## it is not necessary to call this directly; use the `spawnX template + ## <#spawnX.t>`_ instead. result = gSomeReady.counter > 0 -proc spawn*(call: expr): expr {.magic: "Spawn".} - ## always spawns a new task, so that the 'call' is never executed on - ## the calling thread. 'call' has to be proc call 'p(...)' where 'p' - ## is gcsafe and has a return type that is either 'void' or compatible - ## with ``FlowVar[T]``. - -proc pinnedSpawn*(id: ThreadId; call: expr): expr {.magic: "Spawn".} - ## always spawns a new task on the worker thread with ``id``, so that - ## the 'call' is **always** executed on - ## the this thread. 'call' has to be proc call 'p(...)' where 'p' - ## is gcsafe and has a return type that is either 'void' or compatible - ## with ``FlowVar[T]``. - -template spawnX*(call: expr): expr = - ## spawns a new task if a CPU core is ready, otherwise executes the - ## call in the calling thread. Usually it is advised to - ## use 'spawn' in order to not block the producer for an unknown - ## amount of time. 'call' has to be proc call 'p(...)' where 'p' - ## is gcsafe and has a return type that is either 'void' or compatible - ## with ``FlowVar[T]``. +proc spawn*(call: sink typed) {.magic: "Spawn".} = + ## Always spawns a new task, so that the `call` is never executed on + ## the calling thread. + ## + ## `call` has to be a proc call `p(...)` where `p` is gcsafe and has a + ## return type that is either `void` or compatible with `FlowVar[T]`. + discard "It uses `nimSpawn3` internally" + +proc pinnedSpawn*(id: ThreadId; call: sink typed) {.magic: "Spawn".} = + ## Always spawns a new task on the worker thread with `id`, so that + ## the `call` is **always** executed on the thread. + ## + ## `call` has to be a proc call `p(...)` where `p` is gcsafe and has a + ## return type that is either `void` or compatible with `FlowVar[T]`. + discard "It uses `nimSpawn4` internally" + +template spawnX*(call) = + ## Spawns a new task if a CPU core is ready, otherwise executes the + ## call in the calling thread. + ## + ## Usually, it is advised to use the `spawn proc <#spawn,sinktyped>`_ + ## in order to not block the producer for an unknown amount of time. + ## + ## `call` has to be a proc call `p(...)` where `p` is gcsafe and has a + ## return type that is either 'void' or compatible with `FlowVar[T]`. (if preferSpawn(): spawn call else: call) -proc parallel*(body: stmt) {.magic: "Parallel".} - ## a parallel section can be used to execute a block in parallel. ``body`` - ## has to be in a DSL that is a particular subset of the language. Please - ## refer to the manual for further information. +proc parallel*(body: untyped) {.magic: "Parallel".} + ## A parallel section can be used to execute a block in parallel. + ## + ## `body` has to be in a DSL that is a particular subset of the language. + ## + ## Please refer to `the manual <manual_experimental.html#parallel-amp-spawn>`_ + ## for further information. var state: ThreadPoolState @@ -421,18 +493,28 @@ var initLock stateLock -proc nimSpawn3(fn: WorkerProc; data: pointer) {.compilerProc.} = +proc nimSpawn3(fn: WorkerProc; data: pointer) {.compilerproc.} = # implementation of 'spawn' that is used by the code generator. while true: if selectWorker(readyWorker, fn, data): return - for i in 0.. <currentPoolSize: + for i in 0..<currentPoolSize: if selectWorker(addr(workersData[i]), fn, data): return + # determine what to do, but keep in mind this is expensive too: # state.calls < maxPoolSize: warmup phase # (state.calls and 127) == 0: periodic check if state.calls < maxPoolSize or (state.calls and 127) == 0: # ensure the call to 'advice' is atomic: if tryAcquire(stateLock): + if currentPoolSize < minPoolSize: + if not workersData[currentPoolSize].initialized: + activateWorkerThread(currentPoolSize) + let w = addr(workersData[currentPoolSize]) + atomicInc currentPoolSize + if selectWorker(w, fn, data): + release(stateLock) + return + case advice(state) of doNothing: discard of doCreateThread: @@ -460,37 +542,65 @@ proc nimSpawn3(fn: WorkerProc; data: pointer) {.compilerProc.} = # on the current thread instead. var self = addr(workersData[localThreadId-1]) fn(self, data) - await(self.taskStarted) + blockUntil(self.taskStarted) return - else: - await(gSomeReady) - else: - await(gSomeReady) + + if isSlave: + # Run under lock until `numSlavesWaiting` increment to avoid a + # race (otherwise two last threads might start waiting together) + withLock numSlavesLock: + if numSlavesRunning <= numSlavesWaiting + 1: + # All the other slaves are waiting + # If we wait now, we-re deadlocked until + # an external spawn happens ! + if currentPoolSize < maxPoolSize: + if not workersData[currentPoolSize].initialized: + activateWorkerThread(currentPoolSize) + let w = addr(workersData[currentPoolSize]) + atomicInc currentPoolSize + if selectWorker(w, fn, data): + return + else: + # There is no place in the pool. We're deadlocked. + # echo "Deadlock!" + discard + + inc numSlavesWaiting + + blockUntil(gSomeReady) + + if isSlave: + withLock numSlavesLock: + dec numSlavesWaiting var - distinguishedLock: TLock + distinguishedLock: Lock initLock distinguishedLock -proc nimSpawn4(fn: WorkerProc; data: pointer; id: ThreadId) {.compilerProc.} = +proc nimSpawn4(fn: WorkerProc; data: pointer; id: ThreadId) {.compilerproc.} = acquire(distinguishedLock) if not distinguishedData[id].initialized: activateDistinguishedThread(id) release(distinguishedLock) while true: if selectWorker(addr(distinguishedData[id]), fn, data): break - await(distinguishedData[id].readyForTask) + blockUntil(distinguishedData[id].readyForTask) proc sync*() = - ## a simple barrier to wait for all spawn'ed tasks. If you need more elaborate - ## waiting, you have to use an explicit barrier. + ## A simple barrier to wait for all `spawn`ed tasks. + ## + ## If you need more elaborate waiting, you have to use an explicit barrier. while true: var allReady = true - for i in 0 .. <currentPoolSize: + for i in 0 ..< currentPoolSize: if not allReady: break allReady = allReady and workersData[i].ready if allReady: break - await(gSomeReady) + sleep(threadpoolWaitMs) + # We cannot "blockUntil(gSomeReady)" because workers may be shut down between + # the time we establish that some are not "ready" and the time we wait for a + # "signal(gSomeReady)" from inside "slave()" that can never come. setup() |