diff options
Diffstat (limited to 'lib/pure/math.nim')
-rw-r--r-- | lib/pure/math.nim | 1836 |
1 files changed, 972 insertions, 864 deletions
diff --git a/lib/pure/math.nim b/lib/pure/math.nim index ea44de6d3..ed7d2382f 100644 --- a/lib/pure/math.nim +++ b/lib/pure/math.nim @@ -12,80 +12,137 @@ ## Basic math routines for Nim. ## ## Note that the trigonometric functions naturally operate on radians. -## The helper functions `degToRad<#degToRad,T>`_ and `radToDeg<#radToDeg,T>`_ +## The helper functions `degToRad <#degToRad,T>`_ and `radToDeg <#radToDeg,T>`_ ## provide conversion between radians and degrees. -## -## .. code-block:: -## -## import math -## from sequtils import map -## -## let a = [0.0, PI/6, PI/4, PI/3, PI/2] -## -## echo a.map(sin) -## # @[0.0, 0.499…, 0.707…, 0.866…, 1.0] -## -## echo a.map(tan) -## # @[0.0, 0.577…, 0.999…, 1.732…, 1.633…e+16] -## -## echo cos(degToRad(180.0)) -## # -1.0 -## -## echo sqrt(-1.0) -## # nan (use `complex` module) -## + +runnableExamples: + from std/fenv import epsilon + from std/random import rand + + proc generateGaussianNoise(mu: float = 0.0, sigma: float = 1.0): (float, float) = + # Generates values from a normal distribution. + # Translated from https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform#Implementation. + var u1: float + var u2: float + while true: + u1 = rand(1.0) + u2 = rand(1.0) + if u1 > epsilon(float): break + let mag = sigma * sqrt(-2 * ln(u1)) + let z0 = mag * cos(2 * PI * u2) + mu + let z1 = mag * sin(2 * PI * u2) + mu + (z0, z1) + + echo generateGaussianNoise() + ## This module is available for the `JavaScript target ## <backends.html#backends-the-javascript-target>`_. ## -## **See also:** -## * `complex module<complex.html>`_ for complex numbers and their +## See also +## ======== +## * `complex module <complex.html>`_ for complex numbers and their ## mathematical operations -## * `rationals module<rationals.html>`_ for rational numbers and their +## * `rationals module <rationals.html>`_ for rational numbers and their ## mathematical operations -## * `fenv module<fenv.html>`_ for handling of floating-point rounding +## * `fenv module <fenv.html>`_ for handling of floating-point rounding ## and exceptions (overflow, zero-divide, etc.) -## * `random module<random.html>`_ for fast and tiny random number generator -## * `mersenne module<mersenne.html>`_ for Mersenne twister random number generator -## * `stats module<stats.html>`_ for statistical analysis -## * `strformat module<strformat.html>`_ for formatting floats for print -## * `system module<system.html>`_ Some very basic and trivial math operators -## are on system directly, to name a few ``shr``, ``shl``, ``xor``, ``clamp``, etc. +## * `random module <random.html>`_ for a fast and tiny random number generator +## * `stats module <stats.html>`_ for statistical analysis +## * `strformat module <strformat.html>`_ for formatting floats for printing +## * `system module <system.html>`_ for some very basic and trivial math operators +## (`shr`, `shl`, `xor`, `clamp`, etc.) import std/private/since {.push debugger: off.} # the user does not want to trace a part # of the standard library! -import bitops +import std/[bitops, fenv] +import system/countbits_impl + +when defined(nimPreviewSlimSystem): + import std/assertions + + +when not defined(js) and not defined(nimscript): # C + proc c_isnan(x: float): bool {.importc: "isnan", header: "<math.h>".} + # a generic like `x: SomeFloat` might work too if this is implemented via a C macro. + + proc c_copysign(x, y: cfloat): cfloat {.importc: "copysignf", header: "<math.h>".} + proc c_copysign(x, y: cdouble): cdouble {.importc: "copysign", header: "<math.h>".} + + proc c_signbit(x: SomeFloat): cint {.importc: "signbit", header: "<math.h>".} + + # don't export `c_frexp` in the future and remove `c_frexp2`. + func c_frexp2(x: cfloat, exponent: var cint): cfloat {. + importc: "frexpf", header: "<math.h>".} + func c_frexp2(x: cdouble, exponent: var cint): cdouble {. + importc: "frexp", header: "<math.h>".} + + type + div_t {.importc, header: "<stdlib.h>".} = object + quot: cint + rem: cint + ldiv_t {.importc, header: "<stdlib.h>".} = object + quot: clong + rem: clong + lldiv_t {.importc, header: "<stdlib.h>".} = object + quot: clonglong + rem: clonglong + + when cint isnot clong: + func divmod_c(x, y: cint): div_t {.importc: "div", header: "<stdlib.h>".} + when clong isnot clonglong: + func divmod_c(x, y: clonglong): lldiv_t {.importc: "lldiv", header: "<stdlib.h>".} + func divmod_c(x, y: clong): ldiv_t {.importc: "ldiv", header: "<stdlib.h>".} + func divmod*[T: SomeInteger](x, y: T): (T, T) {.inline.} = + ## Specialized instructions for computing both division and modulus. + ## Return structure is: (quotient, remainder) + runnableExamples: + doAssert divmod(5, 2) == (2, 1) + doAssert divmod(5, -3) == (-1, 2) + when T is cint | clong | clonglong: + when compileOption("overflowChecks"): + if y == 0: + raise new(DivByZeroDefect) + elif (x == T.low and y == -1.T): + raise new(OverflowDefect) + let res = divmod_c(x, y) + result[0] = res.quot + result[1] = res.rem + else: + result[0] = x div y + result[1] = x mod y -proc binom*(n, k: int): int {.noSideEffect.} = - ## Computes the `binomial coefficient <https://en.wikipedia.org/wiki/Binomial_coefficient>`_. +func binom*(n, k: int): int = + ## Computes the [binomial coefficient](https://en.wikipedia.org/wiki/Binomial_coefficient). runnableExamples: - doAssert binom(6, 2) == binom(6, 4) doAssert binom(6, 2) == 15 doAssert binom(-6, 2) == 1 doAssert binom(6, 0) == 1 + if k <= 0: return 1 - if 2*k > n: return binom(n, n-k) + if 2 * k > n: return binom(n, n - k) result = n for i in countup(2, k): result = (result * (n + 1 - i)) div i -proc createFactTable[N: static[int]]: array[N, int] = +func createFactTable[N: static[int]]: array[N, int] = result[0] = 1 for i in 1 ..< N: result[i] = result[i - 1] * i -proc fac*(n: int): int = - ## Computes the `factorial <https://en.wikipedia.org/wiki/Factorial>`_ of - ## a non-negative integer ``n``. +func fac*(n: int): int = + ## Computes the [factorial](https://en.wikipedia.org/wiki/Factorial) of + ## a non-negative integer `n`. ## - ## See also: - ## * `prod proc <#prod,openArray[T]>`_ + ## **See also:** + ## * `prod func <#prod,openArray[T]>`_ runnableExamples: - doAssert fac(3) == 6 + doAssert fac(0) == 1 doAssert fac(4) == 24 doAssert fac(10) == 3628800 + const factTable = when sizeof(int) == 2: createFactTable[5]() @@ -99,91 +156,199 @@ proc fac*(n: int): int = {.push checks: off, line_dir: off, stack_trace: off.} -when defined(Posix) and not defined(genode): +when defined(posix) and not defined(genode) and not defined(macosx): {.passl: "-lm".} const - PI* = 3.1415926535897932384626433 ## The circle constant PI (Ludolph's number) - TAU* = 2.0 * PI ## The circle constant TAU (= 2 * PI) - E* = 2.71828182845904523536028747 ## Euler's number + PI* = 3.1415926535897932384626433 ## The circle constant PI (Ludolph's number). + TAU* = 2.0 * PI ## The circle constant TAU (= 2 * PI). + E* = 2.71828182845904523536028747 ## Euler's number. MaxFloat64Precision* = 16 ## Maximum number of meaningful digits ## after the decimal point for Nim's - ## ``float64`` type. + ## `float64` type. MaxFloat32Precision* = 8 ## Maximum number of meaningful digits ## after the decimal point for Nim's - ## ``float32`` type. + ## `float32` type. MaxFloatPrecision* = MaxFloat64Precision ## Maximum number of ## meaningful digits ## after the decimal point - ## for Nim's ``float`` type. + ## for Nim's `float` type. MinFloatNormal* = 2.225073858507201e-308 ## Smallest normal number for Nim's - ## ``float`` type. (= 2^-1022). - RadPerDeg = PI / 180.0 ## Number of radians per degree + ## `float` type (= 2^-1022). + RadPerDeg = PI / 180.0 ## Number of radians per degree. type FloatClass* = enum ## Describes the class a floating point value belongs to. - ## This is the type that is returned by - ## `classify proc <#classify,float>`_. + ## This is the type that is returned by the + ## `classify func <#classify,float>`_. fcNormal, ## value is an ordinary nonzero floating point value fcSubnormal, ## value is a subnormal (a very small) floating point value fcZero, ## value is zero fcNegZero, ## value is the negative zero - fcNan, ## value is Not-A-Number (NAN) + fcNan, ## value is Not a Number (NaN) fcInf, ## value is positive infinity fcNegInf ## value is negative infinity -proc classify*(x: float): FloatClass = +func isNaN*(x: SomeFloat): bool {.inline, since: (1,5,1).} = + ## Returns whether `x` is a `NaN`, more efficiently than via `classify(x) == fcNan`. + ## Works even with `--passc:-ffast-math`. + runnableExamples: + doAssert NaN.isNaN + doAssert not Inf.isNaN + doAssert not isNaN(3.1415926) + + template fn: untyped = result = x != x + when nimvm: fn() + else: + when defined(js) or defined(nimscript): fn() + else: result = c_isnan(x) + +when defined(js): + import std/private/jsutils + + proc toBitsImpl(x: float): array[2, uint32] = + let buffer = newArrayBuffer(8) + let a = newFloat64Array(buffer) + let b = newUint32Array(buffer) + a[0] = x + {.emit: "`result` = `b`;".} + # result = cast[array[2, uint32]](b) + + proc jsSetSign(x: float, sgn: bool): float = + let buffer = newArrayBuffer(8) + let a = newFloat64Array(buffer) + let b = newUint32Array(buffer) + a[0] = x + {.emit: """ + function updateBit(num, bitPos, bitVal) { + return (num & ~(1 << bitPos)) | (bitVal << bitPos); + } + `b`[1] = updateBit(`b`[1], 31, `sgn`); + `result` = `a`[0]; + """.} + +proc signbit*(x: SomeFloat): bool {.inline, since: (1, 5, 1).} = + ## Returns true if `x` is negative, false otherwise. + runnableExamples: + doAssert not signbit(0.0) + doAssert signbit(-0.0) + doAssert signbit(-0.1) + doAssert not signbit(0.1) + + when defined(js): + let uintBuffer = toBitsImpl(x) + result = (uintBuffer[1] shr 31) != 0 + else: + result = c_signbit(x) != 0 + +func copySign*[T: SomeFloat](x, y: T): T {.inline, since: (1, 5, 1).} = + ## Returns a value with the magnitude of `x` and the sign of `y`; + ## this works even if x or y are NaN, infinity or zero, all of which can carry a sign. + runnableExamples: + doAssert copySign(10.0, 1.0) == 10.0 + doAssert copySign(10.0, -1.0) == -10.0 + doAssert copySign(-Inf, -0.0) == -Inf + doAssert copySign(NaN, 1.0).isNaN + doAssert copySign(1.0, copySign(NaN, -1.0)) == -1.0 + + # TODO: use signbit for examples + when defined(js): + let uintBuffer = toBitsImpl(y) + let sgn = (uintBuffer[1] shr 31) != 0 + result = jsSetSign(x, sgn) + else: + when nimvm: # not exact but we have a vmops for recent enough nim + if y > 0.0 or (y == 0.0 and 1.0 / y > 0.0): + result = abs(x) + elif y <= 0.0: + result = -abs(x) + else: # must be NaN + result = abs(x) + else: result = c_copysign(x, y) + +func classify*(x: float): FloatClass = ## Classifies a floating point value. ## - ## Returns ``x``'s class as specified by `FloatClass enum<#FloatClass>`_. + ## Returns `x`'s class as specified by the `FloatClass enum<#FloatClass>`_. runnableExamples: doAssert classify(0.3) == fcNormal doAssert classify(0.0) == fcZero - doAssert classify(0.3/0.0) == fcInf - doAssert classify(-0.3/0.0) == fcNegInf + doAssert classify(0.3 / 0.0) == fcInf + doAssert classify(-0.3 / 0.0) == fcNegInf doAssert classify(5.0e-324) == fcSubnormal # JavaScript and most C compilers have no classify: + if isNan(x): return fcNan if x == 0.0: - if 1.0/x == Inf: + if 1.0 / x == Inf: return fcZero else: return fcNegZero - if x*0.5 == x: + if x * 0.5 == x: if x > 0.0: return fcInf else: return fcNegInf - if x != x: return fcNan if abs(x) < MinFloatNormal: return fcSubnormal return fcNormal -proc isPowerOfTwo*(x: int): bool {.noSideEffect.} = - ## Returns ``true``, if ``x`` is a power of two, ``false`` otherwise. +func almostEqual*[T: SomeFloat](x, y: T; unitsInLastPlace: Natural = 4): bool {. + since: (1, 5), inline.} = + ## Checks if two float values are almost equal, using the + ## [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon). + ## + ## `unitsInLastPlace` is the max number of + ## [units in the last place](https://en.wikipedia.org/wiki/Unit_in_the_last_place) + ## difference tolerated when comparing two numbers. The larger the value, the + ## more error is allowed. A `0` value means that two numbers must be exactly the + ## same to be considered equal. + ## + ## The machine epsilon has to be scaled to the magnitude of the values used + ## and multiplied by the desired precision in ULPs unless the difference is + ## subnormal. + ## + # taken from: https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon + runnableExamples: + doAssert almostEqual(PI, 3.14159265358979) + doAssert almostEqual(Inf, Inf) + doAssert not almostEqual(NaN, NaN) + + if x == y: + # short circuit exact equality -- needed to catch two infinities of + # the same sign. And perhaps speeds things up a bit sometimes. + return true + let diff = abs(x - y) + result = diff <= epsilon(T) * abs(x + y) * T(unitsInLastPlace) or + diff < minimumPositiveValue(T) + +func isPowerOfTwo*(x: int): bool = + ## Returns `true`, if `x` is a power of two, `false` otherwise. ## ## Zero and negative numbers are not a power of two. ## - ## See also: - ## * `nextPowerOfTwo proc<#nextPowerOfTwo,int>`_ + ## **See also:** + ## * `nextPowerOfTwo func <#nextPowerOfTwo,int>`_ runnableExamples: - doAssert isPowerOfTwo(16) == true - doAssert isPowerOfTwo(5) == false - doAssert isPowerOfTwo(0) == false - doAssert isPowerOfTwo(-16) == false + doAssert isPowerOfTwo(16) + doAssert not isPowerOfTwo(5) + doAssert not isPowerOfTwo(0) + doAssert not isPowerOfTwo(-16) + return (x > 0) and ((x and (x - 1)) == 0) -proc nextPowerOfTwo*(x: int): int {.noSideEffect.} = - ## Returns ``x`` rounded up to the nearest power of two. +func nextPowerOfTwo*(x: int): int = + ## Returns `x` rounded up to the nearest power of two. ## ## Zero and negative numbers get rounded up to 1. ## - ## See also: - ## * `isPowerOfTwo proc<#isPowerOfTwo,int>`_ + ## **See also:** + ## * `isPowerOfTwo func <#isPowerOfTwo,int>`_ runnableExamples: doAssert nextPowerOfTwo(16) == 16 doAssert nextPowerOfTwo(5) == 8 doAssert nextPowerOfTwo(0) == 1 doAssert nextPowerOfTwo(-16) == 1 + result = x - 1 when defined(cpu64): result = result or (result shr 32) @@ -196,458 +361,348 @@ proc nextPowerOfTwo*(x: int): int {.noSideEffect.} = result = result or (result shr 1) result += 1 + ord(x <= 0) -proc sum*[T](x: openArray[T]): T {.noSideEffect.} = - ## Computes the sum of the elements in ``x``. - ## - ## If ``x`` is empty, 0 is returned. - ## - ## See also: - ## * `prod proc <#prod,openArray[T]>`_ - ## * `cumsum proc <#cumsum,openArray[T]>`_ - ## * `cumsummed proc <#cumsummed,openArray[T]>`_ - runnableExamples: - doAssert sum([1, 2, 3, 4]) == 10 - doAssert sum([-1.5, 2.7, -0.1]) == 1.1 - for i in items(x): result = result + i - -proc prod*[T](x: openArray[T]): T {.noSideEffect.} = - ## Computes the product of the elements in ``x``. - ## - ## If ``x`` is empty, 1 is returned. - ## - ## See also: - ## * `sum proc <#sum,openArray[T]>`_ - ## * `fac proc <#fac,int>`_ - runnableExamples: - doAssert prod([1, 2, 3, 4]) == 24 - doAssert prod([-4, 3, 5]) == -60 - result = 1.T - for i in items(x): result = result * i -proc cumsummed*[T](x: openArray[T]): seq[T] = - ## Return cumulative (aka prefix) summation of ``x``. - ## - ## See also: - ## * `sum proc <#sum,openArray[T]>`_ - ## * `cumsum proc <#cumsum,openArray[T]>`_ for the in-place version - runnableExamples: - let a = [1, 2, 3, 4] - doAssert cumsummed(a) == @[1, 3, 6, 10] - result.setLen(x.len) - result[0] = x[0] - for i in 1 ..< x.len: result[i] = result[i-1] + x[i] -proc cumsum*[T](x: var openArray[T]) = - ## Transforms ``x`` in-place (must be declared as `var`) into its - ## cumulative (aka prefix) summation. - ## - ## See also: - ## * `sum proc <#sum,openArray[T]>`_ - ## * `cumsummed proc <#cumsummed,openArray[T]>`_ for a version which - ## returns cumsummed sequence - runnableExamples: - var a = [1, 2, 3, 4] - cumsum(a) - doAssert a == @[1, 3, 6, 10] - for i in 1 ..< x.len: x[i] = x[i-1] + x[i] -{.push noSideEffect.} when not defined(js): # C - proc sqrt*(x: float32): float32 {.importc: "sqrtf", header: "<math.h>".} - proc sqrt*(x: float64): float64 {.importc: "sqrt", header: "<math.h>".} - ## Computes the square root of ``x``. - ## - ## See also: - ## * `cbrt proc <#cbrt,float64>`_ for cubic root + func sqrt*(x: float32): float32 {.importc: "sqrtf", header: "<math.h>".} + func sqrt*(x: float64): float64 {.importc: "sqrt", header: "<math.h>".} = + ## Computes the square root of `x`. ## - ## .. code-block:: nim - ## echo sqrt(4.0) ## 2.0 - ## echo sqrt(1.44) ## 1.2 - ## echo sqrt(-4.0) ## nan - proc cbrt*(x: float32): float32 {.importc: "cbrtf", header: "<math.h>".} - proc cbrt*(x: float64): float64 {.importc: "cbrt", header: "<math.h>".} - ## Computes the cubic root of ``x``. + ## **See also:** + ## * `cbrt func <#cbrt,float64>`_ for the cube root + runnableExamples: + doAssert almostEqual(sqrt(4.0), 2.0) + doAssert almostEqual(sqrt(1.44), 1.2) + func cbrt*(x: float32): float32 {.importc: "cbrtf", header: "<math.h>".} + func cbrt*(x: float64): float64 {.importc: "cbrt", header: "<math.h>".} = + ## Computes the cube root of `x`. ## - ## See also: - ## * `sqrt proc <#sqrt,float64>`_ for square root + ## **See also:** + ## * `sqrt func <#sqrt,float64>`_ for the square root + runnableExamples: + doAssert almostEqual(cbrt(8.0), 2.0) + doAssert almostEqual(cbrt(2.197), 1.3) + doAssert almostEqual(cbrt(-27.0), -3.0) + func ln*(x: float32): float32 {.importc: "logf", header: "<math.h>".} + func ln*(x: float64): float64 {.importc: "log", header: "<math.h>".} = + ## Computes the [natural logarithm](https://en.wikipedia.org/wiki/Natural_logarithm) + ## of `x`. ## - ## .. code-block:: nim - ## echo cbrt(8.0) ## 2.0 - ## echo cbrt(2.197) ## 1.3 - ## echo cbrt(-27.0) ## -3.0 - proc ln*(x: float32): float32 {.importc: "logf", header: "<math.h>".} - proc ln*(x: float64): float64 {.importc: "log", header: "<math.h>".} - ## Computes the `natural logarithm <https://en.wikipedia.org/wiki/Natural_logarithm>`_ - ## of ``x``. - ## - ## See also: - ## * `log proc <#log,T,T>`_ - ## * `log10 proc <#log10,float64>`_ - ## * `log2 proc <#log2,float64>`_ - ## * `exp proc <#exp,float64>`_ - ## - ## .. code-block:: nim - ## echo ln(exp(4.0)) ## 4.0 - ## echo ln(1.0)) ## 0.0 - ## echo ln(0.0) ## -inf - ## echo ln(-7.0) ## nan + ## **See also:** + ## * `log func <#log,T,T>`_ + ## * `log10 func <#log10,float64>`_ + ## * `log2 func <#log2,float64>`_ + ## * `exp func <#exp,float64>`_ + runnableExamples: + doAssert almostEqual(ln(exp(4.0)), 4.0) + doAssert almostEqual(ln(1.0), 0.0) + doAssert almostEqual(ln(0.0), -Inf) + doAssert ln(-7.0).isNaN else: # JS - proc sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.} - proc sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.} + func sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.} + func sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.} - proc cbrt*(x: float32): float32 {.importc: "Math.cbrt", nodecl.} - proc cbrt*(x: float64): float64 {.importc: "Math.cbrt", nodecl.} + func cbrt*(x: float32): float32 {.importc: "Math.cbrt", nodecl.} + func cbrt*(x: float64): float64 {.importc: "Math.cbrt", nodecl.} - proc ln*(x: float32): float32 {.importc: "Math.log", nodecl.} - proc ln*(x: float64): float64 {.importc: "Math.log", nodecl.} + func ln*(x: float32): float32 {.importc: "Math.log", nodecl.} + func ln*(x: float64): float64 {.importc: "Math.log", nodecl.} -proc log*[T: SomeFloat](x, base: T): T = - ## Computes the logarithm of ``x`` to base ``base``. - ## - ## See also: - ## * `ln proc <#ln,float64>`_ - ## * `log10 proc <#log10,float64>`_ - ## * `log2 proc <#log2,float64>`_ - ## * `exp proc <#exp,float64>`_ +func log*[T: SomeFloat](x, base: T): T = + ## Computes the logarithm of `x` to base `base`. ## - ## .. code-block:: nim - ## echo log(9.0, 3.0) ## 2.0 - ## echo log(32.0, 2.0) ## 5.0 - ## echo log(0.0, 2.0) ## -inf - ## echo log(-7.0, 4.0) ## nan - ## echo log(8.0, -2.0) ## nan + ## **See also:** + ## * `ln func <#ln,float64>`_ + ## * `log10 func <#log10,float64>`_ + ## * `log2 func <#log2,float64>`_ + runnableExamples: + doAssert almostEqual(log(9.0, 3.0), 2.0) + doAssert almostEqual(log(0.0, 2.0), -Inf) + doAssert log(-7.0, 4.0).isNaN + doAssert log(8.0, -2.0).isNaN + ln(x) / ln(base) when not defined(js): # C - proc log10*(x: float32): float32 {.importc: "log10f", header: "<math.h>".} - proc log10*(x: float64): float64 {.importc: "log10", header: "<math.h>".} - ## Computes the common logarithm (base 10) of ``x``. - ## - ## See also: - ## * `ln proc <#ln,float64>`_ - ## * `log proc <#log,T,T>`_ - ## * `log2 proc <#log2,float64>`_ - ## * `exp proc <#exp,float64>`_ - ## - ## .. code-block:: nim - ## echo log10(100.0) ## 2.0 - ## echo log10(0.0) ## nan - ## echo log10(-100.0) ## -inf - proc exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".} - proc exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".} - ## Computes the exponential function of ``x`` (e^x). - ## - ## See also: - ## * `ln proc <#ln,float64>`_ - ## * `log proc <#log,T,T>`_ - ## * `log10 proc <#log10,float64>`_ - ## * `log2 proc <#log2,float64>`_ - ## - ## .. code-block:: nim - ## echo exp(1.0) ## 2.718281828459045 - ## echo ln(exp(4.0)) ## 4.0 - ## echo exp(0.0) ## 1.0 - ## echo exp(-1.0) ## 0.3678794411714423 - proc sin*(x: float32): float32 {.importc: "sinf", header: "<math.h>".} - proc sin*(x: float64): float64 {.importc: "sin", header: "<math.h>".} - ## Computes the sine of ``x``. + func log10*(x: float32): float32 {.importc: "log10f", header: "<math.h>".} + func log10*(x: float64): float64 {.importc: "log10", header: "<math.h>".} = + ## Computes the common logarithm (base 10) of `x`. ## - ## See also: - ## * `cos proc <#cos,float64>`_ - ## * `tan proc <#tan,float64>`_ - ## * `arcsin proc <#arcsin,float64>`_ - ## * `sinh proc <#sinh,float64>`_ + ## **See also:** + ## * `ln func <#ln,float64>`_ + ## * `log func <#log,T,T>`_ + ## * `log2 func <#log2,float64>`_ + runnableExamples: + doAssert almostEqual(log10(100.0) , 2.0) + doAssert almostEqual(log10(0.0), -Inf) + doAssert log10(-100.0).isNaN + func exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".} + func exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".} = + ## Computes the exponential function of `x` (`e^x`). ## - ## .. code-block:: nim - ## echo sin(PI / 6) ## 0.4999999999999999 - ## echo sin(degToRad(90.0)) ## 1.0 - proc cos*(x: float32): float32 {.importc: "cosf", header: "<math.h>".} - proc cos*(x: float64): float64 {.importc: "cos", header: "<math.h>".} - ## Computes the cosine of ``x``. + ## **See also:** + ## * `ln func <#ln,float64>`_ + runnableExamples: + doAssert almostEqual(exp(1.0), E) + doAssert almostEqual(ln(exp(4.0)), 4.0) + doAssert almostEqual(exp(0.0), 1.0) + func sin*(x: float32): float32 {.importc: "sinf", header: "<math.h>".} + func sin*(x: float64): float64 {.importc: "sin", header: "<math.h>".} = + ## Computes the sine of `x`. ## - ## See also: - ## * `sin proc <#sin,float64>`_ - ## * `tan proc <#tan,float64>`_ - ## * `arccos proc <#arccos,float64>`_ - ## * `cosh proc <#cosh,float64>`_ + ## **See also:** + ## * `arcsin func <#arcsin,float64>`_ + runnableExamples: + doAssert almostEqual(sin(PI / 6), 0.5) + doAssert almostEqual(sin(degToRad(90.0)), 1.0) + func cos*(x: float32): float32 {.importc: "cosf", header: "<math.h>".} + func cos*(x: float64): float64 {.importc: "cos", header: "<math.h>".} = + ## Computes the cosine of `x`. ## - ## .. code-block:: nim - ## echo cos(2 * PI) ## 1.0 - ## echo cos(degToRad(60.0)) ## 0.5000000000000001 - proc tan*(x: float32): float32 {.importc: "tanf", header: "<math.h>".} - proc tan*(x: float64): float64 {.importc: "tan", header: "<math.h>".} - ## Computes the tangent of ``x``. + ## **See also:** + ## * `arccos func <#arccos,float64>`_ + runnableExamples: + doAssert almostEqual(cos(2 * PI), 1.0) + doAssert almostEqual(cos(degToRad(60.0)), 0.5) + func tan*(x: float32): float32 {.importc: "tanf", header: "<math.h>".} + func tan*(x: float64): float64 {.importc: "tan", header: "<math.h>".} = + ## Computes the tangent of `x`. ## - ## See also: - ## * `sin proc <#sin,float64>`_ - ## * `cos proc <#cos,float64>`_ - ## * `arctan proc <#arctan,float64>`_ - ## * `tanh proc <#tanh,float64>`_ + ## **See also:** + ## * `arctan func <#arctan,float64>`_ + runnableExamples: + doAssert almostEqual(tan(degToRad(45.0)), 1.0) + doAssert almostEqual(tan(PI / 4), 1.0) + func sinh*(x: float32): float32 {.importc: "sinhf", header: "<math.h>".} + func sinh*(x: float64): float64 {.importc: "sinh", header: "<math.h>".} = + ## Computes the [hyperbolic sine](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`. ## - ## .. code-block:: nim - ## echo tan(degToRad(45.0)) ## 0.9999999999999999 - ## echo tan(PI / 4) ## 0.9999999999999999 - proc sinh*(x: float32): float32 {.importc: "sinhf", header: "<math.h>".} - proc sinh*(x: float64): float64 {.importc: "sinh", header: "<math.h>".} - ## Computes the `hyperbolic sine <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``. + ## **See also:** + ## * `arcsinh func <#arcsinh,float64>`_ + runnableExamples: + doAssert almostEqual(sinh(0.0), 0.0) + doAssert almostEqual(sinh(1.0), 1.175201193643801) + func cosh*(x: float32): float32 {.importc: "coshf", header: "<math.h>".} + func cosh*(x: float64): float64 {.importc: "cosh", header: "<math.h>".} = + ## Computes the [hyperbolic cosine](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`. ## - ## See also: - ## * `cosh proc <#cosh,float64>`_ - ## * `tanh proc <#tanh,float64>`_ - ## * `arcsinh proc <#arcsinh,float64>`_ - ## * `sin proc <#sin,float64>`_ + ## **See also:** + ## * `arccosh func <#arccosh,float64>`_ + runnableExamples: + doAssert almostEqual(cosh(0.0), 1.0) + doAssert almostEqual(cosh(1.0), 1.543080634815244) + func tanh*(x: float32): float32 {.importc: "tanhf", header: "<math.h>".} + func tanh*(x: float64): float64 {.importc: "tanh", header: "<math.h>".} = + ## Computes the [hyperbolic tangent](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`. ## - ## .. code-block:: nim - ## echo sinh(0.0) ## 0.0 - ## echo sinh(1.0) ## 1.175201193643801 - ## echo sinh(degToRad(90.0)) ## 2.301298902307295 - proc cosh*(x: float32): float32 {.importc: "coshf", header: "<math.h>".} - proc cosh*(x: float64): float64 {.importc: "cosh", header: "<math.h>".} - ## Computes the `hyperbolic cosine <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``. + ## **See also:** + ## * `arctanh func <#arctanh,float64>`_ + runnableExamples: + doAssert almostEqual(tanh(0.0), 0.0) + doAssert almostEqual(tanh(1.0), 0.7615941559557649) + func arcsin*(x: float32): float32 {.importc: "asinf", header: "<math.h>".} + func arcsin*(x: float64): float64 {.importc: "asin", header: "<math.h>".} = + ## Computes the arc sine of `x`. ## - ## See also: - ## * `sinh proc <#sinh,float64>`_ - ## * `tanh proc <#tanh,float64>`_ - ## * `arccosh proc <#arccosh,float64>`_ - ## * `cos proc <#cos,float64>`_ + ## **See also:** + ## * `sin func <#sin,float64>`_ + runnableExamples: + doAssert almostEqual(radToDeg(arcsin(0.0)), 0.0) + doAssert almostEqual(radToDeg(arcsin(1.0)), 90.0) + func arccos*(x: float32): float32 {.importc: "acosf", header: "<math.h>".} + func arccos*(x: float64): float64 {.importc: "acos", header: "<math.h>".} = + ## Computes the arc cosine of `x`. ## - ## .. code-block:: nim - ## echo cosh(0.0) ## 1.0 - ## echo cosh(1.0) ## 1.543080634815244 - ## echo cosh(degToRad(90.0)) ## 2.509178478658057 - proc tanh*(x: float32): float32 {.importc: "tanhf", header: "<math.h>".} - proc tanh*(x: float64): float64 {.importc: "tanh", header: "<math.h>".} - ## Computes the `hyperbolic tangent <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``. + ## **See also:** + ## * `cos func <#cos,float64>`_ + runnableExamples: + doAssert almostEqual(radToDeg(arccos(0.0)), 90.0) + doAssert almostEqual(radToDeg(arccos(1.0)), 0.0) + func arctan*(x: float32): float32 {.importc: "atanf", header: "<math.h>".} + func arctan*(x: float64): float64 {.importc: "atan", header: "<math.h>".} = + ## Calculate the arc tangent of `x`. ## - ## See also: - ## * `sinh proc <#sinh,float64>`_ - ## * `cosh proc <#cosh,float64>`_ - ## * `arctanh proc <#arctanh,float64>`_ - ## * `tan proc <#tan,float64>`_ + ## **See also:** + ## * `arctan2 func <#arctan2,float64,float64>`_ + ## * `tan func <#tan,float64>`_ + runnableExamples: + doAssert almostEqual(arctan(1.0), 0.7853981633974483) + doAssert almostEqual(radToDeg(arctan(1.0)), 45.0) + func arctan2*(y, x: float32): float32 {.importc: "atan2f", header: "<math.h>".} + func arctan2*(y, x: float64): float64 {.importc: "atan2", header: "<math.h>".} = + ## Calculate the arc tangent of `y/x`. ## - ## .. code-block:: nim - ## echo tanh(0.0) ## 0.0 - ## echo tanh(1.0) ## 0.7615941559557649 - ## echo tanh(degToRad(90.0)) ## 0.9171523356672744 - - proc arccos*(x: float32): float32 {.importc: "acosf", header: "<math.h>".} - proc arccos*(x: float64): float64 {.importc: "acos", header: "<math.h>".} - ## Computes the arc cosine of ``x``. - ## - ## See also: - ## * `arcsin proc <#arcsin,float64>`_ - ## * `arctan proc <#arctan,float64>`_ - ## * `arctan2 proc <#arctan2,float64,float64>`_ - ## * `cos proc <#cos,float64>`_ - ## - ## .. code-block:: nim - ## echo radToDeg(arccos(0.0)) ## 90.0 - ## echo radToDeg(arccos(1.0)) ## 0.0 - proc arcsin*(x: float32): float32 {.importc: "asinf", header: "<math.h>".} - proc arcsin*(x: float64): float64 {.importc: "asin", header: "<math.h>".} - ## Computes the arc sine of ``x``. - ## - ## See also: - ## * `arccos proc <#arccos,float64>`_ - ## * `arctan proc <#arctan,float64>`_ - ## * `arctan2 proc <#arctan2,float64,float64>`_ - ## * `sin proc <#sin,float64>`_ - ## - ## .. code-block:: nim - ## echo radToDeg(arcsin(0.0)) ## 0.0 - ## echo radToDeg(arcsin(1.0)) ## 90.0 - proc arctan*(x: float32): float32 {.importc: "atanf", header: "<math.h>".} - proc arctan*(x: float64): float64 {.importc: "atan", header: "<math.h>".} - ## Calculate the arc tangent of ``x``. - ## - ## See also: - ## * `arcsin proc <#arcsin,float64>`_ - ## * `arccos proc <#arccos,float64>`_ - ## * `arctan2 proc <#arctan2,float64,float64>`_ - ## * `tan proc <#tan,float64>`_ + ## It produces correct results even when the resulting angle is near + ## `PI/2` or `-PI/2` (`x` near 0). ## - ## .. code-block:: nim - ## echo arctan(1.0) ## 0.7853981633974483 - ## echo radToDeg(arctan(1.0)) ## 45.0 - proc arctan2*(y, x: float32): float32 {.importc: "atan2f", - header: "<math.h>".} - proc arctan2*(y, x: float64): float64 {.importc: "atan2", header: "<math.h>".} - ## Calculate the arc tangent of ``y`` / ``x``. + ## **See also:** + ## * `arctan func <#arctan,float64>`_ + runnableExamples: + doAssert almostEqual(arctan2(1.0, 0.0), PI / 2.0) + doAssert almostEqual(radToDeg(arctan2(1.0, 0.0)), 90.0) + func arcsinh*(x: float32): float32 {.importc: "asinhf", header: "<math.h>".} + func arcsinh*(x: float64): float64 {.importc: "asinh", header: "<math.h>".} + ## Computes the inverse hyperbolic sine of `x`. ## - ## It produces correct results even when the resulting angle is near - ## pi/2 or -pi/2 (``x`` near 0). + ## **See also:** + ## * `sinh func <#sinh,float64>`_ + func arccosh*(x: float32): float32 {.importc: "acoshf", header: "<math.h>".} + func arccosh*(x: float64): float64 {.importc: "acosh", header: "<math.h>".} + ## Computes the inverse hyperbolic cosine of `x`. ## - ## See also: - ## * `arcsin proc <#arcsin,float64>`_ - ## * `arccos proc <#arccos,float64>`_ - ## * `arctan proc <#arctan,float64>`_ - ## * `tan proc <#tan,float64>`_ + ## **See also:** + ## * `cosh func <#cosh,float64>`_ + func arctanh*(x: float32): float32 {.importc: "atanhf", header: "<math.h>".} + func arctanh*(x: float64): float64 {.importc: "atanh", header: "<math.h>".} + ## Computes the inverse hyperbolic tangent of `x`. ## - ## .. code-block:: nim - ## echo arctan2(1.0, 0.0) ## 1.570796326794897 - ## echo radToDeg(arctan2(1.0, 0.0)) ## 90.0 - proc arcsinh*(x: float32): float32 {.importc: "asinhf", header: "<math.h>".} - proc arcsinh*(x: float64): float64 {.importc: "asinh", header: "<math.h>".} - ## Computes the inverse hyperbolic sine of ``x``. - proc arccosh*(x: float32): float32 {.importc: "acoshf", header: "<math.h>".} - proc arccosh*(x: float64): float64 {.importc: "acosh", header: "<math.h>".} - ## Computes the inverse hyperbolic cosine of ``x``. - proc arctanh*(x: float32): float32 {.importc: "atanhf", header: "<math.h>".} - proc arctanh*(x: float64): float64 {.importc: "atanh", header: "<math.h>".} - ## Computes the inverse hyperbolic tangent of ``x``. + ## **See also:** + ## * `tanh func <#tanh,float64>`_ else: # JS - proc log10*(x: float32): float32 {.importc: "Math.log10", nodecl.} - proc log10*(x: float64): float64 {.importc: "Math.log10", nodecl.} - proc log2*(x: float32): float32 {.importc: "Math.log2", nodecl.} - proc log2*(x: float64): float64 {.importc: "Math.log2", nodecl.} - proc exp*(x: float32): float32 {.importc: "Math.exp", nodecl.} - proc exp*(x: float64): float64 {.importc: "Math.exp", nodecl.} - - proc sin*[T: float32|float64](x: T): T {.importc: "Math.sin", nodecl.} - proc cos*[T: float32|float64](x: T): T {.importc: "Math.cos", nodecl.} - proc tan*[T: float32|float64](x: T): T {.importc: "Math.tan", nodecl.} - - proc sinh*[T: float32|float64](x: T): T {.importc: "Math.sinh", nodecl.} - proc cosh*[T: float32|float64](x: T): T {.importc: "Math.cosh", nodecl.} - proc tanh*[T: float32|float64](x: T): T {.importc: "Math.tanh", nodecl.} - - proc arcsin*[T: float32|float64](x: T): T {.importc: "Math.asin", nodecl.} - proc arccos*[T: float32|float64](x: T): T {.importc: "Math.acos", nodecl.} - proc arctan*[T: float32|float64](x: T): T {.importc: "Math.atan", nodecl.} - proc arctan2*[T: float32|float64](y, x: T): T {.importc: "Math.atan2", nodecl.} - - proc arcsinh*[T: float32|float64](x: T): T {.importc: "Math.asinh", nodecl.} - proc arccosh*[T: float32|float64](x: T): T {.importc: "Math.acosh", nodecl.} - proc arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.} - -proc cot*[T: float32|float64](x: T): T = 1.0 / tan(x) - ## Computes the cotangent of ``x`` (1 / tan(x)). -proc sec*[T: float32|float64](x: T): T = 1.0 / cos(x) - ## Computes the secant of ``x`` (1 / cos(x)). -proc csc*[T: float32|float64](x: T): T = 1.0 / sin(x) - ## Computes the cosecant of ``x`` (1 / sin(x)). - -proc coth*[T: float32|float64](x: T): T = 1.0 / tanh(x) - ## Computes the hyperbolic cotangent of ``x`` (1 / tanh(x)). -proc sech*[T: float32|float64](x: T): T = 1.0 / cosh(x) - ## Computes the hyperbolic secant of ``x`` (1 / cosh(x)). -proc csch*[T: float32|float64](x: T): T = 1.0 / sinh(x) - ## Computes the hyperbolic cosecant of ``x`` (1 / sinh(x)). - -proc arccot*[T: float32|float64](x: T): T = arctan(1.0 / x) - ## Computes the inverse cotangent of ``x``. -proc arcsec*[T: float32|float64](x: T): T = arccos(1.0 / x) - ## Computes the inverse secant of ``x``. -proc arccsc*[T: float32|float64](x: T): T = arcsin(1.0 / x) - ## Computes the inverse cosecant of ``x``. - -proc arccoth*[T: float32|float64](x: T): T = arctanh(1.0 / x) - ## Computes the inverse hyperbolic cotangent of ``x``. -proc arcsech*[T: float32|float64](x: T): T = arccosh(1.0 / x) - ## Computes the inverse hyperbolic secant of ``x``. -proc arccsch*[T: float32|float64](x: T): T = arcsinh(1.0 / x) - ## Computes the inverse hyperbolic cosecant of ``x``. + func log10*(x: float32): float32 {.importc: "Math.log10", nodecl.} + func log10*(x: float64): float64 {.importc: "Math.log10", nodecl.} + func log2*(x: float32): float32 {.importc: "Math.log2", nodecl.} + func log2*(x: float64): float64 {.importc: "Math.log2", nodecl.} + func exp*(x: float32): float32 {.importc: "Math.exp", nodecl.} + func exp*(x: float64): float64 {.importc: "Math.exp", nodecl.} + + func sin*[T: float32|float64](x: T): T {.importc: "Math.sin", nodecl.} + func cos*[T: float32|float64](x: T): T {.importc: "Math.cos", nodecl.} + func tan*[T: float32|float64](x: T): T {.importc: "Math.tan", nodecl.} + + func sinh*[T: float32|float64](x: T): T {.importc: "Math.sinh", nodecl.} + func cosh*[T: float32|float64](x: T): T {.importc: "Math.cosh", nodecl.} + func tanh*[T: float32|float64](x: T): T {.importc: "Math.tanh", nodecl.} + + func arcsin*[T: float32|float64](x: T): T {.importc: "Math.asin", nodecl.} + # keep this as generic or update test in `tvmops.nim` to make sure we + # keep testing that generic importc procs work + func arccos*[T: float32|float64](x: T): T {.importc: "Math.acos", nodecl.} + func arctan*[T: float32|float64](x: T): T {.importc: "Math.atan", nodecl.} + func arctan2*[T: float32|float64](y, x: T): T {.importc: "Math.atan2", nodecl.} + + func arcsinh*[T: float32|float64](x: T): T {.importc: "Math.asinh", nodecl.} + func arccosh*[T: float32|float64](x: T): T {.importc: "Math.acosh", nodecl.} + func arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.} + +func cot*[T: float32|float64](x: T): T = 1.0 / tan(x) + ## Computes the cotangent of `x` (`1/tan(x)`). +func sec*[T: float32|float64](x: T): T = 1.0 / cos(x) + ## Computes the secant of `x` (`1/cos(x)`). +func csc*[T: float32|float64](x: T): T = 1.0 / sin(x) + ## Computes the cosecant of `x` (`1/sin(x)`). + +func coth*[T: float32|float64](x: T): T = 1.0 / tanh(x) + ## Computes the hyperbolic cotangent of `x` (`1/tanh(x)`). +func sech*[T: float32|float64](x: T): T = 1.0 / cosh(x) + ## Computes the hyperbolic secant of `x` (`1/cosh(x)`). +func csch*[T: float32|float64](x: T): T = 1.0 / sinh(x) + ## Computes the hyperbolic cosecant of `x` (`1/sinh(x)`). + +func arccot*[T: float32|float64](x: T): T = arctan(1.0 / x) + ## Computes the inverse cotangent of `x` (`arctan(1/x)`). +func arcsec*[T: float32|float64](x: T): T = arccos(1.0 / x) + ## Computes the inverse secant of `x` (`arccos(1/x)`). +func arccsc*[T: float32|float64](x: T): T = arcsin(1.0 / x) + ## Computes the inverse cosecant of `x` (`arcsin(1/x)`). + +func arccoth*[T: float32|float64](x: T): T = arctanh(1.0 / x) + ## Computes the inverse hyperbolic cotangent of `x` (`arctanh(1/x)`). +func arcsech*[T: float32|float64](x: T): T = arccosh(1.0 / x) + ## Computes the inverse hyperbolic secant of `x` (`arccosh(1/x)`). +func arccsch*[T: float32|float64](x: T): T = arcsinh(1.0 / x) + ## Computes the inverse hyperbolic cosecant of `x` (`arcsinh(1/x)`). const windowsCC89 = defined(windows) and defined(bcc) when not defined(js): # C - proc hypot*(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>".} - proc hypot*(x, y: float64): float64 {.importc: "hypot", header: "<math.h>".} - ## Computes the hypotenuse of a right-angle triangle with ``x`` and - ## ``y`` as its base and height. Equivalent to ``sqrt(x*x + y*y)``. - ## - ## .. code-block:: nim - ## echo hypot(4.0, 3.0) ## 5.0 - proc pow*(x, y: float32): float32 {.importc: "powf", header: "<math.h>".} - proc pow*(x, y: float64): float64 {.importc: "pow", header: "<math.h>".} - ## Computes x to power raised of y. - ## - ## To compute power between integers (e.g. 2^6), use `^ proc<#^,T,Natural>`_. + func hypot*(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>".} + func hypot*(x, y: float64): float64 {.importc: "hypot", header: "<math.h>".} = + ## Computes the length of the hypotenuse of a right-angle triangle with + ## `x` as its base and `y` as its height. Equivalent to `sqrt(x*x + y*y)`. + runnableExamples: + doAssert almostEqual(hypot(3.0, 4.0), 5.0) + func pow*(x, y: float32): float32 {.importc: "powf", header: "<math.h>".} + func pow*(x, y: float64): float64 {.importc: "pow", header: "<math.h>".} = + ## Computes `x` raised to the power of `y`. ## - ## See also: - ## * `^ proc<#^,T,Natural>`_ - ## * `sqrt proc <#sqrt,float64>`_ - ## * `cbrt proc <#cbrt,float64>`_ + ## To compute the power between integers (e.g. 2^6), + ## use the `^ func <#^,T,Natural>`_. ## - ## .. code-block:: nim - ## echo pow(100, 1.5) ## 1000.0 - ## echo pow(16.0, 0.5) ## 4.0 + ## **See also:** + ## * `^ func <#^,T,Natural>`_ + ## * `sqrt func <#sqrt,float64>`_ + ## * `cbrt func <#cbrt,float64>`_ + runnableExamples: + doAssert almostEqual(pow(100, 1.5), 1000.0) + doAssert almostEqual(pow(16.0, 0.5), 4.0) # TODO: add C89 version on windows when not windowsCC89: - proc erf*(x: float32): float32 {.importc: "erff", header: "<math.h>".} - proc erf*(x: float64): float64 {.importc: "erf", header: "<math.h>".} - ## Computes the `error function <https://en.wikipedia.org/wiki/Error_function>`_ for ``x``. + func erf*(x: float32): float32 {.importc: "erff", header: "<math.h>".} + func erf*(x: float64): float64 {.importc: "erf", header: "<math.h>".} + ## Computes the [error function](https://en.wikipedia.org/wiki/Error_function) for `x`. ## - ## Note: Not available for JS backend. - proc erfc*(x: float32): float32 {.importc: "erfcf", header: "<math.h>".} - proc erfc*(x: float64): float64 {.importc: "erfc", header: "<math.h>".} - ## Computes the `complementary error function <https://en.wikipedia.org/wiki/Error_function#Complementary_error_function>`_ for ``x``. + ## **Note:** Not available for the JS backend. + func erfc*(x: float32): float32 {.importc: "erfcf", header: "<math.h>".} + func erfc*(x: float64): float64 {.importc: "erfc", header: "<math.h>".} + ## Computes the [complementary error function](https://en.wikipedia.org/wiki/Error_function#Complementary_error_function) for `x`. ## - ## Note: Not available for JS backend. - proc gamma*(x: float32): float32 {.importc: "tgammaf", header: "<math.h>".} - proc gamma*(x: float64): float64 {.importc: "tgamma", header: "<math.h>".} - ## Computes the the `gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ for ``x``. + ## **Note:** Not available for the JS backend. + func gamma*(x: float32): float32 {.importc: "tgammaf", header: "<math.h>".} + func gamma*(x: float64): float64 {.importc: "tgamma", header: "<math.h>".} = + ## Computes the [gamma function](https://en.wikipedia.org/wiki/Gamma_function) for `x`. ## - ## Note: Not available for JS backend. + ## **Note:** Not available for the JS backend. ## - ## See also: - ## * `lgamma proc <#lgamma,float64>`_ for a natural log of gamma function + ## **See also:** + ## * `lgamma func <#lgamma,float64>`_ for the natural logarithm of the gamma function + runnableExamples: + doAssert almostEqual(gamma(1.0), 1.0) + doAssert almostEqual(gamma(4.0), 6.0) + doAssert almostEqual(gamma(11.0), 3628800.0) + func lgamma*(x: float32): float32 {.importc: "lgammaf", header: "<math.h>".} + func lgamma*(x: float64): float64 {.importc: "lgamma", header: "<math.h>".} = + ## Computes the natural logarithm of the gamma function for `x`. ## - ## .. code-block:: Nim - ## echo gamma(1.0) # 1.0 - ## echo gamma(4.0) # 6.0 - ## echo gamma(11.0) # 3628800.0 - ## echo gamma(-1.0) # nan - proc lgamma*(x: float32): float32 {.importc: "lgammaf", header: "<math.h>".} - proc lgamma*(x: float64): float64 {.importc: "lgamma", header: "<math.h>".} - ## Computes the natural log of the gamma function for ``x``. + ## **Note:** Not available for the JS backend. ## - ## Note: Not available for JS backend. - ## - ## See also: - ## * `gamma proc <#gamma,float64>`_ for gamma function - ## - ## .. code-block:: Nim - ## echo lgamma(1.0) # 1.0 - ## echo lgamma(4.0) # 1.791759469228055 - ## echo lgamma(11.0) # 15.10441257307552 - ## echo lgamma(-1.0) # inf - - proc floor*(x: float32): float32 {.importc: "floorf", header: "<math.h>".} - proc floor*(x: float64): float64 {.importc: "floor", header: "<math.h>".} - ## Computes the floor function (i.e., the largest integer not greater than ``x``). - ## - ## See also: - ## * `ceil proc <#ceil,float64>`_ - ## * `round proc <#round,float64>`_ - ## * `trunc proc <#trunc,float64>`_ - ## - ## .. code-block:: nim - ## echo floor(2.1) ## 2.0 - ## echo floor(2.9) ## 2.0 - ## echo floor(-3.5) ## -4.0 - - proc ceil*(x: float32): float32 {.importc: "ceilf", header: "<math.h>".} - proc ceil*(x: float64): float64 {.importc: "ceil", header: "<math.h>".} - ## Computes the ceiling function (i.e., the smallest integer not smaller - ## than ``x``). + ## **See also:** + ## * `gamma func <#gamma,float64>`_ for gamma function + + func floor*(x: float32): float32 {.importc: "floorf", header: "<math.h>".} + func floor*(x: float64): float64 {.importc: "floor", header: "<math.h>".} = + ## Computes the floor function (i.e. the largest integer not greater than `x`). ## - ## See also: - ## * `floor proc <#floor,float64>`_ - ## * `round proc <#round,float64>`_ - ## * `trunc proc <#trunc,float64>`_ + ## **See also:** + ## * `ceil func <#ceil,float64>`_ + ## * `round func <#round,float64>`_ + ## * `trunc func <#trunc,float64>`_ + runnableExamples: + doAssert floor(2.1) == 2.0 + doAssert floor(2.9) == 2.0 + doAssert floor(-3.5) == -4.0 + + func ceil*(x: float32): float32 {.importc: "ceilf", header: "<math.h>".} + func ceil*(x: float64): float64 {.importc: "ceil", header: "<math.h>".} = + ## Computes the ceiling function (i.e. the smallest integer not smaller + ## than `x`). ## - ## .. code-block:: nim - ## echo ceil(2.1) ## 3.0 - ## echo ceil(2.9) ## 3.0 - ## echo ceil(-2.1) ## -2.0 + ## **See also:** + ## * `floor func <#floor,float64>`_ + ## * `round func <#round,float64>`_ + ## * `trunc func <#trunc,float64>`_ + runnableExamples: + doAssert ceil(2.1) == 3.0 + doAssert ceil(2.9) == 3.0 + doAssert ceil(-2.1) == -2.0 when windowsCC89: # MSVC 2010 don't have trunc/truncf # this implementation was inspired by Go-lang Math.Trunc - proc truncImpl(f: float64): float64 = + func truncImpl(f: float64): float64 = const mask: uint64 = 0x7FF shift: uint64 = 64 - 12 @@ -662,12 +717,12 @@ when not defined(js): # C let e = (x shr shift) and mask - bias # Keep the top 12+e bits, the integer part; clear the rest. - if e < 64-12: - x = x and (not (1'u64 shl (64'u64-12'u64-e) - 1'u64)) + if e < 64 - 12: + x = x and (not (1'u64 shl (64'u64 - 12'u64 - e) - 1'u64)) result = cast[float64](x) - proc truncImpl(f: float32): float32 = + func truncImpl(f: float32): float32 = const mask: uint32 = 0xFF shift: uint32 = 32 - 9 @@ -682,234 +737,338 @@ when not defined(js): # C let e = (x shr shift) and mask - bias # Keep the top 9+e bits, the integer part; clear the rest. - if e < 32-9: - x = x and (not (1'u32 shl (32'u32-9'u32-e) - 1'u32)) + if e < 32 - 9: + x = x and (not (1'u32 shl (32'u32 - 9'u32 - e) - 1'u32)) result = cast[float32](x) - proc trunc*(x: float64): float64 = + func trunc*(x: float64): float64 = if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x result = truncImpl(x) - proc trunc*(x: float32): float32 = + func trunc*(x: float32): float32 = if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x result = truncImpl(x) - proc round*[T: float32|float64](x: T): T = + func round*[T: float32|float64](x: T): T = ## Windows compilers prior to MSVC 2012 do not implement 'round', ## 'roundl' or 'roundf'. result = if x < 0.0: ceil(x - T(0.5)) else: floor(x + T(0.5)) else: - proc round*(x: float32): float32 {.importc: "roundf", header: "<math.h>".} - proc round*(x: float64): float64 {.importc: "round", header: "<math.h>".} + func round*(x: float32): float32 {.importc: "roundf", header: "<math.h>".} + func round*(x: float64): float64 {.importc: "round", header: "<math.h>".} = ## Rounds a float to zero decimal places. ## - ## Used internally by the `round proc <#round,T,int>`_ + ## Used internally by the `round func <#round,T,int>`_ ## when the specified number of places is 0. ## - ## See also: - ## * `round proc <#round,T,int>`_ for rounding to the specific + ## **See also:** + ## * `round func <#round,T,int>`_ for rounding to the specific ## number of decimal places - ## * `floor proc <#floor,float64>`_ - ## * `ceil proc <#ceil,float64>`_ - ## * `trunc proc <#trunc,float64>`_ - ## - ## .. code-block:: nim - ## echo round(3.4) ## 3.0 - ## echo round(3.5) ## 4.0 - ## echo round(4.5) ## 5.0 - - proc trunc*(x: float32): float32 {.importc: "truncf", header: "<math.h>".} - proc trunc*(x: float64): float64 {.importc: "trunc", header: "<math.h>".} - ## Truncates ``x`` to the decimal point. + ## * `floor func <#floor,float64>`_ + ## * `ceil func <#ceil,float64>`_ + ## * `trunc func <#trunc,float64>`_ + runnableExamples: + doAssert round(3.4) == 3.0 + doAssert round(3.5) == 4.0 + doAssert round(4.5) == 5.0 + + func trunc*(x: float32): float32 {.importc: "truncf", header: "<math.h>".} + func trunc*(x: float64): float64 {.importc: "trunc", header: "<math.h>".} = + ## Truncates `x` to the decimal point. ## - ## See also: - ## * `floor proc <#floor,float64>`_ - ## * `ceil proc <#ceil,float64>`_ - ## * `round proc <#round,float64>`_ - ## - ## .. code-block:: nim - ## echo trunc(PI) # 3.0 - ## echo trunc(-1.85) # -1.0 - - proc `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>".} - proc `mod`*(x, y: float64): float64 {.importc: "fmod", header: "<math.h>".} - ## Computes the modulo operation for float values (the remainder of ``x`` divided by ``y``). - ## - ## See also: - ## * `floorMod proc <#floorMod,T,T>`_ for Python-like (% operator) behavior + ## **See also:** + ## * `floor func <#floor,float64>`_ + ## * `ceil func <#ceil,float64>`_ + ## * `round func <#round,float64>`_ + runnableExamples: + doAssert trunc(PI) == 3.0 + doAssert trunc(-1.85) == -1.0 + + func `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>".} + func `mod`*(x, y: float64): float64 {.importc: "fmod", header: "<math.h>".} = + ## Computes the modulo operation for float values (the remainder of `x` divided by `y`). ## - ## .. code-block:: nim - ## ( 6.5 mod 2.5) == 1.5 - ## (-6.5 mod 2.5) == -1.5 - ## ( 6.5 mod -2.5) == 1.5 - ## (-6.5 mod -2.5) == -1.5 + ## **See also:** + ## * `floorMod func <#floorMod,T,T>`_ for Python-like (`%` operator) behavior + runnableExamples: + doAssert 6.5 mod 2.5 == 1.5 + doAssert -6.5 mod 2.5 == -1.5 + doAssert 6.5 mod -2.5 == 1.5 + doAssert -6.5 mod -2.5 == -1.5 else: # JS - proc hypot*(x, y: float32): float32 {.importc: "Math.hypot", varargs, nodecl.} - proc hypot*(x, y: float64): float64 {.importc: "Math.hypot", varargs, nodecl.} - proc pow*(x, y: float32): float32 {.importc: "Math.pow", nodecl.} - proc pow*(x, y: float64): float64 {.importc: "Math.pow", nodecl.} - proc floor*(x: float32): float32 {.importc: "Math.floor", nodecl.} - proc floor*(x: float64): float64 {.importc: "Math.floor", nodecl.} - proc ceil*(x: float32): float32 {.importc: "Math.ceil", nodecl.} - proc ceil*(x: float64): float64 {.importc: "Math.ceil", nodecl.} - proc round*(x: float): float {.importc: "Math.round", nodecl.} - proc trunc*(x: float32): float32 {.importc: "Math.trunc", nodecl.} - proc trunc*(x: float64): float64 {.importc: "Math.trunc", nodecl.} - - proc `mod`*(x, y: float32): float32 {.importcpp: "# % #".} - proc `mod`*(x, y: float64): float64 {.importcpp: "# % #".} - ## Computes the modulo operation for float values (the remainder of ``x`` divided by ``y``). - ## - ## .. code-block:: nim - ## ( 6.5 mod 2.5) == 1.5 - ## (-6.5 mod 2.5) == -1.5 - ## ( 6.5 mod -2.5) == 1.5 - ## (-6.5 mod -2.5) == -1.5 - -proc round*[T: float32|float64](x: T, places: int): T {. - deprecated: "use strformat module instead".} = + func hypot*(x, y: float32): float32 {.importc: "Math.hypot", varargs, nodecl.} + func hypot*(x, y: float64): float64 {.importc: "Math.hypot", varargs, nodecl.} + func pow*(x, y: float32): float32 {.importc: "Math.pow", nodecl.} + func pow*(x, y: float64): float64 {.importc: "Math.pow", nodecl.} + func floor*(x: float32): float32 {.importc: "Math.floor", nodecl.} + func floor*(x: float64): float64 {.importc: "Math.floor", nodecl.} + func ceil*(x: float32): float32 {.importc: "Math.ceil", nodecl.} + func ceil*(x: float64): float64 {.importc: "Math.ceil", nodecl.} + + when (NimMajor, NimMinor) < (1, 5) or defined(nimLegacyJsRound): + func round*(x: float): float {.importc: "Math.round", nodecl.} + else: + func jsRound(x: float): float {.importc: "Math.round", nodecl.} + func round*[T: float64 | float32](x: T): T = + if x >= 0: result = jsRound(x) + else: + result = ceil(x) + if result - x >= T(0.5): + result -= T(1.0) + func trunc*(x: float32): float32 {.importc: "Math.trunc", nodecl.} + func trunc*(x: float64): float64 {.importc: "Math.trunc", nodecl.} + + func `mod`*(x, y: float32): float32 {.importjs: "(# % #)".} + func `mod`*(x, y: float64): float64 {.importjs: "(# % #)".} = + ## Computes the modulo operation for float values (the remainder of `x` divided by `y`). + runnableExamples: + doAssert 6.5 mod 2.5 == 1.5 + doAssert -6.5 mod 2.5 == -1.5 + doAssert 6.5 mod -2.5 == 1.5 + doAssert -6.5 mod -2.5 == -1.5 + + func divmod*[T:SomeInteger](num, denom: T): (T, T) = + runnableExamples: + doAssert divmod(5, 2) == (2, 1) + doAssert divmod(5, -3) == (-1, 2) + result[0] = num div denom + result[1] = num mod denom + + +func round*[T: float32|float64](x: T, places: int): T = ## Decimal rounding on a binary floating point number. ## ## This function is NOT reliable. Floating point numbers cannot hold - ## non integer decimals precisely. If ``places`` is 0 (or omitted), + ## non integer decimals precisely. If `places` is 0 (or omitted), ## round to the nearest integral value following normal mathematical - ## rounding rules (e.g. ``round(54.5) -> 55.0``). If ``places`` is + ## rounding rules (e.g. `round(54.5) -> 55.0`). If `places` is ## greater than 0, round to the given number of decimal places, - ## e.g. ``round(54.346, 2) -> 54.350000000000001421…``. If ``places`` is negative, round - ## to the left of the decimal place, e.g. ``round(537.345, -1) -> - ## 540.0`` - ## - ## .. code-block:: Nim - ## echo round(PI, 2) ## 3.14 - ## echo round(PI, 4) ## 3.1416 + ## e.g. `round(54.346, 2) -> 54.350000000000001421…`. If `places` is negative, round + ## to the left of the decimal place, e.g. `round(537.345, -1) -> 540.0`. + runnableExamples: + doAssert round(PI, 2) == 3.14 + doAssert round(PI, 4) == 3.1416 + if places == 0: result = round(x) else: - var mult = pow(10.0, places.T) - result = round(x*mult)/mult + var mult = pow(10.0, T(places)) + result = round(x * mult) / mult -proc floorDiv*[T: SomeInteger](x, y: T): T = - ## Floor division is conceptually defined as ``floor(x / y)``. +func floorDiv*[T: SomeInteger](x, y: T): T = + ## Floor division is conceptually defined as `floor(x / y)`. ## ## This is different from the `system.div <system.html#div,int,int>`_ - ## operator, which is defined as ``trunc(x / y)``. - ## That is, ``div`` rounds towards ``0`` and ``floorDiv`` rounds down. + ## operator, which is defined as `trunc(x / y)`. + ## That is, `div` rounds towards `0` and `floorDiv` rounds down. ## - ## See also: + ## **See also:** ## * `system.div proc <system.html#div,int,int>`_ for integer division - ## * `floorMod proc <#floorMod,T,T>`_ for Python-like (% operator) behavior - ## - ## .. code-block:: nim - ## echo floorDiv( 13, 3) # 4 - ## echo floorDiv(-13, 3) # -5 - ## echo floorDiv( 13, -3) # -5 - ## echo floorDiv(-13, -3) # 4 + ## * `floorMod func <#floorMod,T,T>`_ for Python-like (`%` operator) behavior + runnableExamples: + doAssert floorDiv( 13, 3) == 4 + doAssert floorDiv(-13, 3) == -5 + doAssert floorDiv( 13, -3) == -5 + doAssert floorDiv(-13, -3) == 4 + result = x div y let r = x mod y if (r > 0 and y < 0) or (r < 0 and y > 0): result.dec 1 -proc floorMod*[T: SomeNumber](x, y: T): T = - ## Floor modulus is conceptually defined as ``x - (floorDiv(x, y) * y)``. - ## - ## This proc behaves the same as the ``%`` operator in Python. +func floorMod*[T: SomeNumber](x, y: T): T = + ## Floor modulo is conceptually defined as `x - (floorDiv(x, y) * y)`. ## - ## See also: - ## * `mod proc <#mod,float64,float64>`_ - ## * `floorDiv proc <#floorDiv,T,T>`_ + ## This func behaves the same as the `%` operator in Python. ## - ## .. code-block:: nim - ## echo floorMod( 13, 3) # 1 - ## echo floorMod(-13, 3) # 2 - ## echo floorMod( 13, -3) # -2 - ## echo floorMod(-13, -3) # -1 + ## **See also:** + ## * `mod func <#mod,float64,float64>`_ + ## * `floorDiv func <#floorDiv,T,T>`_ + runnableExamples: + doAssert floorMod( 13, 3) == 1 + doAssert floorMod(-13, 3) == 2 + doAssert floorMod( 13, -3) == -2 + doAssert floorMod(-13, -3) == -1 + result = x mod y if (result > 0 and y < 0) or (result < 0 and y > 0): result += y -when not defined(js): - proc c_frexp*(x: float32, exponent: var int32): float32 {. - importc: "frexp", header: "<math.h>".} - proc c_frexp*(x: float64, exponent: var int32): float64 {. - importc: "frexp", header: "<math.h>".} - proc frexp*[T, U](x: T, exponent: var U): T = - ## Split a number into mantissa and exponent. - ## - ## ``frexp`` calculates the mantissa m (a float greater than or equal to 0.5 - ## and less than 1) and the integer value n such that ``x`` (the original - ## float value) equals ``m * 2**n``. frexp stores n in `exponent` and returns - ## m. - ## - ## .. code-block:: nim - ## var x: int - ## echo frexp(5.0, x) # 0.625 - ## echo x # 3 - var exp: int32 - result = c_frexp(x, exp) - exponent = exp +func euclDiv*[T: SomeInteger](x, y: T): T {.since: (1, 5, 1).} = + ## Returns euclidean division of `x` by `y`. + runnableExamples: + doAssert euclDiv(13, 3) == 4 + doAssert euclDiv(-13, 3) == -5 + doAssert euclDiv(13, -3) == -4 + doAssert euclDiv(-13, -3) == 5 + + result = x div y + if x mod y < 0: + if y > 0: + dec result + else: + inc result +func euclMod*[T: SomeNumber](x, y: T): T {.since: (1, 5, 1).} = + ## Returns euclidean modulo of `x` by `y`. + ## `euclMod(x, y)` is non-negative. + runnableExamples: + doAssert euclMod(13, 3) == 1 + doAssert euclMod(-13, 3) == 2 + doAssert euclMod(13, -3) == 1 + doAssert euclMod(-13, -3) == 2 + + result = x mod y + if result < 0: + result += abs(y) + +func ceilDiv*[T: SomeInteger](x, y: T): T {.inline, since: (1, 5, 1).} = + ## Ceil division is conceptually defined as `ceil(x / y)`. + ## + ## Assumes `x >= 0` and `y > 0` (and `x + y - 1 <= high(T)` if T is SomeUnsignedInt). + ## + ## This is different from the `system.div <system.html#div,int,int>`_ + ## operator, which works like `trunc(x / y)`. + ## That is, `div` rounds towards `0` and `ceilDiv` rounds up. + ## + ## This function has the above input limitation, because that allows the + ## compiler to generate faster code and it is rarely used with + ## negative values or unsigned integers close to `high(T)/2`. + ## If you need a `ceilDiv` that works with any input, see: + ## https://github.com/demotomohiro/divmath. + ## + ## **See also:** + ## * `system.div proc <system.html#div,int,int>`_ for integer division + ## * `floorDiv func <#floorDiv,T,T>`_ for integer division which rounds down. + runnableExamples: + assert ceilDiv(12, 3) == 4 + assert ceilDiv(13, 3) == 5 + + when sizeof(T) == 8: + type UT = uint64 + elif sizeof(T) == 4: + type UT = uint32 + elif sizeof(T) == 2: + type UT = uint16 + elif sizeof(T) == 1: + type UT = uint8 + else: + {.fatal: "Unsupported int type".} + + assert x >= 0 and y > 0 + when T is SomeUnsignedInt: + assert x + y - 1 >= x + + # If the divisor is const, the backend C/C++ compiler generates code without a `div` + # instruction, as it is slow on most CPUs. + # If the divisor is a power of 2 and a const unsigned integer type, the + # compiler generates faster code. + # If the divisor is const and a signed integer, generated code becomes slower + # than the code with unsigned integers, because division with signed integers + # need to works for both positive and negative value without `idiv`/`sdiv`. + # That is why this code convert parameters to unsigned. + # This post contains a comparison of the performance of signed/unsigned integers: + # https://github.com/nim-lang/Nim/pull/18596#issuecomment-894420984. + # If signed integer arguments were not converted to unsigned integers, + # `ceilDiv` wouldn't work for any positive signed integer value, because + # `x + (y - 1)` can overflow. + ((x.UT + (y.UT - 1.UT)) div y.UT).T + +func frexp*[T: float32|float64](x: T): tuple[frac: T, exp: int] {.inline.} = + ## Splits `x` into a normalized fraction `frac` and an integral power of 2 `exp`, + ## such that `abs(frac) in 0.5..<1` and `x == frac * 2 ^ exp`, except for special + ## cases shown below. + runnableExamples: + doAssert frexp(8.0) == (0.5, 4) + doAssert frexp(-8.0) == (-0.5, 4) + doAssert frexp(0.0) == (0.0, 0) + + # special cases: + when sizeof(int) == 8: + doAssert frexp(-0.0).frac.signbit # signbit preserved for +-0 + doAssert frexp(Inf).frac == Inf # +- Inf preserved + doAssert frexp(NaN).frac.isNaN + + when not defined(js): + var exp: cint + result.frac = c_frexp2(x, exp) + result.exp = exp + else: + if x == 0.0: + # reuse signbit implementation + let uintBuffer = toBitsImpl(x) + if (uintBuffer[1] shr 31) != 0: + # x is -0.0 + result = (-0.0, 0) + else: + result = (0.0, 0) + elif x < 0.0: + result = frexp(-x) + result.frac = -result.frac + else: + var ex = trunc(log2(x)) + result.exp = int(ex) + result.frac = x / pow(2.0, ex) + if abs(result.frac) >= 1: + inc(result.exp) + result.frac = result.frac / 2 + if result.exp == 1024 and result.frac == 0.0: + result.frac = 0.99999999999999988898 + +func frexp*[T: float32|float64](x: T, exponent: var int): T {.inline.} = + ## Overload of `frexp` that calls `(result, exponent) = frexp(x)`. + runnableExamples: + var x: int + doAssert frexp(5.0, x) == 0.625 + doAssert x == 3 + + (result, exponent) = frexp(x) + + +when not defined(js): when windowsCC89: # taken from Go-lang Math.Log2 const ln2 = 0.693147180559945309417232121458176568075500134360255254120680009 template log2Impl[T](x: T): T = - var exp: int32 + var exp: int var frac = frexp(x, exp) # Make sure exact powers of two give an exact answer. # Don't depend on Log(0.5)*(1/Ln2)+exp being exactly exp-1. if frac == 0.5: return T(exp - 1) - log10(frac)*(1/ln2) + T(exp) + log10(frac) * (1 / ln2) + T(exp) - proc log2*(x: float32): float32 = log2Impl(x) - proc log2*(x: float64): float64 = log2Impl(x) + func log2*(x: float32): float32 = log2Impl(x) + func log2*(x: float64): float64 = log2Impl(x) ## Log2 returns the binary logarithm of x. ## The special cases are the same as for Log. else: - proc log2*(x: float32): float32 {.importc: "log2f", header: "<math.h>".} - proc log2*(x: float64): float64 {.importc: "log2", header: "<math.h>".} - ## Computes the binary logarithm (base 2) of ``x``. - ## - ## See also: - ## * `log proc <#log,T,T>`_ - ## * `log10 proc <#log10,float64>`_ - ## * `ln proc <#ln,float64>`_ - ## * `exp proc <#exp,float64>`_ + func log2*(x: float32): float32 {.importc: "log2f", header: "<math.h>".} + func log2*(x: float64): float64 {.importc: "log2", header: "<math.h>".} = + ## Computes the binary logarithm (base 2) of `x`. ## - ## .. code-block:: Nim - ## echo log2(8.0) # 3.0 - ## echo log2(1.0) # 0.0 - ## echo log2(0.0) # -inf - ## echo log2(-2.0) # nan - -else: - proc frexp*[T: float32|float64](x: T, exponent: var int): T = - if x == 0.0: - exponent = 0 - result = 0.0 - elif x < 0.0: - result = -frexp(-x, exponent) - else: - var ex = trunc(log2(x)) - exponent = int(ex) - result = x / pow(2.0, ex) - if abs(result) >= 1: - inc(exponent) - result = result / 2 - if exponent == 1024 and result == 0.0: - result = 0.99999999999999988898 - -proc splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] = - ## Breaks ``x`` into an integer and a fractional part. + ## **See also:** + ## * `log func <#log,T,T>`_ + ## * `log10 func <#log10,float64>`_ + ## * `ln func <#ln,float64>`_ + runnableExamples: + doAssert almostEqual(log2(8.0), 3.0) + doAssert almostEqual(log2(1.0), 0.0) + doAssert almostEqual(log2(0.0), -Inf) + doAssert log2(-2.0).isNaN + +func splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] = + ## Breaks `x` into an integer and a fractional part. ## - ## Returns a tuple containing ``intpart`` and ``floatpart`` representing - ## the integer part and the fractional part respectively. + ## Returns a tuple containing `intpart` and `floatpart`, representing + ## the integer part and the fractional part, respectively. ## - ## Both parts have the same sign as ``x``. Analogous to the ``modf`` + ## Both parts have the same sign as `x`. Analogous to the `modf` ## function in C. - ## - ## .. code-block:: nim - ## echo splitDecimal(5.25) # (intpart: 5.0, floatpart: 0.25) - ## echo splitDecimal(-2.73) # (intpart: -2.0, floatpart: -0.73) + runnableExamples: + doAssert splitDecimal(5.25) == (intpart: 5.0, floatpart: 0.25) + doAssert splitDecimal(-2.73) == (intpart: -2.0, floatpart: -0.73) + var absolute: T absolute = abs(x) @@ -919,63 +1078,122 @@ proc splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] = result.intpart = -result.intpart result.floatpart = -result.floatpart -{.pop.} -proc degToRad*[T: float32|float64](d: T): T {.inline.} = - ## Convert from degrees to radians. - ## - ## See also: - ## * `radToDeg proc <#radToDeg,T>`_ +func degToRad*[T: float32|float64](d: T): T {.inline.} = + ## Converts from degrees to radians. ## - ## .. code-block:: nim - ## echo degToRad(180.0) # 3.141592653589793 - result = T(d) * RadPerDeg + ## **See also:** + ## * `radToDeg func <#radToDeg,T>`_ + runnableExamples: + doAssert almostEqual(degToRad(180.0), PI) -proc radToDeg*[T: float32|float64](d: T): T {.inline.} = - ## Convert from radians to degrees. - ## - ## See also: - ## * `degToRad proc <#degToRad,T>`_ + result = d * T(RadPerDeg) + +func radToDeg*[T: float32|float64](d: T): T {.inline.} = + ## Converts from radians to degrees. ## - ## .. code-block:: nim - ## echo degToRad(2 * PI) # 360.0 - result = T(d) / RadPerDeg + ## **See also:** + ## * `degToRad func <#degToRad,T>`_ + runnableExamples: + doAssert almostEqual(radToDeg(2 * PI), 360.0) -proc sgn*[T: SomeNumber](x: T): int {.inline.} = + result = d / T(RadPerDeg) + +func sgn*[T: SomeNumber](x: T): int {.inline.} = ## Sign function. ## ## Returns: - ## * `-1` for negative numbers and ``NegInf``, - ## * `1` for positive numbers and ``Inf``, - ## * `0` for positive zero, negative zero and ``NaN`` - ## - ## .. code-block:: nim - ## echo sgn(5) # 1 - ## echo sgn(0) # 0 - ## echo sgn(-4.1) # -1 + ## * `-1` for negative numbers and `NegInf`, + ## * `1` for positive numbers and `Inf`, + ## * `0` for positive zero, negative zero and `NaN` + runnableExamples: + doAssert sgn(5) == 1 + doAssert sgn(0) == 0 + doAssert sgn(-4.1) == -1 + ord(T(0) < x) - ord(x < T(0)) {.pop.} {.pop.} -proc `^`*[T](x: T, y: Natural): T = - ## Computes ``x`` to the power ``y``. +func sum*[T](x: openArray[T]): T = + ## Computes the sum of the elements in `x`. ## - ## Exponent ``y`` must be non-negative, use - ## `pow proc <#pow,float64,float64>`_ for negative exponents. + ## If `x` is empty, 0 is returned. ## - ## See also: - ## * `pow proc <#pow,float64,float64>`_ for negative exponent or - ## floats - ## * `sqrt proc <#sqrt,float64>`_ - ## * `cbrt proc <#cbrt,float64>`_ + ## **See also:** + ## * `prod func <#prod,openArray[T]>`_ + ## * `cumsum func <#cumsum,openArray[T]>`_ + ## * `cumsummed func <#cumsummed,openArray[T]>`_ + runnableExamples: + doAssert sum([1, 2, 3, 4]) == 10 + doAssert sum([-4, 3, 5]) == 4 + + for i in items(x): result = result + i + +func prod*[T](x: openArray[T]): T = + ## Computes the product of the elements in `x`. + ## + ## If `x` is empty, 1 is returned. + ## + ## **See also:** + ## * `sum func <#sum,openArray[T]>`_ + ## * `fac func <#fac,int>`_ + runnableExamples: + doAssert prod([1, 2, 3, 4]) == 24 + doAssert prod([-4, 3, 5]) == -60 + + result = T(1) + for i in items(x): result = result * i + +func cumsummed*[T](x: openArray[T]): seq[T] = + ## Returns the cumulative (aka prefix) summation of `x`. + ## + ## If `x` is empty, `@[]` is returned. ## + ## **See also:** + ## * `sum func <#sum,openArray[T]>`_ + ## * `cumsum func <#cumsum,openArray[T]>`_ for the in-place version runnableExamples: - assert -3.0^0 == 1.0 - assert -3^1 == -3 - assert -3^2 == 9 - assert -3.0^3 == -27.0 - assert -3.0^4 == 81.0 + doAssert cumsummed([1, 2, 3, 4]) == @[1, 3, 6, 10] + + let xLen = x.len + if xLen == 0: + return @[] + result.setLen(xLen) + result[0] = x[0] + for i in 1 ..< xLen: result[i] = result[i - 1] + x[i] + +func cumsum*[T](x: var openArray[T]) = + ## Transforms `x` in-place (must be declared as `var`) into its + ## cumulative (aka prefix) summation. + ## + ## **See also:** + ## * `sum func <#sum,openArray[T]>`_ + ## * `cumsummed func <#cumsummed,openArray[T]>`_ for a version which + ## returns a cumsummed sequence + runnableExamples: + var a = [1, 2, 3, 4] + cumsum(a) + doAssert a == @[1, 3, 6, 10] + + for i in 1 ..< x.len: x[i] = x[i - 1] + x[i] + +func `^`*[T: SomeNumber](x: T, y: Natural): T = + ## Computes `x` to the power of `y`. + ## + ## The exponent `y` must be non-negative, use + ## `pow <#pow,float64,float64>`_ for negative exponents. + ## + ## **See also:** + ## * `pow func <#pow,float64,float64>`_ for negative exponent or + ## floats + ## * `sqrt func <#sqrt,float64>`_ + ## * `cbrt func <#cbrt,float64>`_ + runnableExamples: + doAssert -3 ^ 0 == 1 + doAssert -3 ^ 1 == -3 + doAssert -3 ^ 2 == 9 case y of 0: result = 1 @@ -993,214 +1211,104 @@ proc `^`*[T](x: T, y: Natural): T = break x *= x -proc gcd*[T](x, y: T): T = - ## Computes the greatest common (positive) divisor of ``x`` and ``y``. +func gcd*[T](x, y: T): T = + ## Computes the greatest common (positive) divisor of `x` and `y`. ## ## Note that for floats, the result cannot always be interpreted as - ## "greatest decimal `z` such that ``z*N == x and z*M == y`` - ## where N and M are positive integers." + ## "greatest decimal `z` such that `z*N == x and z*M == y` + ## where N and M are positive integers". ## - ## See also: - ## * `gcd proc <#gcd,SomeInteger,SomeInteger>`_ for integer version - ## * `lcm proc <#lcm,T,T>`_ + ## **See also:** + ## * `gcd func <#gcd,SomeInteger,SomeInteger>`_ for an integer version + ## * `lcm func <#lcm,T,T>`_ runnableExamples: doAssert gcd(13.5, 9.0) == 4.5 + var (x, y) = (x, y) while y != 0: x = x mod y swap x, y abs x -proc gcd*(x, y: SomeInteger): SomeInteger = - ## Computes the greatest common (positive) divisor of ``x`` and ``y``, - ## using binary GCD (aka Stein's) algorithm. - ## - ## See also: - ## * `gcd proc <#gcd,T,T>`_ for floats version - ## * `lcm proc <#lcm,T,T>`_ - runnableExamples: - doAssert gcd(12, 8) == 4 - doAssert gcd(17, 63) == 1 - when x is SomeSignedInt: - var x = abs(x) - else: - var x = x - when y is SomeSignedInt: - var y = abs(y) - else: - var y = y - - if x == 0: - return y - if y == 0: - return x - - let shift = countTrailingZeroBits(x or y) - y = y shr countTrailingZeroBits(y) - while x != 0: - x = x shr countTrailingZeroBits(x) - if y > x: - swap y, x - x -= y - y shl shift - -proc gcd*[T](x: openArray[T]): T {.since: (1, 1).} = - ## Computes the greatest common (positive) divisor of the elements of ``x``. +when useBuiltins: + ## this func uses bitwise comparisons from C compilers, which are not always available. + func gcd*(x, y: SomeInteger): SomeInteger = + ## Computes the greatest common (positive) divisor of `x` and `y`, + ## using the binary GCD (aka Stein's) algorithm. + ## + ## **See also:** + ## * `gcd func <#gcd,T,T>`_ for a float version + ## * `lcm func <#lcm,T,T>`_ + runnableExamples: + doAssert gcd(12, 8) == 4 + doAssert gcd(17, 63) == 1 + + when x is SomeSignedInt: + var x = abs(x) + else: + var x = x + when y is SomeSignedInt: + var y = abs(y) + else: + var y = y + + if x == 0: + return y + if y == 0: + return x + + let shift = countTrailingZeroBits(x or y) + y = y shr countTrailingZeroBits(y) + while x != 0: + x = x shr countTrailingZeroBits(x) + if y > x: + swap y, x + x -= y + y shl shift + +func gcd*[T](x: openArray[T]): T {.since: (1, 1).} = + ## Computes the greatest common (positive) divisor of the elements of `x`. ## - ## See also: - ## * `gcd proc <#gcd,T,T>`_ for integer version + ## **See also:** + ## * `gcd func <#gcd,T,T>`_ for a version with two arguments runnableExamples: doAssert gcd(@[13.5, 9.0]) == 4.5 + result = x[0] - var i = 1 - while i < x.len: + for i in 1 ..< x.len: result = gcd(result, x[i]) - inc(i) -proc lcm*[T](x, y: T): T = - ## Computes the least common multiple of ``x`` and ``y``. +func lcm*[T](x, y: T): T = + ## Computes the least common multiple of `x` and `y`. ## - ## See also: - ## * `gcd proc <#gcd,T,T>`_ + ## **See also:** + ## * `gcd func <#gcd,T,T>`_ runnableExamples: doAssert lcm(24, 30) == 120 doAssert lcm(13, 39) == 39 + x div gcd(x, y) * y -proc lcm*[T](x: openArray[T]): T {.since: (1, 1).} = - ## Computes the least common multiple of the elements of ``x``. +func clamp*[T](val: T, bounds: Slice[T]): T {.since: (1, 5), inline.} = + ## Like `system.clamp`, but takes a slice, so you can easily clamp within a range. + runnableExamples: + assert clamp(10, 1 .. 5) == 5 + assert clamp(1, 1 .. 3) == 1 + type A = enum a0, a1, a2, a3, a4, a5 + assert a1.clamp(a2..a4) == a2 + assert clamp((3, 0), (1, 0) .. (2, 9)) == (2, 9) + doAssertRaises(AssertionDefect): discard clamp(1, 3..2) # invalid bounds + assert bounds.a <= bounds.b, $(bounds.a, bounds.b) + clamp(val, bounds.a, bounds.b) + +func lcm*[T](x: openArray[T]): T {.since: (1, 1).} = + ## Computes the least common multiple of the elements of `x`. ## - ## See also: - ## * `gcd proc <#gcd,T,T>`_ for integer version + ## **See also:** + ## * `lcm func <#lcm,T,T>`_ for a version with two arguments runnableExamples: doAssert lcm(@[24, 30]) == 120 + result = x[0] - var i = 1 - while i < x.len: + for i in 1 ..< x.len: result = lcm(result, x[i]) - inc(i) - -when isMainModule and not defined(js) and not windowsCC89: - # Check for no side effect annotation - proc mySqrt(num: float): float {.noSideEffect.} = - return sqrt(num) - - # check gamma function - assert(gamma(5.0) == 24.0) # 4! - assert(lgamma(1.0) == 0.0) # ln(1.0) == 0.0 - assert(erf(6.0) > erf(5.0)) - assert(erfc(6.0) < erfc(5.0)) - -when isMainModule: - # Function for approximate comparison of floats - proc `==~`(x, y: float): bool = (abs(x-y) < 1e-9) - - block: # prod - doAssert prod([1, 2, 3, 4]) == 24 - doAssert prod([1.5, 3.4]) == 5.1 - let x: seq[float] = @[] - doAssert prod(x) == 1.0 - - block: # round() tests - # Round to 0 decimal places - doAssert round(54.652) ==~ 55.0 - doAssert round(54.352) ==~ 54.0 - doAssert round(-54.652) ==~ -55.0 - doAssert round(-54.352) ==~ -54.0 - doAssert round(0.0) ==~ 0.0 - - block: # splitDecimal() tests - doAssert splitDecimal(54.674).intpart ==~ 54.0 - doAssert splitDecimal(54.674).floatpart ==~ 0.674 - doAssert splitDecimal(-693.4356).intpart ==~ -693.0 - doAssert splitDecimal(-693.4356).floatpart ==~ -0.4356 - doAssert splitDecimal(0.0).intpart ==~ 0.0 - doAssert splitDecimal(0.0).floatpart ==~ 0.0 - - block: # trunc tests for vcc - doAssert(trunc(-1.1) == -1) - doAssert(trunc(1.1) == 1) - doAssert(trunc(-0.1) == -0) - doAssert(trunc(0.1) == 0) - - #special case - doAssert(classify(trunc(1e1000000)) == fcInf) - doAssert(classify(trunc(-1e1000000)) == fcNegInf) - doAssert(classify(trunc(0.0/0.0)) == fcNan) - doAssert(classify(trunc(0.0)) == fcZero) - - #trick the compiler to produce signed zero - let - f_neg_one = -1.0 - f_zero = 0.0 - f_nan = f_zero / f_zero - - doAssert(classify(trunc(f_neg_one*f_zero)) == fcNegZero) - - doAssert(trunc(-1.1'f32) == -1) - doAssert(trunc(1.1'f32) == 1) - doAssert(trunc(-0.1'f32) == -0) - doAssert(trunc(0.1'f32) == 0) - doAssert(classify(trunc(1e1000000'f32)) == fcInf) - doAssert(classify(trunc(-1e1000000'f32)) == fcNegInf) - doAssert(classify(trunc(f_nan.float32)) == fcNan) - doAssert(classify(trunc(0.0'f32)) == fcZero) - - block: # sgn() tests - assert sgn(1'i8) == 1 - assert sgn(1'i16) == 1 - assert sgn(1'i32) == 1 - assert sgn(1'i64) == 1 - assert sgn(1'u8) == 1 - assert sgn(1'u16) == 1 - assert sgn(1'u32) == 1 - assert sgn(1'u64) == 1 - assert sgn(-12342.8844'f32) == -1 - assert sgn(123.9834'f64) == 1 - assert sgn(0'i32) == 0 - assert sgn(0'f32) == 0 - assert sgn(NegInf) == -1 - assert sgn(Inf) == 1 - assert sgn(NaN) == 0 - - block: # fac() tests - try: - discard fac(-1) - except AssertionDefect: - discard - - doAssert fac(0) == 1 - doAssert fac(1) == 1 - doAssert fac(2) == 2 - doAssert fac(3) == 6 - doAssert fac(4) == 24 - - block: # floorMod/floorDiv - doAssert floorDiv(8, 3) == 2 - doAssert floorMod(8, 3) == 2 - - doAssert floorDiv(8, -3) == -3 - doAssert floorMod(8, -3) == -1 - - doAssert floorDiv(-8, 3) == -3 - doAssert floorMod(-8, 3) == 1 - - doAssert floorDiv(-8, -3) == 2 - doAssert floorMod(-8, -3) == -2 - - doAssert floorMod(8.0, -3.0) ==~ -1.0 - doAssert floorMod(-8.5, 3.0) ==~ 0.5 - - block: # log - doAssert log(4.0, 3.0) ==~ ln(4.0) / ln(3.0) - doAssert log2(8.0'f64) == 3.0'f64 - doAssert log2(4.0'f64) == 2.0'f64 - doAssert log2(2.0'f64) == 1.0'f64 - doAssert log2(1.0'f64) == 0.0'f64 - doAssert classify(log2(0.0'f64)) == fcNegInf - - doAssert log2(8.0'f32) == 3.0'f32 - doAssert log2(4.0'f32) == 2.0'f32 - doAssert log2(2.0'f32) == 1.0'f32 - doAssert log2(1.0'f32) == 0.0'f32 - doAssert classify(log2(0.0'f32)) == fcNegInf |