summary refs log tree commit diff stats
path: root/lib/pure/math.nim
diff options
context:
space:
mode:
Diffstat (limited to 'lib/pure/math.nim')
-rw-r--r--lib/pure/math.nim1658
1 files changed, 1139 insertions, 519 deletions
diff --git a/lib/pure/math.nim b/lib/pure/math.nim
index b921b1841..ed7d2382f 100644
--- a/lib/pure/math.nim
+++ b/lib/pure/math.nim
@@ -7,39 +7,146 @@
 #    distribution, for details about the copyright.
 #
 
-##   Constructive mathematics is naturally typed. -- Simon Thompson
+## *Constructive mathematics is naturally typed.* -- Simon Thompson
 ##
 ## Basic math routines for Nim.
-## This module is available for the `JavaScript target
-## <backends.html#the-javascript-target>`_.
 ##
 ## Note that the trigonometric functions naturally operate on radians.
-## The helper functions `degToRad` and `radToDeg` provide conversion
-## between radians and degrees.
+## The helper functions `degToRad <#degToRad,T>`_ and `radToDeg <#radToDeg,T>`_
+## provide conversion between radians and degrees.
+
+runnableExamples:
+  from std/fenv import epsilon
+  from std/random import rand
+
+  proc generateGaussianNoise(mu: float = 0.0, sigma: float = 1.0): (float, float) =
+    # Generates values from a normal distribution.
+    # Translated from https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform#Implementation.
+    var u1: float
+    var u2: float
+    while true:
+      u1 = rand(1.0)
+      u2 = rand(1.0)
+      if u1 > epsilon(float): break
+    let mag = sigma * sqrt(-2 * ln(u1))
+    let z0 = mag * cos(2 * PI * u2) + mu
+    let z1 = mag * sin(2 * PI * u2) + mu
+    (z0, z1)
+
+  echo generateGaussianNoise()
 
-include "system/inclrtl"
-{.push debugger:off .} # the user does not want to trace a part
+## This module is available for the `JavaScript target
+## <backends.html#backends-the-javascript-target>`_.
+##
+## See also
+## ========
+## * `complex module <complex.html>`_ for complex numbers and their
+##   mathematical operations
+## * `rationals module <rationals.html>`_ for rational numbers and their
+##   mathematical operations
+## * `fenv module <fenv.html>`_ for handling of floating-point rounding
+##   and exceptions (overflow, zero-divide, etc.)
+## * `random module <random.html>`_ for a fast and tiny random number generator
+## * `stats module <stats.html>`_ for statistical analysis
+## * `strformat module <strformat.html>`_ for formatting floats for printing
+## * `system module <system.html>`_ for some very basic and trivial math operators
+##   (`shr`, `shl`, `xor`, `clamp`, etc.)
+
+
+import std/private/since
+{.push debugger: off.} # the user does not want to trace a part
                        # of the standard library!
 
-import bitops
+import std/[bitops, fenv]
+import system/countbits_impl
+
+when defined(nimPreviewSlimSystem):
+  import std/assertions
+
+
+when not defined(js) and not defined(nimscript): # C
+  proc c_isnan(x: float): bool {.importc: "isnan", header: "<math.h>".}
+    # a generic like `x: SomeFloat` might work too if this is implemented via a C macro.
+
+  proc c_copysign(x, y: cfloat): cfloat {.importc: "copysignf", header: "<math.h>".}
+  proc c_copysign(x, y: cdouble): cdouble {.importc: "copysign", header: "<math.h>".}
+
+  proc c_signbit(x: SomeFloat): cint {.importc: "signbit", header: "<math.h>".}
+
+  # don't export `c_frexp` in the future and remove `c_frexp2`.
+  func c_frexp2(x: cfloat, exponent: var cint): cfloat {.
+      importc: "frexpf", header: "<math.h>".}
+  func c_frexp2(x: cdouble, exponent: var cint): cdouble {.
+      importc: "frexp", header: "<math.h>".}
+  
+  type
+    div_t {.importc, header: "<stdlib.h>".} = object
+      quot: cint
+      rem: cint
+    ldiv_t {.importc, header: "<stdlib.h>".} = object
+      quot: clong
+      rem: clong
+    lldiv_t {.importc, header: "<stdlib.h>".} = object
+      quot: clonglong
+      rem: clonglong
+  
+  when cint isnot clong:
+    func divmod_c(x, y: cint): div_t {.importc: "div", header: "<stdlib.h>".}
+  when clong isnot clonglong:
+    func divmod_c(x, y: clonglong): lldiv_t {.importc: "lldiv", header: "<stdlib.h>".}
+  func divmod_c(x, y: clong): ldiv_t {.importc: "ldiv", header: "<stdlib.h>".}
+  func divmod*[T: SomeInteger](x, y: T): (T, T) {.inline.} = 
+    ## Specialized instructions for computing both division and modulus.
+    ## Return structure is: (quotient, remainder)
+    runnableExamples:
+      doAssert divmod(5, 2) == (2, 1)
+      doAssert divmod(5, -3) == (-1, 2)
+    when T is cint | clong | clonglong:
+      when compileOption("overflowChecks"):
+        if y == 0:
+          raise new(DivByZeroDefect)
+        elif (x == T.low and y == -1.T):
+          raise new(OverflowDefect)
+      let res = divmod_c(x, y)
+      result[0] = res.quot
+      result[1] = res.rem
+    else:
+      result[0] = x div y
+      result[1] = x mod y
+
+func binom*(n, k: int): int =
+  ## Computes the [binomial coefficient](https://en.wikipedia.org/wiki/Binomial_coefficient).
+  runnableExamples:
+    doAssert binom(6, 2) == 15
+    doAssert binom(-6, 2) == 1
+    doAssert binom(6, 0) == 1
 
-proc binom*(n, k: int): int {.noSideEffect.} =
-  ## Computes the binomial coefficient
   if k <= 0: return 1
-  if 2*k > n: return binom(n, n-k)
+  if 2 * k > n: return binom(n, n - k)
   result = n
   for i in countup(2, k):
     result = (result * (n + 1 - i)) div i
 
-proc createFactTable[N: static[int]]: array[N, int] =
+func createFactTable[N: static[int]]: array[N, int] =
   result[0] = 1
   for i in 1 ..< N:
     result[i] = result[i - 1] * i
 
-proc fac*(n: int): int =
-  ## Computes the faculty/factorial function.
+func fac*(n: int): int =
+  ## Computes the [factorial](https://en.wikipedia.org/wiki/Factorial) of
+  ## a non-negative integer `n`.
+  ##
+  ## **See also:**
+  ## * `prod func <#prod,openArray[T]>`_
+  runnableExamples:
+    doAssert fac(0) == 1
+    doAssert fac(4) == 24
+    doAssert fac(10) == 3628800
+
   const factTable =
-    when sizeof(int) == 4:
+    when sizeof(int) == 2:
+      createFactTable[5]()
+    elif sizeof(int) == 4:
       createFactTable[13]()
     else:
       createFactTable[21]()
@@ -47,64 +154,201 @@ proc fac*(n: int): int =
   assert(n < factTable.len, $n & " is too large to look up in the table")
   factTable[n]
 
-{.push checks:off, line_dir:off, stack_trace:off.}
+{.push checks: off, line_dir: off, stack_trace: off.}
 
-when defined(Posix) and not defined(haiku):
+when defined(posix) and not defined(genode) and not defined(macosx):
   {.passl: "-lm".}
 
 const
-  PI* = 3.1415926535897932384626433 ## the circle constant PI (Ludolph's number)
-  TAU* = 2.0 * PI ## the circle constant TAU (= 2 * PI)
-  E* = 2.71828182845904523536028747 ## Euler's number
-
-  MaxFloat64Precision* = 16 ## maximum number of meaningful digits
-                            ## after the decimal point for Nim's
-                            ## ``float64`` type.
-  MaxFloat32Precision* = 8  ## maximum number of meaningful digits
-                            ## after the decimal point for Nim's
-                            ## ``float32`` type.
-  MaxFloatPrecision* = MaxFloat64Precision ## maximum number of
-                                           ## meaningful digits
-                                           ## after the decimal point
-                                           ## for Nim's ``float`` type.
-  RadPerDeg = PI / 180.0 ## number of radians per degree
+  PI* = 3.1415926535897932384626433          ## The circle constant PI (Ludolph's number).
+  TAU* = 2.0 * PI                            ## The circle constant TAU (= 2 * PI).
+  E* = 2.71828182845904523536028747          ## Euler's number.
+
+  MaxFloat64Precision* = 16                  ## Maximum number of meaningful digits
+                                             ## after the decimal point for Nim's
+                                             ## `float64` type.
+  MaxFloat32Precision* = 8                   ## Maximum number of meaningful digits
+                                             ## after the decimal point for Nim's
+                                             ## `float32` type.
+  MaxFloatPrecision* = MaxFloat64Precision   ## Maximum number of
+                                             ## meaningful digits
+                                             ## after the decimal point
+                                             ## for Nim's `float` type.
+  MinFloatNormal* = 2.225073858507201e-308   ## Smallest normal number for Nim's
+                                             ## `float` type (= 2^-1022).
+  RadPerDeg = PI / 180.0                     ## Number of radians per degree.
 
 type
-  FloatClass* = enum ## describes the class a floating point value belongs to.
-                     ## This is the type that is returned by `classify`.
-    fcNormal,    ## value is an ordinary nonzero floating point value
-    fcSubnormal, ## value is a subnormal (a very small) floating point value
-    fcZero,      ## value is zero
-    fcNegZero,   ## value is the negative zero
-    fcNan,       ## value is Not-A-Number (NAN)
-    fcInf,       ## value is positive infinity
-    fcNegInf     ## value is negative infinity
-
-proc classify*(x: float): FloatClass =
-  ## Classifies a floating point value. Returns `x`'s class as specified by
-  ## `FloatClass`.
+  FloatClass* = enum ## Describes the class a floating point value belongs to.
+                     ## This is the type that is returned by the
+                     ## `classify func <#classify,float>`_.
+    fcNormal,        ## value is an ordinary nonzero floating point value
+    fcSubnormal,     ## value is a subnormal (a very small) floating point value
+    fcZero,          ## value is zero
+    fcNegZero,       ## value is the negative zero
+    fcNan,           ## value is Not a Number (NaN)
+    fcInf,           ## value is positive infinity
+    fcNegInf         ## value is negative infinity
+
+func isNaN*(x: SomeFloat): bool {.inline, since: (1,5,1).} =
+  ## Returns whether `x` is a `NaN`, more efficiently than via `classify(x) == fcNan`.
+  ## Works even with `--passc:-ffast-math`.
+  runnableExamples:
+    doAssert NaN.isNaN
+    doAssert not Inf.isNaN
+    doAssert not isNaN(3.1415926)
+
+  template fn: untyped = result = x != x
+  when nimvm: fn()
+  else:
+    when defined(js) or defined(nimscript): fn()
+    else: result = c_isnan(x)
+
+when defined(js):
+  import std/private/jsutils
+
+  proc toBitsImpl(x: float): array[2, uint32] =
+    let buffer = newArrayBuffer(8)
+    let a = newFloat64Array(buffer)
+    let b = newUint32Array(buffer)
+    a[0] = x
+    {.emit: "`result` = `b`;".}
+    # result = cast[array[2, uint32]](b)
+
+  proc jsSetSign(x: float, sgn: bool): float =
+    let buffer = newArrayBuffer(8)
+    let a = newFloat64Array(buffer)
+    let b = newUint32Array(buffer)
+    a[0] = x
+    {.emit: """
+    function updateBit(num, bitPos, bitVal) {
+      return (num & ~(1 << bitPos)) | (bitVal << bitPos);
+    }
+    `b`[1] = updateBit(`b`[1], 31, `sgn`);
+    `result` = `a`[0];
+    """.}
+
+proc signbit*(x: SomeFloat): bool {.inline, since: (1, 5, 1).} =
+  ## Returns true if `x` is negative, false otherwise.
+  runnableExamples:
+    doAssert not signbit(0.0)
+    doAssert signbit(-0.0)
+    doAssert signbit(-0.1)
+    doAssert not signbit(0.1)
+
+  when defined(js):
+    let uintBuffer = toBitsImpl(x)
+    result = (uintBuffer[1] shr 31) != 0
+  else:
+    result = c_signbit(x) != 0
+
+func copySign*[T: SomeFloat](x, y: T): T {.inline, since: (1, 5, 1).} =
+  ## Returns a value with the magnitude of `x` and the sign of `y`;
+  ## this works even if x or y are NaN, infinity or zero, all of which can carry a sign.
+  runnableExamples:
+    doAssert copySign(10.0, 1.0) == 10.0
+    doAssert copySign(10.0, -1.0) == -10.0
+    doAssert copySign(-Inf, -0.0) == -Inf
+    doAssert copySign(NaN, 1.0).isNaN
+    doAssert copySign(1.0, copySign(NaN, -1.0)) == -1.0
+
+  # TODO: use signbit for examples
+  when defined(js):
+    let uintBuffer = toBitsImpl(y)
+    let sgn = (uintBuffer[1] shr 31) != 0
+    result = jsSetSign(x, sgn)
+  else:
+    when nimvm: # not exact but we have a vmops for recent enough nim
+      if y > 0.0 or (y == 0.0 and 1.0 / y > 0.0):
+        result = abs(x)
+      elif y <= 0.0:
+        result = -abs(x)
+      else: # must be NaN
+        result = abs(x)
+    else: result = c_copysign(x, y)
+
+func classify*(x: float): FloatClass =
+  ## Classifies a floating point value.
+  ##
+  ## Returns `x`'s class as specified by the `FloatClass enum<#FloatClass>`_.
+  runnableExamples:
+    doAssert classify(0.3) == fcNormal
+    doAssert classify(0.0) == fcZero
+    doAssert classify(0.3 / 0.0) == fcInf
+    doAssert classify(-0.3 / 0.0) == fcNegInf
+    doAssert classify(5.0e-324) == fcSubnormal
 
   # JavaScript and most C compilers have no classify:
+  if isNan(x): return fcNan
   if x == 0.0:
-    if 1.0/x == Inf:
+    if 1.0 / x == Inf:
       return fcZero
     else:
       return fcNegZero
-  if x*0.5 == x:
+  if x * 0.5 == x:
     if x > 0.0: return fcInf
     else: return fcNegInf
-  if x != x: return fcNan
+  if abs(x) < MinFloatNormal:
+    return fcSubnormal
   return fcNormal
-  # XXX: fcSubnormal is not detected!
 
-proc isPowerOfTwo*(x: int): bool {.noSideEffect.} =
-  ## Returns true, if `x` is a power of two, false otherwise.
+func almostEqual*[T: SomeFloat](x, y: T; unitsInLastPlace: Natural = 4): bool {.
+    since: (1, 5), inline.} =
+  ## Checks if two float values are almost equal, using the
+  ## [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon).
+  ##
+  ## `unitsInLastPlace` is the max number of
+  ## [units in the last place](https://en.wikipedia.org/wiki/Unit_in_the_last_place)
+  ## difference tolerated when comparing two numbers. The larger the value, the
+  ## more error is allowed. A `0` value means that two numbers must be exactly the
+  ## same to be considered equal.
+  ##
+  ## The machine epsilon has to be scaled to the magnitude of the values used
+  ## and multiplied by the desired precision in ULPs unless the difference is
+  ## subnormal.
+  ##
+  # taken from: https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon
+  runnableExamples:
+    doAssert almostEqual(PI, 3.14159265358979)
+    doAssert almostEqual(Inf, Inf)
+    doAssert not almostEqual(NaN, NaN)
+
+  if x == y:
+    # short circuit exact equality -- needed to catch two infinities of
+    # the same sign. And perhaps speeds things up a bit sometimes.
+    return true
+  let diff = abs(x - y)
+  result = diff <= epsilon(T) * abs(x + y) * T(unitsInLastPlace) or
+      diff < minimumPositiveValue(T)
+
+func isPowerOfTwo*(x: int): bool =
+  ## Returns `true`, if `x` is a power of two, `false` otherwise.
+  ##
   ## Zero and negative numbers are not a power of two.
+  ##
+  ## **See also:**
+  ## * `nextPowerOfTwo func <#nextPowerOfTwo,int>`_
+  runnableExamples:
+    doAssert isPowerOfTwo(16)
+    doAssert not isPowerOfTwo(5)
+    doAssert not isPowerOfTwo(0)
+    doAssert not isPowerOfTwo(-16)
+
   return (x > 0) and ((x and (x - 1)) == 0)
 
-proc nextPowerOfTwo*(x: int): int {.noSideEffect.} =
+func nextPowerOfTwo*(x: int): int =
   ## Returns `x` rounded up to the nearest power of two.
+  ##
   ## Zero and negative numbers get rounded up to 1.
+  ##
+  ## **See also:**
+  ## * `isPowerOfTwo func <#isPowerOfTwo,int>`_
+  runnableExamples:
+    doAssert nextPowerOfTwo(16) == 16
+    doAssert nextPowerOfTwo(5) == 8
+    doAssert nextPowerOfTwo(0) == 1
+    doAssert nextPowerOfTwo(-16) == 1
+
   result = x - 1
   when defined(cpu64):
     result = result or (result shr 32)
@@ -115,213 +359,354 @@ proc nextPowerOfTwo*(x: int): int {.noSideEffect.} =
   result = result or (result shr 4)
   result = result or (result shr 2)
   result = result or (result shr 1)
-  result += 1 + ord(x<=0)
+  result += 1 + ord(x <= 0)
 
-proc countBits32*(n: int32): int {.noSideEffect.} =
-  ## Counts the set bits in `n`.
-  var v = n
-  v = v -% ((v shr 1'i32) and 0x55555555'i32)
-  v = (v and 0x33333333'i32) +% ((v shr 2'i32) and 0x33333333'i32)
-  result = ((v +% (v shr 4'i32) and 0xF0F0F0F'i32) *% 0x1010101'i32) shr 24'i32
 
-proc sum*[T](x: openArray[T]): T {.noSideEffect.} =
-  ## Computes the sum of the elements in `x`.
-  ## If `x` is empty, 0 is returned.
-  for i in items(x): result = result + i
 
-proc prod*[T](x: openArray[T]): T {.noSideEffect.} =
-  ## Computes the product of the elements in ``x``.
-  ## If ``x`` is empty, 1 is returned.
-  result = 1.T
-  for i in items(x): result = result * i
 
-{.push noSideEffect.}
-when not defined(JS): # C
-  proc sqrt*(x: float32): float32 {.importc: "sqrtf", header: "<math.h>".}
-  proc sqrt*(x: float64): float64 {.importc: "sqrt", header: "<math.h>".}
+when not defined(js): # C
+  func sqrt*(x: float32): float32 {.importc: "sqrtf", header: "<math.h>".}
+  func sqrt*(x: float64): float64 {.importc: "sqrt", header: "<math.h>".} =
     ## Computes the square root of `x`.
-  proc cbrt*(x: float32): float32 {.importc: "cbrtf", header: "<math.h>".}
-  proc cbrt*(x: float64): float64 {.importc: "cbrt", header: "<math.h>".}
-    ## Computes the cubic root of `x`
-
-  proc ln*(x: float32): float32 {.importc: "logf", header: "<math.h>".}
-  proc ln*(x: float64): float64 {.importc: "log", header: "<math.h>".}
-    ## Computes the natural log of `x`
+    ##
+    ## **See also:**
+    ## * `cbrt func <#cbrt,float64>`_ for the cube root
+    runnableExamples:
+      doAssert almostEqual(sqrt(4.0), 2.0)
+      doAssert almostEqual(sqrt(1.44), 1.2)
+  func cbrt*(x: float32): float32 {.importc: "cbrtf", header: "<math.h>".}
+  func cbrt*(x: float64): float64 {.importc: "cbrt", header: "<math.h>".} =
+    ## Computes the cube root of `x`.
+    ##
+    ## **See also:**
+    ## * `sqrt func <#sqrt,float64>`_ for the square root
+    runnableExamples:
+      doAssert almostEqual(cbrt(8.0), 2.0)
+      doAssert almostEqual(cbrt(2.197), 1.3)
+      doAssert almostEqual(cbrt(-27.0), -3.0)
+  func ln*(x: float32): float32 {.importc: "logf", header: "<math.h>".}
+  func ln*(x: float64): float64 {.importc: "log", header: "<math.h>".} =
+    ## Computes the [natural logarithm](https://en.wikipedia.org/wiki/Natural_logarithm)
+    ## of `x`.
+    ##
+    ## **See also:**
+    ## * `log func <#log,T,T>`_
+    ## * `log10 func <#log10,float64>`_
+    ## * `log2 func <#log2,float64>`_
+    ## * `exp func <#exp,float64>`_
+    runnableExamples:
+      doAssert almostEqual(ln(exp(4.0)), 4.0)
+      doAssert almostEqual(ln(1.0), 0.0)
+      doAssert almostEqual(ln(0.0), -Inf)
+      doAssert ln(-7.0).isNaN
 else: # JS
-  proc sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.}
-  proc sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.}
+  func sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.}
+  func sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.}
+
+  func cbrt*(x: float32): float32 {.importc: "Math.cbrt", nodecl.}
+  func cbrt*(x: float64): float64 {.importc: "Math.cbrt", nodecl.}
 
-  proc ln*(x: float32): float32 {.importc: "Math.log", nodecl.}
-  proc ln*(x: float64): float64 {.importc: "Math.log", nodecl.}
+  func ln*(x: float32): float32 {.importc: "Math.log", nodecl.}
+  func ln*(x: float64): float64 {.importc: "Math.log", nodecl.}
+
+func log*[T: SomeFloat](x, base: T): T =
+  ## Computes the logarithm of `x` to base `base`.
+  ##
+  ## **See also:**
+  ## * `ln func <#ln,float64>`_
+  ## * `log10 func <#log10,float64>`_
+  ## * `log2 func <#log2,float64>`_
+  runnableExamples:
+    doAssert almostEqual(log(9.0, 3.0), 2.0)
+    doAssert almostEqual(log(0.0, 2.0), -Inf)
+    doAssert log(-7.0, 4.0).isNaN
+    doAssert log(8.0, -2.0).isNaN
 
-proc log*[T: SomeFloat](x, base: T): T =
-  ## Computes the logarithm ``base`` of ``x``
   ln(x) / ln(base)
 
-when not defined(JS): # C
-  proc log10*(x: float32): float32 {.importc: "log10f", header: "<math.h>".}
-  proc log10*(x: float64): float64 {.importc: "log10", header: "<math.h>".}
-    ## Computes the common logarithm (base 10) of `x`
-  proc log2*(x: float32): float32 {.importc: "log2f", header: "<math.h>".}
-  proc log2*(x: float64): float64 {.importc: "log2", header: "<math.h>".}
-    ## Computes the binary logarithm (base 2) of `x`
-  proc exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".}
-  proc exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".}
-    ## Computes the exponential function of `x` (pow(E, x))
-
-  proc sin*(x: float32): float32 {.importc: "sinf", header: "<math.h>".}
-  proc sin*(x: float64): float64 {.importc: "sin", header: "<math.h>".}
-    ## Computes the sine of `x`
-  proc cos*(x: float32): float32 {.importc: "cosf", header: "<math.h>".}
-  proc cos*(x: float64): float64 {.importc: "cos", header: "<math.h>".}
-    ## Computes the cosine of `x`
-  proc tan*(x: float32): float32 {.importc: "tanf", header: "<math.h>".}
-  proc tan*(x: float64): float64 {.importc: "tan", header: "<math.h>".}
-    ## Computes the tangent of `x`
-
-  proc sinh*(x: float32): float32 {.importc: "sinhf", header: "<math.h>".}
-  proc sinh*(x: float64): float64 {.importc: "sinh", header: "<math.h>".}
-    ## Computes the hyperbolic sine of `x`
-  proc cosh*(x: float32): float32 {.importc: "coshf", header: "<math.h>".}
-  proc cosh*(x: float64): float64 {.importc: "cosh", header: "<math.h>".}
-    ## Computes the hyperbolic cosine of `x`
-  proc tanh*(x: float32): float32 {.importc: "tanhf", header: "<math.h>".}
-  proc tanh*(x: float64): float64 {.importc: "tanh", header: "<math.h>".}
-    ## Computes the hyperbolic tangent of `x`
-
-  proc arccos*(x: float32): float32 {.importc: "acosf", header: "<math.h>".}
-  proc arccos*(x: float64): float64 {.importc: "acos", header: "<math.h>".}
-    ## Computes the arc cosine of `x`
-  proc arcsin*(x: float32): float32 {.importc: "asinf", header: "<math.h>".}
-  proc arcsin*(x: float64): float64 {.importc: "asin", header: "<math.h>".}
-    ## Computes the arc sine of `x`
-  proc arctan*(x: float32): float32 {.importc: "atanf", header: "<math.h>".}
-  proc arctan*(x: float64): float64 {.importc: "atan", header: "<math.h>".}
-    ## Calculate the arc tangent of `y` / `x`
-  proc arctan2*(y, x: float32): float32 {.importc: "atan2f", header: "<math.h>".}
-  proc arctan2*(y, x: float64): float64 {.importc: "atan2", header: "<math.h>".}
-    ## Calculate the arc tangent of `y` / `x`.
-    ## `atan2` returns the arc tangent of `y` / `x`; it produces correct
-    ## results even when the resulting angle is near pi/2 or -pi/2
-    ## (`x` near 0).
-
-  proc arcsinh*(x: float32): float32 {.importc: "asinhf", header: "<math.h>".}
-  proc arcsinh*(x: float64): float64 {.importc: "asinh", header: "<math.h>".}
-    ## Computes the inverse hyperbolic sine of `x`
-  proc arccosh*(x: float32): float32 {.importc: "acoshf", header: "<math.h>".}
-  proc arccosh*(x: float64): float64 {.importc: "acosh", header: "<math.h>".}
-    ## Computes the inverse hyperbolic cosine of `x`
-  proc arctanh*(x: float32): float32 {.importc: "atanhf", header: "<math.h>".}
-  proc arctanh*(x: float64): float64 {.importc: "atanh", header: "<math.h>".}
-    ## Computes the inverse hyperbolic tangent of `x`
+when not defined(js): # C
+  func log10*(x: float32): float32 {.importc: "log10f", header: "<math.h>".}
+  func log10*(x: float64): float64 {.importc: "log10", header: "<math.h>".} =
+    ## Computes the common logarithm (base 10) of `x`.
+    ##
+    ## **See also:**
+    ## * `ln func <#ln,float64>`_
+    ## * `log func <#log,T,T>`_
+    ## * `log2 func <#log2,float64>`_
+    runnableExamples:
+      doAssert almostEqual(log10(100.0) , 2.0)
+      doAssert almostEqual(log10(0.0), -Inf)
+      doAssert log10(-100.0).isNaN
+  func exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".}
+  func exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".} =
+    ## Computes the exponential function of `x` (`e^x`).
+    ##
+    ## **See also:**
+    ## * `ln func <#ln,float64>`_
+    runnableExamples:
+      doAssert almostEqual(exp(1.0), E)
+      doAssert almostEqual(ln(exp(4.0)), 4.0)
+      doAssert almostEqual(exp(0.0), 1.0)
+  func sin*(x: float32): float32 {.importc: "sinf", header: "<math.h>".}
+  func sin*(x: float64): float64 {.importc: "sin", header: "<math.h>".} =
+    ## Computes the sine of `x`.
+    ##
+    ## **See also:**
+    ## * `arcsin func <#arcsin,float64>`_
+    runnableExamples:
+      doAssert almostEqual(sin(PI / 6), 0.5)
+      doAssert almostEqual(sin(degToRad(90.0)), 1.0)
+  func cos*(x: float32): float32 {.importc: "cosf", header: "<math.h>".}
+  func cos*(x: float64): float64 {.importc: "cos", header: "<math.h>".} =
+    ## Computes the cosine of `x`.
+    ##
+    ## **See also:**
+    ## * `arccos func <#arccos,float64>`_
+    runnableExamples:
+      doAssert almostEqual(cos(2 * PI), 1.0)
+      doAssert almostEqual(cos(degToRad(60.0)), 0.5)
+  func tan*(x: float32): float32 {.importc: "tanf", header: "<math.h>".}
+  func tan*(x: float64): float64 {.importc: "tan", header: "<math.h>".} =
+    ## Computes the tangent of `x`.
+    ##
+    ## **See also:**
+    ## * `arctan func <#arctan,float64>`_
+    runnableExamples:
+      doAssert almostEqual(tan(degToRad(45.0)), 1.0)
+      doAssert almostEqual(tan(PI / 4), 1.0)
+  func sinh*(x: float32): float32 {.importc: "sinhf", header: "<math.h>".}
+  func sinh*(x: float64): float64 {.importc: "sinh", header: "<math.h>".} =
+    ## Computes the [hyperbolic sine](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`.
+    ##
+    ## **See also:**
+    ## * `arcsinh func <#arcsinh,float64>`_
+    runnableExamples:
+      doAssert almostEqual(sinh(0.0), 0.0)
+      doAssert almostEqual(sinh(1.0), 1.175201193643801)
+  func cosh*(x: float32): float32 {.importc: "coshf", header: "<math.h>".}
+  func cosh*(x: float64): float64 {.importc: "cosh", header: "<math.h>".} =
+    ## Computes the [hyperbolic cosine](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`.
+    ##
+    ## **See also:**
+    ## * `arccosh func <#arccosh,float64>`_
+    runnableExamples:
+      doAssert almostEqual(cosh(0.0), 1.0)
+      doAssert almostEqual(cosh(1.0), 1.543080634815244)
+  func tanh*(x: float32): float32 {.importc: "tanhf", header: "<math.h>".}
+  func tanh*(x: float64): float64 {.importc: "tanh", header: "<math.h>".} =
+    ## Computes the [hyperbolic tangent](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`.
+    ##
+    ## **See also:**
+    ## * `arctanh func <#arctanh,float64>`_
+    runnableExamples:
+      doAssert almostEqual(tanh(0.0), 0.0)
+      doAssert almostEqual(tanh(1.0), 0.7615941559557649)
+  func arcsin*(x: float32): float32 {.importc: "asinf", header: "<math.h>".}
+  func arcsin*(x: float64): float64 {.importc: "asin", header: "<math.h>".} =
+    ## Computes the arc sine of `x`.
+    ##
+    ## **See also:**
+    ## * `sin func <#sin,float64>`_
+    runnableExamples:
+      doAssert almostEqual(radToDeg(arcsin(0.0)), 0.0)
+      doAssert almostEqual(radToDeg(arcsin(1.0)), 90.0)
+  func arccos*(x: float32): float32 {.importc: "acosf", header: "<math.h>".}
+  func arccos*(x: float64): float64 {.importc: "acos", header: "<math.h>".} =
+    ## Computes the arc cosine of `x`.
+    ##
+    ## **See also:**
+    ## * `cos func <#cos,float64>`_
+    runnableExamples:
+      doAssert almostEqual(radToDeg(arccos(0.0)), 90.0)
+      doAssert almostEqual(radToDeg(arccos(1.0)), 0.0)
+  func arctan*(x: float32): float32 {.importc: "atanf", header: "<math.h>".}
+  func arctan*(x: float64): float64 {.importc: "atan", header: "<math.h>".} =
+    ## Calculate the arc tangent of `x`.
+    ##
+    ## **See also:**
+    ## * `arctan2 func <#arctan2,float64,float64>`_
+    ## * `tan func <#tan,float64>`_
+    runnableExamples:
+      doAssert almostEqual(arctan(1.0), 0.7853981633974483)
+      doAssert almostEqual(radToDeg(arctan(1.0)), 45.0)
+  func arctan2*(y, x: float32): float32 {.importc: "atan2f", header: "<math.h>".}
+  func arctan2*(y, x: float64): float64 {.importc: "atan2", header: "<math.h>".} =
+    ## Calculate the arc tangent of `y/x`.
+    ##
+    ## It produces correct results even when the resulting angle is near
+    ## `PI/2` or `-PI/2` (`x` near 0).
+    ##
+    ## **See also:**
+    ## * `arctan func <#arctan,float64>`_
+    runnableExamples:
+      doAssert almostEqual(arctan2(1.0, 0.0), PI / 2.0)
+      doAssert almostEqual(radToDeg(arctan2(1.0, 0.0)), 90.0)
+  func arcsinh*(x: float32): float32 {.importc: "asinhf", header: "<math.h>".}
+  func arcsinh*(x: float64): float64 {.importc: "asinh", header: "<math.h>".}
+    ## Computes the inverse hyperbolic sine of `x`.
+    ##
+    ## **See also:**
+    ## * `sinh func <#sinh,float64>`_
+  func arccosh*(x: float32): float32 {.importc: "acoshf", header: "<math.h>".}
+  func arccosh*(x: float64): float64 {.importc: "acosh", header: "<math.h>".}
+    ## Computes the inverse hyperbolic cosine of `x`.
+    ##
+    ## **See also:**
+    ## * `cosh func <#cosh,float64>`_
+  func arctanh*(x: float32): float32 {.importc: "atanhf", header: "<math.h>".}
+  func arctanh*(x: float64): float64 {.importc: "atanh", header: "<math.h>".}
+    ## Computes the inverse hyperbolic tangent of `x`.
+    ##
+    ## **See also:**
+    ## * `tanh func <#tanh,float64>`_
 
 else: # JS
-  proc log10*(x: float32): float32 {.importc: "Math.log10", nodecl.}
-  proc log10*(x: float64): float64 {.importc: "Math.log10", nodecl.}
-  proc log2*(x: float32): float32 {.importc: "Math.log2", nodecl.}
-  proc log2*(x: float64): float64 {.importc: "Math.log2", nodecl.}
-  proc exp*(x: float32): float32 {.importc: "Math.exp", nodecl.}
-  proc exp*(x: float64): float64 {.importc: "Math.exp", nodecl.}
-
-  proc sin*[T: float32|float64](x: T): T {.importc: "Math.sin", nodecl.}
-  proc cos*[T: float32|float64](x: T): T {.importc: "Math.cos", nodecl.}
-  proc tan*[T: float32|float64](x: T): T {.importc: "Math.tan", nodecl.}
-
-  proc sinh*[T: float32|float64](x: T): T {.importc: "Math.sinh", nodecl.}
-  proc cosh*[T: float32|float64](x: T): T {.importc: "Math.cosh", nodecl.}
-  proc tanh*[T: float32|float64](x: T): T {.importc: "Math.tanh", nodecl.}
-
-  proc arcsin*[T: float32|float64](x: T): T {.importc: "Math.asin", nodecl.}
-  proc arccos*[T: float32|float64](x: T): T {.importc: "Math.acos", nodecl.}
-  proc arctan*[T: float32|float64](x: T): T {.importc: "Math.atan", nodecl.}
-  proc arctan2*[T: float32|float64](y, x: T): T {.importC: "Math.atan2", nodecl.}
-
-  proc arcsinh*[T: float32|float64](x: T): T {.importc: "Math.asinh", nodecl.}
-  proc arccosh*[T: float32|float64](x: T): T {.importc: "Math.acosh", nodecl.}
-  proc arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.}
-
-proc cot*[T: float32|float64](x: T): T = 1.0 / tan(x)
-  ## Computes the cotangent of `x`
-proc sec*[T: float32|float64](x: T): T = 1.0 / cos(x)
-  ## Computes the secant of `x`.
-proc csc*[T: float32|float64](x: T): T = 1.0 / sin(x)
-  ## Computes the cosecant of `x`
-
-proc coth*[T: float32|float64](x: T): T = 1.0 / tanh(x)
-  ## Computes the hyperbolic cotangent of `x`
-proc sech*[T: float32|float64](x: T): T = 1.0 / cosh(x)
-  ## Computes the hyperbolic secant of `x`
-proc csch*[T: float32|float64](x: T): T = 1.0 / sinh(x)
-  ## Computes the hyperbolic cosecant of `x`
-
-proc arccot*[T: float32|float64](x: T): T = arctan(1.0 / x)
-  ## Computes the inverse cotangent of `x`
-proc arcsec*[T: float32|float64](x: T): T = arccos(1.0 / x)
-  ## Computes the inverse secant of `x`
-proc arccsc*[T: float32|float64](x: T): T = arcsin(1.0 / x)
-  ## Computes the inverse cosecant of `x`
-
-proc arccoth*[T: float32|float64](x: T): T = arctanh(1.0 / x)
-  ## Computes the inverse hyperbolic cotangent of `x`
-proc arcsech*[T: float32|float64](x: T): T = arccosh(1.0 / x)
-  ## Computes the inverse hyperbolic secant of `x`
-proc arccsch*[T: float32|float64](x: T): T = arcsinh(1.0 / x)
-  ## Computes the inverse hyperbolic cosecant of `x`
-
-when not defined(JS): # C
-  proc hypot*(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>".}
-  proc hypot*(x, y: float64): float64 {.importc: "hypot", header: "<math.h>".}
-    ## Computes the hypotenuse of a right-angle triangle with `x` and
-    ## `y` as its base and height. Equivalent to ``sqrt(x*x + y*y)``.
-
-  proc pow*(x, y: float32): float32 {.importc: "powf", header: "<math.h>".}
-  proc pow*(x, y: float64): float64 {.importc: "pow", header: "<math.h>".}
-    ## computes x to power raised of y.
+  func log10*(x: float32): float32 {.importc: "Math.log10", nodecl.}
+  func log10*(x: float64): float64 {.importc: "Math.log10", nodecl.}
+  func log2*(x: float32): float32 {.importc: "Math.log2", nodecl.}
+  func log2*(x: float64): float64 {.importc: "Math.log2", nodecl.}
+  func exp*(x: float32): float32 {.importc: "Math.exp", nodecl.}
+  func exp*(x: float64): float64 {.importc: "Math.exp", nodecl.}
+
+  func sin*[T: float32|float64](x: T): T {.importc: "Math.sin", nodecl.}
+  func cos*[T: float32|float64](x: T): T {.importc: "Math.cos", nodecl.}
+  func tan*[T: float32|float64](x: T): T {.importc: "Math.tan", nodecl.}
+
+  func sinh*[T: float32|float64](x: T): T {.importc: "Math.sinh", nodecl.}
+  func cosh*[T: float32|float64](x: T): T {.importc: "Math.cosh", nodecl.}
+  func tanh*[T: float32|float64](x: T): T {.importc: "Math.tanh", nodecl.}
+
+  func arcsin*[T: float32|float64](x: T): T {.importc: "Math.asin", nodecl.}
+    # keep this as generic or update test in `tvmops.nim` to make sure we
+    # keep testing that generic importc procs work
+  func arccos*[T: float32|float64](x: T): T {.importc: "Math.acos", nodecl.}
+  func arctan*[T: float32|float64](x: T): T {.importc: "Math.atan", nodecl.}
+  func arctan2*[T: float32|float64](y, x: T): T {.importc: "Math.atan2", nodecl.}
+
+  func arcsinh*[T: float32|float64](x: T): T {.importc: "Math.asinh", nodecl.}
+  func arccosh*[T: float32|float64](x: T): T {.importc: "Math.acosh", nodecl.}
+  func arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.}
+
+func cot*[T: float32|float64](x: T): T = 1.0 / tan(x)
+  ## Computes the cotangent of `x` (`1/tan(x)`).
+func sec*[T: float32|float64](x: T): T = 1.0 / cos(x)
+  ## Computes the secant of `x` (`1/cos(x)`).
+func csc*[T: float32|float64](x: T): T = 1.0 / sin(x)
+  ## Computes the cosecant of `x` (`1/sin(x)`).
+
+func coth*[T: float32|float64](x: T): T = 1.0 / tanh(x)
+  ## Computes the hyperbolic cotangent of `x` (`1/tanh(x)`).
+func sech*[T: float32|float64](x: T): T = 1.0 / cosh(x)
+  ## Computes the hyperbolic secant of `x` (`1/cosh(x)`).
+func csch*[T: float32|float64](x: T): T = 1.0 / sinh(x)
+  ## Computes the hyperbolic cosecant of `x` (`1/sinh(x)`).
+
+func arccot*[T: float32|float64](x: T): T = arctan(1.0 / x)
+  ## Computes the inverse cotangent of `x` (`arctan(1/x)`).
+func arcsec*[T: float32|float64](x: T): T = arccos(1.0 / x)
+  ## Computes the inverse secant of `x` (`arccos(1/x)`).
+func arccsc*[T: float32|float64](x: T): T = arcsin(1.0 / x)
+  ## Computes the inverse cosecant of `x` (`arcsin(1/x)`).
+
+func arccoth*[T: float32|float64](x: T): T = arctanh(1.0 / x)
+  ## Computes the inverse hyperbolic cotangent of `x` (`arctanh(1/x)`).
+func arcsech*[T: float32|float64](x: T): T = arccosh(1.0 / x)
+  ## Computes the inverse hyperbolic secant of `x` (`arccosh(1/x)`).
+func arccsch*[T: float32|float64](x: T): T = arcsinh(1.0 / x)
+  ## Computes the inverse hyperbolic cosecant of `x` (`arcsinh(1/x)`).
+
+const windowsCC89 = defined(windows) and defined(bcc)
+
+when not defined(js): # C
+  func hypot*(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>".}
+  func hypot*(x, y: float64): float64 {.importc: "hypot", header: "<math.h>".} =
+    ## Computes the length of the hypotenuse of a right-angle triangle with
+    ## `x` as its base and `y` as its height. Equivalent to `sqrt(x*x + y*y)`.
+    runnableExamples:
+      doAssert almostEqual(hypot(3.0, 4.0), 5.0)
+  func pow*(x, y: float32): float32 {.importc: "powf", header: "<math.h>".}
+  func pow*(x, y: float64): float64 {.importc: "pow", header: "<math.h>".} =
+    ## Computes `x` raised to the power of `y`.
     ##
-    ## To compute power between integers, use `^` e.g. 2 ^ 6
-
-  proc erf*(x: float32): float32 {.importc: "erff", header: "<math.h>".}
-  proc erf*(x: float64): float64 {.importc: "erf", header: "<math.h>".}
-    ## The error function
-  proc erfc*(x: float32): float32 {.importc: "erfcf", header: "<math.h>".}
-  proc erfc*(x: float64): float64 {.importc: "erfc", header: "<math.h>".}
-    ## The complementary error function
-
-  proc gamma*(x: float32): float32 {.importc: "tgammaf", header: "<math.h>".}
-  proc gamma*(x: float64): float64 {.importc: "tgamma", header: "<math.h>".}
-    ## The gamma function
-  proc tgamma*(x: float32): float32
-    {.deprecated: "use gamma instead", importc: "tgammaf", header: "<math.h>".}
-  proc tgamma*(x: float64): float64
-    {.deprecated: "use gamma instead", importc: "tgamma", header: "<math.h>".}
-    ## The gamma function
-    ## **Deprecated since version 0.19.0**: Use ``gamma`` instead.
-  proc lgamma*(x: float32): float32 {.importc: "lgammaf", header: "<math.h>".}
-  proc lgamma*(x: float64): float64 {.importc: "lgamma", header: "<math.h>".}
-    ## Natural log of the gamma function
-
-  proc floor*(x: float32): float32 {.importc: "floorf", header: "<math.h>".}
-  proc floor*(x: float64): float64 {.importc: "floor", header: "<math.h>".}
-    ## Computes the floor function (i.e., the largest integer not greater than `x`)
+    ## To compute the power between integers (e.g. 2^6),
+    ## use the `^ func <#^,T,Natural>`_.
     ##
-    ## .. code-block:: nim
-    ##  echo floor(-3.5) ## -4.0
+    ## **See also:**
+    ## * `^ func <#^,T,Natural>`_
+    ## * `sqrt func <#sqrt,float64>`_
+    ## * `cbrt func <#cbrt,float64>`_
+    runnableExamples:
+      doAssert almostEqual(pow(100, 1.5), 1000.0)
+      doAssert almostEqual(pow(16.0, 0.5), 4.0)
+
+  # TODO: add C89 version on windows
+  when not windowsCC89:
+    func erf*(x: float32): float32 {.importc: "erff", header: "<math.h>".}
+    func erf*(x: float64): float64 {.importc: "erf", header: "<math.h>".}
+      ## Computes the [error function](https://en.wikipedia.org/wiki/Error_function) for `x`.
+      ##
+      ## **Note:** Not available for the JS backend.
+    func erfc*(x: float32): float32 {.importc: "erfcf", header: "<math.h>".}
+    func erfc*(x: float64): float64 {.importc: "erfc", header: "<math.h>".}
+      ## Computes the [complementary error function](https://en.wikipedia.org/wiki/Error_function#Complementary_error_function) for `x`.
+      ##
+      ## **Note:** Not available for the JS backend.
+    func gamma*(x: float32): float32 {.importc: "tgammaf", header: "<math.h>".}
+    func gamma*(x: float64): float64 {.importc: "tgamma", header: "<math.h>".} =
+      ## Computes the [gamma function](https://en.wikipedia.org/wiki/Gamma_function) for `x`.
+      ##
+      ## **Note:** Not available for the JS backend.
+      ##
+      ## **See also:**
+      ## * `lgamma func <#lgamma,float64>`_ for the natural logarithm of the gamma function
+      runnableExamples:
+        doAssert almostEqual(gamma(1.0), 1.0)
+        doAssert almostEqual(gamma(4.0), 6.0)
+        doAssert almostEqual(gamma(11.0), 3628800.0)
+    func lgamma*(x: float32): float32 {.importc: "lgammaf", header: "<math.h>".}
+    func lgamma*(x: float64): float64 {.importc: "lgamma", header: "<math.h>".} =
+      ## Computes the natural logarithm of the gamma function for `x`.
+      ##
+      ## **Note:** Not available for the JS backend.
+      ##
+      ## **See also:**
+      ## * `gamma func <#gamma,float64>`_ for gamma function
 
-  proc ceil*(x: float32): float32 {.importc: "ceilf", header: "<math.h>".}
-  proc ceil*(x: float64): float64 {.importc: "ceil", header: "<math.h>".}
-    ## Computes the ceiling function (i.e., the smallest integer not less than `x`)
+  func floor*(x: float32): float32 {.importc: "floorf", header: "<math.h>".}
+  func floor*(x: float64): float64 {.importc: "floor", header: "<math.h>".} =
+    ## Computes the floor function (i.e. the largest integer not greater than `x`).
     ##
-    ## .. code-block:: nim
-    ##  echo ceil(-2.1) ## -2.0
-
-  when defined(windows) and (defined(vcc) or defined(bcc)):
+    ## **See also:**
+    ## * `ceil func <#ceil,float64>`_
+    ## * `round func <#round,float64>`_
+    ## * `trunc func <#trunc,float64>`_
+    runnableExamples:
+      doAssert floor(2.1)  == 2.0
+      doAssert floor(2.9)  == 2.0
+      doAssert floor(-3.5) == -4.0
+
+  func ceil*(x: float32): float32 {.importc: "ceilf", header: "<math.h>".}
+  func ceil*(x: float64): float64 {.importc: "ceil", header: "<math.h>".} =
+    ## Computes the ceiling function (i.e. the smallest integer not smaller
+    ## than `x`).
+    ##
+    ## **See also:**
+    ## * `floor func <#floor,float64>`_
+    ## * `round func <#round,float64>`_
+    ## * `trunc func <#trunc,float64>`_
+    runnableExamples:
+      doAssert ceil(2.1)  == 3.0
+      doAssert ceil(2.9)  == 3.0
+      doAssert ceil(-2.1) == -2.0
+
+  when windowsCC89:
     # MSVC 2010 don't have trunc/truncf
     # this implementation was inspired by Go-lang Math.Trunc
-    proc truncImpl(f: float64): float64 =
+    func truncImpl(f: float64): float64 =
       const
-        mask : uint64 = 0x7FF
+        mask: uint64 = 0x7FF
         shift: uint64 = 64 - 12
-        bias : uint64 = 0x3FF
+        bias: uint64 = 0x3FF
 
       if f < 1:
         if f < 0: return -truncImpl(-f)
@@ -332,16 +717,16 @@ when not defined(JS): # C
       let e = (x shr shift) and mask - bias
 
       # Keep the top 12+e bits, the integer part; clear the rest.
-      if e < 64-12:
-        x = x and (not (1'u64 shl (64'u64-12'u64-e) - 1'u64))
+      if e < 64 - 12:
+        x = x and (not (1'u64 shl (64'u64 - 12'u64 - e) - 1'u64))
 
       result = cast[float64](x)
 
-    proc truncImpl(f: float32): float32 =
+    func truncImpl(f: float32): float32 =
       const
-        mask : uint32 = 0xFF
+        mask: uint32 = 0xFF
         shift: uint32 = 32 - 9
-        bias : uint32 = 0x7F
+        bias: uint32 = 0x7F
 
       if f < 1:
         if f < 0: return -truncImpl(-f)
@@ -352,131 +737,338 @@ when not defined(JS): # C
       let e = (x shr shift) and mask - bias
 
       # Keep the top 9+e bits, the integer part; clear the rest.
-      if e < 32-9:
-        x = x and (not (1'u32 shl (32'u32-9'u32-e) - 1'u32))
+      if e < 32 - 9:
+        x = x and (not (1'u32 shl (32'u32 - 9'u32 - e) - 1'u32))
 
       result = cast[float32](x)
 
-    proc trunc*(x: float64): float64 =
+    func trunc*(x: float64): float64 =
       if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
       result = truncImpl(x)
 
-    proc trunc*(x: float32): float32 =
+    func trunc*(x: float32): float32 =
       if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
       result = truncImpl(x)
 
-    proc round0[T: float32|float64](x: T): T =
+    func round*[T: float32|float64](x: T): T =
       ## Windows compilers prior to MSVC 2012 do not implement 'round',
       ## 'roundl' or 'roundf'.
       result = if x < 0.0: ceil(x - T(0.5)) else: floor(x + T(0.5))
   else:
-    proc round0(x: float32): float32 {.importc: "roundf", header: "<math.h>".}
-    proc round0(x: float64): float64 {.importc: "round", header: "<math.h>".}
-      ## Rounds a float to zero decimal places.  Used internally by the round
-      ## function when the specified number of places is 0.
-
-    proc trunc*(x: float32): float32 {.importc: "truncf", header: "<math.h>".}
-    proc trunc*(x: float64): float64 {.importc: "trunc", header: "<math.h>".}
-      ## Truncates `x` to the decimal point
+    func round*(x: float32): float32 {.importc: "roundf", header: "<math.h>".}
+    func round*(x: float64): float64 {.importc: "round", header: "<math.h>".} =
+      ## Rounds a float to zero decimal places.
       ##
-      ## .. code-block:: nim
-      ##  echo trunc(PI) # 3.0
-
-  proc fmod*(x, y: float32): float32 {.deprecated, importc: "fmodf", header: "<math.h>".}
-  proc fmod*(x, y: float64): float64 {.deprecated, importc: "fmod", header: "<math.h>".}
-    ## Computes the remainder of `x` divided by `y`
+      ## Used internally by the `round func <#round,T,int>`_
+      ## when the specified number of places is 0.
+      ##
+      ## **See also:**
+      ## * `round func <#round,T,int>`_ for rounding to the specific
+      ##   number of decimal places
+      ## * `floor func <#floor,float64>`_
+      ## * `ceil func <#ceil,float64>`_
+      ## * `trunc func <#trunc,float64>`_
+      runnableExamples:
+        doAssert round(3.4) == 3.0
+        doAssert round(3.5) == 4.0
+        doAssert round(4.5) == 5.0
+
+    func trunc*(x: float32): float32 {.importc: "truncf", header: "<math.h>".}
+    func trunc*(x: float64): float64 {.importc: "trunc", header: "<math.h>".} =
+      ## Truncates `x` to the decimal point.
+      ##
+      ## **See also:**
+      ## * `floor func <#floor,float64>`_
+      ## * `ceil func <#ceil,float64>`_
+      ## * `round func <#round,float64>`_
+      runnableExamples:
+        doAssert trunc(PI) == 3.0
+        doAssert trunc(-1.85) == -1.0
+
+  func `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>".}
+  func `mod`*(x, y: float64): float64 {.importc: "fmod", header: "<math.h>".} =
+    ## Computes the modulo operation for float values (the remainder of `x` divided by `y`).
     ##
-    ## .. code-block:: nim
-    ##  echo fmod(-2.5, 0.3) ## -0.1
+    ## **See also:**
+    ## * `floorMod func <#floorMod,T,T>`_ for Python-like (`%` operator) behavior
+    runnableExamples:
+      doAssert  6.5 mod  2.5 ==  1.5
+      doAssert -6.5 mod  2.5 == -1.5
+      doAssert  6.5 mod -2.5 ==  1.5
+      doAssert -6.5 mod -2.5 == -1.5
 
-  proc `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>".}
-  proc `mod`*(x, y: float64): float64 {.importc: "fmod", header: "<math.h>".}
-    ## Computes the modulo operation for float operators.
 else: # JS
-  proc hypot*[T: float32|float64](x, y: T): T = return sqrt(x*x + y*y)
-  proc pow*(x, y: float32): float32 {.importC: "Math.pow", nodecl.}
-  proc pow*(x, y: float64): float64 {.importc: "Math.pow", nodecl.}
-  proc floor*(x: float32): float32 {.importc: "Math.floor", nodecl.}
-  proc floor*(x: float64): float64 {.importc: "Math.floor", nodecl.}
-  proc ceil*(x: float32): float32 {.importc: "Math.ceil", nodecl.}
-  proc ceil*(x: float64): float64 {.importc: "Math.ceil", nodecl.}
-  proc round0(x: float): float {.importc: "Math.round", nodecl.}
-  proc trunc*(x: float32): float32 {.importc: "Math.trunc", nodecl.}
-  proc trunc*(x: float64): float64 {.importc: "Math.trunc", nodecl.}
-
-  proc `mod`*(x, y: float32): float32 {.importcpp: "# % #".}
-  proc `mod`*(x, y: float64): float64 {.importcpp: "# % #".}
-  ## Computes the modulo operation for float operators.
-
-proc round*[T: float32|float64](x: T, places: int = 0): T =
-  ## Round a floating point number.
-  ##
-  ## If `places` is 0 (or omitted), round to the nearest integral value
-  ## following normal mathematical rounding rules (e.g. `round(54.5) -> 55.0`).
-  ## If `places` is greater than 0, round to the given number of decimal
-  ## places, e.g. `round(54.346, 2) -> 54.35`.
-  ## If `places` is negative, round to the left of the decimal place, e.g.
-  ## `round(537.345, -1) -> 540.0`
+  func hypot*(x, y: float32): float32 {.importc: "Math.hypot", varargs, nodecl.}
+  func hypot*(x, y: float64): float64 {.importc: "Math.hypot", varargs, nodecl.}
+  func pow*(x, y: float32): float32 {.importc: "Math.pow", nodecl.}
+  func pow*(x, y: float64): float64 {.importc: "Math.pow", nodecl.}
+  func floor*(x: float32): float32 {.importc: "Math.floor", nodecl.}
+  func floor*(x: float64): float64 {.importc: "Math.floor", nodecl.}
+  func ceil*(x: float32): float32 {.importc: "Math.ceil", nodecl.}
+  func ceil*(x: float64): float64 {.importc: "Math.ceil", nodecl.}
+
+  when (NimMajor, NimMinor) < (1, 5) or defined(nimLegacyJsRound):
+    func round*(x: float): float {.importc: "Math.round", nodecl.}
+  else:
+    func jsRound(x: float): float {.importc: "Math.round", nodecl.}
+    func round*[T: float64 | float32](x: T): T =
+      if x >= 0: result = jsRound(x)
+      else:
+        result = ceil(x)
+        if result - x >= T(0.5):
+          result -= T(1.0)
+  func trunc*(x: float32): float32 {.importc: "Math.trunc", nodecl.}
+  func trunc*(x: float64): float64 {.importc: "Math.trunc", nodecl.}
+
+  func `mod`*(x, y: float32): float32 {.importjs: "(# % #)".}
+  func `mod`*(x, y: float64): float64 {.importjs: "(# % #)".} =
+    ## Computes the modulo operation for float values (the remainder of `x` divided by `y`).
+    runnableExamples:
+      doAssert  6.5 mod  2.5 ==  1.5
+      doAssert -6.5 mod  2.5 == -1.5
+      doAssert  6.5 mod -2.5 ==  1.5
+      doAssert -6.5 mod -2.5 == -1.5
+  
+  func divmod*[T:SomeInteger](num, denom: T): (T, T) = 
+    runnableExamples:
+      doAssert  divmod(5, 2) ==  (2, 1)
+      doAssert divmod(5, -3) == (-1, 2)
+    result[0] = num div denom
+    result[1] = num mod denom
+  
+
+func round*[T: float32|float64](x: T, places: int): T =
+  ## Decimal rounding on a binary floating point number.
+  ##
+  ## This function is NOT reliable. Floating point numbers cannot hold
+  ## non integer decimals precisely. If `places` is 0 (or omitted),
+  ## round to the nearest integral value following normal mathematical
+  ## rounding rules (e.g.  `round(54.5) -> 55.0`). If `places` is
+  ## greater than 0, round to the given number of decimal places,
+  ## e.g. `round(54.346, 2) -> 54.350000000000001421…`. If `places` is negative, round
+  ## to the left of the decimal place, e.g. `round(537.345, -1) -> 540.0`.
+  runnableExamples:
+    doAssert round(PI, 2) == 3.14
+    doAssert round(PI, 4) == 3.1416
+
   if places == 0:
-    result = round0(x)
+    result = round(x)
   else:
-    var mult = pow(10.0, places.T)
-    result = round0(x*mult)/mult
-
-proc floorDiv*[T: SomeInteger](x, y: T): T =
-  ## Floor division is conceptually defined as ``floor(x / y)``.
-  ## This is different from the ``div`` operator, which is defined
-  ## as ``trunc(x / y)``. That is, ``div`` rounds towards ``0`` and ``floorDiv``
-  ## rounds down.
+    var mult = pow(10.0, T(places))
+    result = round(x * mult) / mult
+
+func floorDiv*[T: SomeInteger](x, y: T): T =
+  ## Floor division is conceptually defined as `floor(x / y)`.
+  ##
+  ## This is different from the `system.div <system.html#div,int,int>`_
+  ## operator, which is defined as `trunc(x / y)`.
+  ## That is, `div` rounds towards `0` and `floorDiv` rounds down.
+  ##
+  ## **See also:**
+  ## * `system.div proc <system.html#div,int,int>`_ for integer division
+  ## * `floorMod func <#floorMod,T,T>`_ for Python-like (`%` operator) behavior
+  runnableExamples:
+    doAssert floorDiv( 13,  3) ==  4
+    doAssert floorDiv(-13,  3) == -5
+    doAssert floorDiv( 13, -3) == -5
+    doAssert floorDiv(-13, -3) ==  4
+
   result = x div y
   let r = x mod y
   if (r > 0 and y < 0) or (r < 0 and y > 0): result.dec 1
 
-proc floorMod*[T: SomeNumber](x, y: T): T =
-  ## Floor modulus is conceptually defined as ``x - (floorDiv(x, y) * y).
-  ## This proc behaves the same as the ``%`` operator in python.
+func floorMod*[T: SomeNumber](x, y: T): T =
+  ## Floor modulo is conceptually defined as `x - (floorDiv(x, y) * y)`.
+  ##
+  ## This func behaves the same as the `%` operator in Python.
+  ##
+  ## **See also:**
+  ## * `mod func <#mod,float64,float64>`_
+  ## * `floorDiv func <#floorDiv,T,T>`_
+  runnableExamples:
+    doAssert floorMod( 13,  3) ==  1
+    doAssert floorMod(-13,  3) ==  2
+    doAssert floorMod( 13, -3) == -2
+    doAssert floorMod(-13, -3) == -1
+
   result = x mod y
   if (result > 0 and y < 0) or (result < 0 and y > 0): result += y
 
-when not defined(JS):
-  proc c_frexp*(x: float32, exponent: var int32): float32 {.
-    importc: "frexp", header: "<math.h>".}
-  proc c_frexp*(x: float64, exponent: var int32): float64 {.
-    importc: "frexp", header: "<math.h>".}
-  proc frexp*[T, U](x: T, exponent: var U): T =
-    ## Split a number into mantissa and exponent.
-    ## `frexp` calculates the mantissa m (a float greater than or equal to 0.5
-    ## and less than 1) and the integer value n such that `x` (the original
-    ## float value) equals m * 2**n. frexp stores n in `exponent` and returns
-    ## m.
-    var exp: int32
-    result = c_frexp(x, exp)
-    exponent = exp
-else:
-  proc frexp*[T: float32|float64](x: T, exponent: var int): T =
+func euclDiv*[T: SomeInteger](x, y: T): T {.since: (1, 5, 1).} =
+  ## Returns euclidean division of `x` by `y`.
+  runnableExamples:
+    doAssert euclDiv(13, 3) == 4
+    doAssert euclDiv(-13, 3) == -5
+    doAssert euclDiv(13, -3) == -4
+    doAssert euclDiv(-13, -3) == 5
+
+  result = x div y
+  if x mod y < 0:
+    if y > 0:
+      dec result
+    else:
+      inc result
+
+func euclMod*[T: SomeNumber](x, y: T): T {.since: (1, 5, 1).} =
+  ## Returns euclidean modulo of `x` by `y`.
+  ## `euclMod(x, y)` is non-negative.
+  runnableExamples:
+    doAssert euclMod(13, 3) == 1
+    doAssert euclMod(-13, 3) == 2
+    doAssert euclMod(13, -3) == 1
+    doAssert euclMod(-13, -3) == 2
+
+  result = x mod y
+  if result < 0:
+    result += abs(y)
+
+func ceilDiv*[T: SomeInteger](x, y: T): T {.inline, since: (1, 5, 1).} =
+  ## Ceil division is conceptually defined as `ceil(x / y)`.
+  ##
+  ## Assumes `x >= 0` and `y > 0` (and `x + y - 1 <= high(T)` if T is SomeUnsignedInt).
+  ##
+  ## This is different from the `system.div <system.html#div,int,int>`_
+  ## operator, which works like `trunc(x / y)`.
+  ## That is, `div` rounds towards `0` and `ceilDiv` rounds up.
+  ##
+  ## This function has the above input limitation, because that allows the
+  ## compiler to generate faster code and it is rarely used with
+  ## negative values or unsigned integers close to `high(T)/2`.
+  ## If you need a `ceilDiv` that works with any input, see:
+  ## https://github.com/demotomohiro/divmath.
+  ##
+  ## **See also:**
+  ## * `system.div proc <system.html#div,int,int>`_ for integer division
+  ## * `floorDiv func <#floorDiv,T,T>`_ for integer division which rounds down.
+  runnableExamples:
+    assert ceilDiv(12, 3) ==  4
+    assert ceilDiv(13, 3) ==  5
+
+  when sizeof(T) == 8:
+    type UT = uint64
+  elif sizeof(T) == 4:
+    type UT = uint32
+  elif sizeof(T) == 2:
+    type UT = uint16
+  elif sizeof(T) == 1:
+    type UT = uint8
+  else:
+    {.fatal: "Unsupported int type".}
+
+  assert x >= 0 and y > 0
+  when T is SomeUnsignedInt:
+    assert x + y - 1 >= x
+
+  # If the divisor is const, the backend C/C++ compiler generates code without a `div`
+  # instruction, as it is slow on most CPUs.
+  # If the divisor is a power of 2 and a const unsigned integer type, the
+  # compiler generates faster code.
+  # If the divisor is const and a signed integer, generated code becomes slower
+  # than the code with unsigned integers, because division with signed integers
+  # need to works for both positive and negative value without `idiv`/`sdiv`.
+  # That is why this code convert parameters to unsigned.
+  # This post contains a comparison of the performance of signed/unsigned integers:
+  # https://github.com/nim-lang/Nim/pull/18596#issuecomment-894420984.
+  # If signed integer arguments were not converted to unsigned integers,
+  # `ceilDiv` wouldn't work for any positive signed integer value, because
+  # `x + (y - 1)` can overflow.
+  ((x.UT + (y.UT - 1.UT)) div y.UT).T
+
+func frexp*[T: float32|float64](x: T): tuple[frac: T, exp: int] {.inline.} =
+  ## Splits `x` into a normalized fraction `frac` and an integral power of 2 `exp`,
+  ## such that `abs(frac) in 0.5..<1` and `x == frac * 2 ^ exp`, except for special
+  ## cases shown below.
+  runnableExamples:
+    doAssert frexp(8.0) == (0.5, 4)
+    doAssert frexp(-8.0) == (-0.5, 4)
+    doAssert frexp(0.0) == (0.0, 0)
+
+    # special cases:
+    when sizeof(int) == 8:
+      doAssert frexp(-0.0).frac.signbit # signbit preserved for +-0
+      doAssert frexp(Inf).frac == Inf # +- Inf preserved
+      doAssert frexp(NaN).frac.isNaN
+
+  when not defined(js):
+    var exp: cint
+    result.frac = c_frexp2(x, exp)
+    result.exp = exp
+  else:
     if x == 0.0:
-      exponent = 0
-      result = 0.0
+      # reuse signbit implementation
+      let uintBuffer = toBitsImpl(x)
+      if (uintBuffer[1] shr 31) != 0:
+        # x is -0.0
+        result = (-0.0, 0)
+      else:
+        result = (0.0, 0)
     elif x < 0.0:
-      result = -frexp(-x, exponent)
+      result = frexp(-x)
+      result.frac = -result.frac
     else:
       var ex = trunc(log2(x))
-      exponent = int(ex)
-      result = x / pow(2.0, ex)
-      if abs(result) >= 1:
-        inc(exponent)
-        result = result / 2
-      if exponent == 1024 and result == 0.0:
-        result = 0.99999999999999988898
+      result.exp = int(ex)
+      result.frac = x / pow(2.0, ex)
+      if abs(result.frac) >= 1:
+        inc(result.exp)
+        result.frac = result.frac / 2
+      if result.exp == 1024 and result.frac == 0.0:
+        result.frac = 0.99999999999999988898
+
+func frexp*[T: float32|float64](x: T, exponent: var int): T {.inline.} =
+  ## Overload of `frexp` that calls `(result, exponent) = frexp(x)`.
+  runnableExamples:
+    var x: int
+    doAssert frexp(5.0, x) == 0.625
+    doAssert x == 3
+
+  (result, exponent) = frexp(x)
+
+
+when not defined(js):
+  when windowsCC89:
+    # taken from Go-lang Math.Log2
+    const ln2 = 0.693147180559945309417232121458176568075500134360255254120680009
+    template log2Impl[T](x: T): T =
+      var exp: int
+      var frac = frexp(x, exp)
+      # Make sure exact powers of two give an exact answer.
+      # Don't depend on Log(0.5)*(1/Ln2)+exp being exactly exp-1.
+      if frac == 0.5: return T(exp - 1)
+      log10(frac) * (1 / ln2) + T(exp)
+
+    func log2*(x: float32): float32 = log2Impl(x)
+    func log2*(x: float64): float64 = log2Impl(x)
+      ## Log2 returns the binary logarithm of x.
+      ## The special cases are the same as for Log.
 
-proc splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] =
-  ## Breaks `x` into an integral and a fractional part.
+  else:
+    func log2*(x: float32): float32 {.importc: "log2f", header: "<math.h>".}
+    func log2*(x: float64): float64 {.importc: "log2", header: "<math.h>".} =
+      ## Computes the binary logarithm (base 2) of `x`.
+      ##
+      ## **See also:**
+      ## * `log func <#log,T,T>`_
+      ## * `log10 func <#log10,float64>`_
+      ## * `ln func <#ln,float64>`_
+      runnableExamples:
+        doAssert almostEqual(log2(8.0), 3.0)
+        doAssert almostEqual(log2(1.0), 0.0)
+        doAssert almostEqual(log2(0.0), -Inf)
+        doAssert log2(-2.0).isNaN
+
+func splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] =
+  ## Breaks `x` into an integer and a fractional part.
   ##
-  ## Returns a tuple containing intpart and floatpart representing
-  ## the integer part and the fractional part respectively.
+  ## Returns a tuple containing `intpart` and `floatpart`, representing
+  ## the integer part and the fractional part, respectively.
   ##
   ## Both parts have the same sign as `x`.  Analogous to the `modf`
   ## function in C.
+  runnableExamples:
+    doAssert splitDecimal(5.25) == (intpart: 5.0, floatpart: 0.25)
+    doAssert splitDecimal(-2.73) == (intpart: -2.0, floatpart: -0.73)
+
   var
     absolute: T
   absolute = abs(x)
@@ -486,209 +1078,237 @@ proc splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] =
     result.intpart = -result.intpart
     result.floatpart = -result.floatpart
 
-{.pop.}
 
-proc degToRad*[T: float32|float64](d: T): T {.inline.} =
-  ## Convert from degrees to radians
-  result = T(d) * RadPerDeg
+func degToRad*[T: float32|float64](d: T): T {.inline.} =
+  ## Converts from degrees to radians.
+  ##
+  ## **See also:**
+  ## * `radToDeg func <#radToDeg,T>`_
+  runnableExamples:
+    doAssert almostEqual(degToRad(180.0), PI)
+
+  result = d * T(RadPerDeg)
+
+func radToDeg*[T: float32|float64](d: T): T {.inline.} =
+  ## Converts from radians to degrees.
+  ##
+  ## **See also:**
+  ## * `degToRad func <#degToRad,T>`_
+  runnableExamples:
+    doAssert almostEqual(radToDeg(2 * PI), 360.0)
 
-proc radToDeg*[T: float32|float64](d: T): T {.inline.} =
-  ## Convert from radians to degrees
-  result = T(d) / RadPerDeg
+  result = d / T(RadPerDeg)
+
+func sgn*[T: SomeNumber](x: T): int {.inline.} =
+  ## Sign function.
+  ##
+  ## Returns:
+  ## * `-1` for negative numbers and `NegInf`,
+  ## * `1` for positive numbers and `Inf`,
+  ## * `0` for positive zero, negative zero and `NaN`
+  runnableExamples:
+    doAssert sgn(5) == 1
+    doAssert sgn(0) == 0
+    doAssert sgn(-4.1) == -1
 
-proc sgn*[T: SomeNumber](x: T): int {.inline.} =
-  ## Sign function. Returns -1 for negative numbers and `NegInf`, 1 for
-  ## positive numbers and `Inf`, and 0 for positive zero, negative zero and
-  ## `NaN`.
   ord(T(0) < x) - ord(x < T(0))
 
 {.pop.}
 {.pop.}
 
-proc `^`*[T](x: T, y: Natural): T =
-  ## Computes ``x`` to the power ``y`. ``x`` must be non-negative, use
-  ## `pow <#pow,float,float>` for negative exponents.
-  when compiles(y >= T(0)):
-    assert y >= T(0)
-  else:
-    assert T(y) >= T(0)
-  var (x, y) = (x, y)
-  result = 1
+func sum*[T](x: openArray[T]): T =
+  ## Computes the sum of the elements in `x`.
+  ##
+  ## If `x` is empty, 0 is returned.
+  ##
+  ## **See also:**
+  ## * `prod func <#prod,openArray[T]>`_
+  ## * `cumsum func <#cumsum,openArray[T]>`_
+  ## * `cumsummed func <#cumsummed,openArray[T]>`_
+  runnableExamples:
+    doAssert sum([1, 2, 3, 4]) == 10
+    doAssert sum([-4, 3, 5]) == 4
 
-  while true:
-    if (y and 1) != 0:
-      result *= x
-    y = y shr 1
-    if y == 0:
-      break
-    x *= x
+  for i in items(x): result = result + i
+
+func prod*[T](x: openArray[T]): T =
+  ## Computes the product of the elements in `x`.
+  ##
+  ## If `x` is empty, 1 is returned.
+  ##
+  ## **See also:**
+  ## * `sum func <#sum,openArray[T]>`_
+  ## * `fac func <#fac,int>`_
+  runnableExamples:
+    doAssert prod([1, 2, 3, 4]) == 24
+    doAssert prod([-4, 3, 5]) == -60
 
-proc gcd*[T](x, y: T): T =
-  ## Computes the greatest common (positive) divisor of ``x`` and ``y``.
+  result = T(1)
+  for i in items(x): result = result * i
+
+func cumsummed*[T](x: openArray[T]): seq[T] =
+  ## Returns the cumulative (aka prefix) summation of `x`.
+  ##
+  ## If `x` is empty, `@[]` is returned.
+  ##
+  ## **See also:**
+  ## * `sum func <#sum,openArray[T]>`_
+  ## * `cumsum func <#cumsum,openArray[T]>`_ for the in-place version
+  runnableExamples:
+    doAssert cumsummed([1, 2, 3, 4]) == @[1, 3, 6, 10]
+
+  let xLen = x.len
+  if xLen == 0:
+    return @[]
+  result.setLen(xLen)
+  result[0] = x[0]
+  for i in 1 ..< xLen: result[i] = result[i - 1] + x[i]
+
+func cumsum*[T](x: var openArray[T]) =
+  ## Transforms `x` in-place (must be declared as `var`) into its
+  ## cumulative (aka prefix) summation.
+  ##
+  ## **See also:**
+  ## * `sum func <#sum,openArray[T]>`_
+  ## * `cumsummed func <#cumsummed,openArray[T]>`_ for a version which
+  ##   returns a cumsummed sequence
+  runnableExamples:
+    var a = [1, 2, 3, 4]
+    cumsum(a)
+    doAssert a == @[1, 3, 6, 10]
+
+  for i in 1 ..< x.len: x[i] = x[i - 1] + x[i]
+
+func `^`*[T: SomeNumber](x: T, y: Natural): T =
+  ## Computes `x` to the power of `y`.
+  ##
+  ## The exponent `y` must be non-negative, use
+  ## `pow <#pow,float64,float64>`_ for negative exponents.
+  ##
+  ## **See also:**
+  ## * `pow func <#pow,float64,float64>`_ for negative exponent or
+  ##   floats
+  ## * `sqrt func <#sqrt,float64>`_
+  ## * `cbrt func <#cbrt,float64>`_
+  runnableExamples:
+    doAssert -3 ^ 0 == 1
+    doAssert -3 ^ 1 == -3
+    doAssert -3 ^ 2 == 9
+
+  case y
+  of 0: result = 1
+  of 1: result = x
+  of 2: result = x * x
+  of 3: result = x * x * x
+  else:
+    var (x, y) = (x, y)
+    result = 1
+    while true:
+      if (y and 1) != 0:
+        result *= x
+      y = y shr 1
+      if y == 0:
+        break
+      x *= x
+
+func gcd*[T](x, y: T): T =
+  ## Computes the greatest common (positive) divisor of `x` and `y`.
+  ##
   ## Note that for floats, the result cannot always be interpreted as
-  ## "greatest decimal `z` such that ``z*N == x and z*M == y``
-  ## where N and M are positive integers."
+  ## "greatest decimal `z` such that `z*N == x and z*M == y`
+  ## where N and M are positive integers".
+  ##
+  ## **See also:**
+  ## * `gcd func <#gcd,SomeInteger,SomeInteger>`_ for an integer version
+  ## * `lcm func <#lcm,T,T>`_
+  runnableExamples:
+    doAssert gcd(13.5, 9.0) == 4.5
+
   var (x, y) = (x, y)
   while y != 0:
     x = x mod y
     swap x, y
   abs x
 
-proc gcd*(x, y: SomeInteger): SomeInteger =
-  ## Computes the greatest common (positive) divisor of ``x`` and ``y``.
-  ## Using binary GCD (aka Stein's) algorithm.
-  when x is SomeSignedInt:
-    var x = abs(x)
-  else:
-    var x = x
-  when y is SomeSignedInt:
-    var y = abs(y)
-  else:
-    var y = y
-
-  if x == 0:
-    return y
-  if y == 0:
-    return x
-
-  let shift = countTrailingZeroBits(x or y)
-  y = y shr countTrailingZeroBits(y)
-  while x != 0:
-    x = x shr countTrailingZeroBits(x)
-    if y > x:
-      swap y, x
-    x -= y
-  y shl shift
-
-proc lcm*[T](x, y: T): T =
-  ## Computes the least common multiple of ``x`` and ``y``.
-  x div gcd(x, y) * y
-
-when isMainModule and not defined(JS):
-  # Check for no side effect annotation
-  proc mySqrt(num: float): float {.noSideEffect.} =
-    return sqrt(num)
-
-  # check gamma function
-  assert(gamma(5.0) == 24.0) # 4!
-  assert($tgamma(5.0) == $24.0) # 4!
-  assert(lgamma(1.0) == 0.0) # ln(1.0) == 0.0
-  assert(erf(6.0) > erf(5.0))
-  assert(erfc(6.0) < erfc(5.0))
-
-when isMainModule:
-  # Function for approximate comparison of floats
-  proc `==~`(x, y: float): bool = (abs(x-y) < 1e-9)
-
-  block: # prod
-    doAssert prod([1, 2, 3, 4]) == 24
-    doAssert prod([1.5, 3.4]) == 5.1
-    let x: seq[float] = @[]
-    doAssert prod(x) == 1.0
-
-  block: # round() tests
-    # Round to 0 decimal places
-    doAssert round(54.652) ==~ 55.0
-    doAssert round(54.352) ==~ 54.0
-    doAssert round(-54.652) ==~ -55.0
-    doAssert round(-54.352) ==~ -54.0
-    doAssert round(0.0) ==~ 0.0
-    # Round to positive decimal places
-    doAssert round(-547.652, 1) ==~ -547.7
-    doAssert round(547.652, 1) ==~ 547.7
-    doAssert round(-547.652, 2) ==~ -547.65
-    doAssert round(547.652, 2) ==~ 547.65
-    # Round to negative decimal places
-    doAssert round(547.652, -1) ==~ 550.0
-    doAssert round(547.652, -2) ==~ 500.0
-    doAssert round(547.652, -3) ==~ 1000.0
-    doAssert round(547.652, -4) ==~ 0.0
-    doAssert round(-547.652, -1) ==~ -550.0
-    doAssert round(-547.652, -2) ==~ -500.0
-    doAssert round(-547.652, -3) ==~ -1000.0
-    doAssert round(-547.652, -4) ==~ 0.0
-
-  block: # splitDecimal() tests
-    doAssert splitDecimal(54.674).intpart ==~ 54.0
-    doAssert splitDecimal(54.674).floatpart ==~ 0.674
-    doAssert splitDecimal(-693.4356).intpart ==~ -693.0
-    doAssert splitDecimal(-693.4356).floatpart ==~ -0.4356
-    doAssert splitDecimal(0.0).intpart ==~ 0.0
-    doAssert splitDecimal(0.0).floatpart ==~ 0.0
-
-  block: # trunc tests for vcc
-    doAssert(trunc(-1.1) == -1)
-    doAssert(trunc(1.1) == 1)
-    doAssert(trunc(-0.1) == -0)
-    doAssert(trunc(0.1) == 0)
-
-    #special case
-    doAssert(classify(trunc(1e1000000)) == fcInf)
-    doAssert(classify(trunc(-1e1000000)) == fcNegInf)
-    doAssert(classify(trunc(0.0/0.0)) == fcNan)
-    doAssert(classify(trunc(0.0)) == fcZero)
-
-    #trick the compiler to produce signed zero
-    let
-      f_neg_one = -1.0
-      f_zero = 0.0
-      f_nan = f_zero / f_zero
-
-    doAssert(classify(trunc(f_neg_one*f_zero)) == fcNegZero)
-
-    doAssert(trunc(-1.1'f32) == -1)
-    doAssert(trunc(1.1'f32) == 1)
-    doAssert(trunc(-0.1'f32) == -0)
-    doAssert(trunc(0.1'f32) == 0)
-    doAssert(classify(trunc(1e1000000'f32)) == fcInf)
-    doAssert(classify(trunc(-1e1000000'f32)) == fcNegInf)
-    doAssert(classify(trunc(f_nan.float32)) == fcNan)
-    doAssert(classify(trunc(0.0'f32)) == fcZero)
-
-  block: # sgn() tests
-    assert sgn(1'i8) == 1
-    assert sgn(1'i16) == 1
-    assert sgn(1'i32) == 1
-    assert sgn(1'i64) == 1
-    assert sgn(1'u8) == 1
-    assert sgn(1'u16) == 1
-    assert sgn(1'u32) == 1
-    assert sgn(1'u64) == 1
-    assert sgn(-12342.8844'f32) == -1
-    assert sgn(123.9834'f64) == 1
-    assert sgn(0'i32) == 0
-    assert sgn(0'f32) == 0
-    assert sgn(NegInf) == -1
-    assert sgn(Inf) == 1
-    assert sgn(NaN) == 0
-
-  block: # fac() tests
-    try:
-      discard fac(-1)
-    except AssertionError:
-      discard
-
-    doAssert fac(0) == 1
-    doAssert fac(1) == 1
-    doAssert fac(2) == 2
-    doAssert fac(3) == 6
-    doAssert fac(4) == 24
-
-  block: # floorMod/floorDiv
-    doAssert floorDiv(8, 3) == 2
-    doAssert floorMod(8, 3) == 2
-
-    doAssert floorDiv(8, -3) == -3
-    doAssert floorMod(8, -3) == -1
+when useBuiltins:
+  ## this func uses bitwise comparisons from C compilers, which are not always available.
+  func gcd*(x, y: SomeInteger): SomeInteger =
+    ## Computes the greatest common (positive) divisor of `x` and `y`,
+    ## using the binary GCD (aka Stein's) algorithm.
+    ##
+    ## **See also:**
+    ## * `gcd func <#gcd,T,T>`_ for a float version
+    ## * `lcm func <#lcm,T,T>`_
+    runnableExamples:
+      doAssert gcd(12, 8) == 4
+      doAssert gcd(17, 63) == 1
+  
+    when x is SomeSignedInt:
+      var x = abs(x)
+    else:
+      var x = x
+    when y is SomeSignedInt:
+      var y = abs(y)
+    else:
+      var y = y
+  
+    if x == 0:
+      return y
+    if y == 0:
+      return x
+  
+    let shift = countTrailingZeroBits(x or y)
+    y = y shr countTrailingZeroBits(y)
+    while x != 0:
+      x = x shr countTrailingZeroBits(x)
+      if y > x:
+        swap y, x
+      x -= y
+    y shl shift
+  
+func gcd*[T](x: openArray[T]): T {.since: (1, 1).} =
+  ## Computes the greatest common (positive) divisor of the elements of `x`.
+  ##
+  ## **See also:**
+  ## * `gcd func <#gcd,T,T>`_ for a version with two arguments
+  runnableExamples:
+    doAssert gcd(@[13.5, 9.0]) == 4.5
 
-    doAssert floorDiv(-8, 3) == -3
-    doAssert floorMod(-8, 3) == 1
+  result = x[0]
+  for i in 1 ..< x.len:
+    result = gcd(result, x[i])
 
-    doAssert floorDiv(-8, -3) == 2
-    doAssert floorMod(-8, -3) == -2
+func lcm*[T](x, y: T): T =
+  ## Computes the least common multiple of `x` and `y`.
+  ##
+  ## **See also:**
+  ## * `gcd func <#gcd,T,T>`_
+  runnableExamples:
+    doAssert lcm(24, 30) == 120
+    doAssert lcm(13, 39) == 39
 
-    doAssert floorMod(8.0, -3.0) ==~ -1.0
-    doAssert floorMod(-8.5, 3.0) ==~ 0.5
+  x div gcd(x, y) * y
 
-  block: # log
-    doAssert log(4.0, 3.0) == ln(4.0) / ln(3.0)
+func clamp*[T](val: T, bounds: Slice[T]): T {.since: (1, 5), inline.} =
+  ## Like `system.clamp`, but takes a slice, so you can easily clamp within a range.
+  runnableExamples:
+    assert clamp(10, 1 .. 5) == 5
+    assert clamp(1, 1 .. 3) == 1
+    type A = enum a0, a1, a2, a3, a4, a5
+    assert a1.clamp(a2..a4) == a2
+    assert clamp((3, 0), (1, 0) .. (2, 9)) == (2, 9)
+    doAssertRaises(AssertionDefect): discard clamp(1, 3..2) # invalid bounds
+  assert bounds.a <= bounds.b, $(bounds.a, bounds.b)
+  clamp(val, bounds.a, bounds.b)
+
+func lcm*[T](x: openArray[T]): T {.since: (1, 1).} =
+  ## Computes the least common multiple of the elements of `x`.
+  ##
+  ## **See also:**
+  ## * `lcm func <#lcm,T,T>`_ for a version with two arguments
+  runnableExamples:
+    doAssert lcm(@[24, 30]) == 120
+
+  result = x[0]
+  for i in 1 ..< x.len:
+    result = lcm(result, x[i])