summary refs log tree commit diff stats
path: root/lib/pure/math.nim
diff options
context:
space:
mode:
Diffstat (limited to 'lib/pure/math.nim')
-rw-r--r--lib/pure/math.nim1836
1 files changed, 972 insertions, 864 deletions
diff --git a/lib/pure/math.nim b/lib/pure/math.nim
index ea44de6d3..ed7d2382f 100644
--- a/lib/pure/math.nim
+++ b/lib/pure/math.nim
@@ -12,80 +12,137 @@
 ## Basic math routines for Nim.
 ##
 ## Note that the trigonometric functions naturally operate on radians.
-## The helper functions `degToRad<#degToRad,T>`_ and `radToDeg<#radToDeg,T>`_
+## The helper functions `degToRad <#degToRad,T>`_ and `radToDeg <#radToDeg,T>`_
 ## provide conversion between radians and degrees.
-##
-## .. code-block::
-##
-##   import math
-##   from sequtils import map
-##
-##   let a = [0.0, PI/6, PI/4, PI/3, PI/2]
-##
-##   echo a.map(sin)
-##   # @[0.0, 0.499…, 0.707…, 0.866…, 1.0]
-##
-##   echo a.map(tan)
-##   # @[0.0, 0.577…, 0.999…, 1.732…, 1.633…e+16]
-##
-##   echo cos(degToRad(180.0))
-##   # -1.0
-##
-##   echo sqrt(-1.0)
-##   # nan   (use `complex` module)
-##
+
+runnableExamples:
+  from std/fenv import epsilon
+  from std/random import rand
+
+  proc generateGaussianNoise(mu: float = 0.0, sigma: float = 1.0): (float, float) =
+    # Generates values from a normal distribution.
+    # Translated from https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform#Implementation.
+    var u1: float
+    var u2: float
+    while true:
+      u1 = rand(1.0)
+      u2 = rand(1.0)
+      if u1 > epsilon(float): break
+    let mag = sigma * sqrt(-2 * ln(u1))
+    let z0 = mag * cos(2 * PI * u2) + mu
+    let z1 = mag * sin(2 * PI * u2) + mu
+    (z0, z1)
+
+  echo generateGaussianNoise()
+
 ## This module is available for the `JavaScript target
 ## <backends.html#backends-the-javascript-target>`_.
 ##
-## **See also:**
-## * `complex module<complex.html>`_ for complex numbers and their
+## See also
+## ========
+## * `complex module <complex.html>`_ for complex numbers and their
 ##   mathematical operations
-## * `rationals module<rationals.html>`_ for rational numbers and their
+## * `rationals module <rationals.html>`_ for rational numbers and their
 ##   mathematical operations
-## * `fenv module<fenv.html>`_ for handling of floating-point rounding
+## * `fenv module <fenv.html>`_ for handling of floating-point rounding
 ##   and exceptions (overflow, zero-divide, etc.)
-## * `random module<random.html>`_ for fast and tiny random number generator
-## * `mersenne module<mersenne.html>`_ for Mersenne twister random number generator
-## * `stats module<stats.html>`_ for statistical analysis
-## * `strformat module<strformat.html>`_ for formatting floats for print
-## * `system module<system.html>`_ Some very basic and trivial math operators
-##   are on system directly, to name a few ``shr``, ``shl``, ``xor``, ``clamp``, etc.
+## * `random module <random.html>`_ for a fast and tiny random number generator
+## * `stats module <stats.html>`_ for statistical analysis
+## * `strformat module <strformat.html>`_ for formatting floats for printing
+## * `system module <system.html>`_ for some very basic and trivial math operators
+##   (`shr`, `shl`, `xor`, `clamp`, etc.)
 
 
 import std/private/since
 {.push debugger: off.} # the user does not want to trace a part
                        # of the standard library!
 
-import bitops
+import std/[bitops, fenv]
+import system/countbits_impl
+
+when defined(nimPreviewSlimSystem):
+  import std/assertions
+
+
+when not defined(js) and not defined(nimscript): # C
+  proc c_isnan(x: float): bool {.importc: "isnan", header: "<math.h>".}
+    # a generic like `x: SomeFloat` might work too if this is implemented via a C macro.
+
+  proc c_copysign(x, y: cfloat): cfloat {.importc: "copysignf", header: "<math.h>".}
+  proc c_copysign(x, y: cdouble): cdouble {.importc: "copysign", header: "<math.h>".}
+
+  proc c_signbit(x: SomeFloat): cint {.importc: "signbit", header: "<math.h>".}
+
+  # don't export `c_frexp` in the future and remove `c_frexp2`.
+  func c_frexp2(x: cfloat, exponent: var cint): cfloat {.
+      importc: "frexpf", header: "<math.h>".}
+  func c_frexp2(x: cdouble, exponent: var cint): cdouble {.
+      importc: "frexp", header: "<math.h>".}
+  
+  type
+    div_t {.importc, header: "<stdlib.h>".} = object
+      quot: cint
+      rem: cint
+    ldiv_t {.importc, header: "<stdlib.h>".} = object
+      quot: clong
+      rem: clong
+    lldiv_t {.importc, header: "<stdlib.h>".} = object
+      quot: clonglong
+      rem: clonglong
+  
+  when cint isnot clong:
+    func divmod_c(x, y: cint): div_t {.importc: "div", header: "<stdlib.h>".}
+  when clong isnot clonglong:
+    func divmod_c(x, y: clonglong): lldiv_t {.importc: "lldiv", header: "<stdlib.h>".}
+  func divmod_c(x, y: clong): ldiv_t {.importc: "ldiv", header: "<stdlib.h>".}
+  func divmod*[T: SomeInteger](x, y: T): (T, T) {.inline.} = 
+    ## Specialized instructions for computing both division and modulus.
+    ## Return structure is: (quotient, remainder)
+    runnableExamples:
+      doAssert divmod(5, 2) == (2, 1)
+      doAssert divmod(5, -3) == (-1, 2)
+    when T is cint | clong | clonglong:
+      when compileOption("overflowChecks"):
+        if y == 0:
+          raise new(DivByZeroDefect)
+        elif (x == T.low and y == -1.T):
+          raise new(OverflowDefect)
+      let res = divmod_c(x, y)
+      result[0] = res.quot
+      result[1] = res.rem
+    else:
+      result[0] = x div y
+      result[1] = x mod y
 
-proc binom*(n, k: int): int {.noSideEffect.} =
-  ## Computes the `binomial coefficient <https://en.wikipedia.org/wiki/Binomial_coefficient>`_.
+func binom*(n, k: int): int =
+  ## Computes the [binomial coefficient](https://en.wikipedia.org/wiki/Binomial_coefficient).
   runnableExamples:
-    doAssert binom(6, 2) == binom(6, 4)
     doAssert binom(6, 2) == 15
     doAssert binom(-6, 2) == 1
     doAssert binom(6, 0) == 1
+
   if k <= 0: return 1
-  if 2*k > n: return binom(n, n-k)
+  if 2 * k > n: return binom(n, n - k)
   result = n
   for i in countup(2, k):
     result = (result * (n + 1 - i)) div i
 
-proc createFactTable[N: static[int]]: array[N, int] =
+func createFactTable[N: static[int]]: array[N, int] =
   result[0] = 1
   for i in 1 ..< N:
     result[i] = result[i - 1] * i
 
-proc fac*(n: int): int =
-  ## Computes the `factorial <https://en.wikipedia.org/wiki/Factorial>`_ of
-  ## a non-negative integer ``n``.
+func fac*(n: int): int =
+  ## Computes the [factorial](https://en.wikipedia.org/wiki/Factorial) of
+  ## a non-negative integer `n`.
   ##
-  ## See also:
-  ## * `prod proc <#prod,openArray[T]>`_
+  ## **See also:**
+  ## * `prod func <#prod,openArray[T]>`_
   runnableExamples:
-    doAssert fac(3) == 6
+    doAssert fac(0) == 1
     doAssert fac(4) == 24
     doAssert fac(10) == 3628800
+
   const factTable =
     when sizeof(int) == 2:
       createFactTable[5]()
@@ -99,91 +156,199 @@ proc fac*(n: int): int =
 
 {.push checks: off, line_dir: off, stack_trace: off.}
 
-when defined(Posix) and not defined(genode):
+when defined(posix) and not defined(genode) and not defined(macosx):
   {.passl: "-lm".}
 
 const
-  PI* = 3.1415926535897932384626433          ## The circle constant PI (Ludolph's number)
-  TAU* = 2.0 * PI                            ## The circle constant TAU (= 2 * PI)
-  E* = 2.71828182845904523536028747          ## Euler's number
+  PI* = 3.1415926535897932384626433          ## The circle constant PI (Ludolph's number).
+  TAU* = 2.0 * PI                            ## The circle constant TAU (= 2 * PI).
+  E* = 2.71828182845904523536028747          ## Euler's number.
 
   MaxFloat64Precision* = 16                  ## Maximum number of meaningful digits
                                              ## after the decimal point for Nim's
-                                             ## ``float64`` type.
+                                             ## `float64` type.
   MaxFloat32Precision* = 8                   ## Maximum number of meaningful digits
                                              ## after the decimal point for Nim's
-                                             ## ``float32`` type.
+                                             ## `float32` type.
   MaxFloatPrecision* = MaxFloat64Precision   ## Maximum number of
                                              ## meaningful digits
                                              ## after the decimal point
-                                             ## for Nim's ``float`` type.
+                                             ## for Nim's `float` type.
   MinFloatNormal* = 2.225073858507201e-308   ## Smallest normal number for Nim's
-                                             ## ``float`` type. (= 2^-1022).
-  RadPerDeg = PI / 180.0                     ## Number of radians per degree
+                                             ## `float` type (= 2^-1022).
+  RadPerDeg = PI / 180.0                     ## Number of radians per degree.
 
 type
   FloatClass* = enum ## Describes the class a floating point value belongs to.
-                     ## This is the type that is returned by
-                     ## `classify proc <#classify,float>`_.
+                     ## This is the type that is returned by the
+                     ## `classify func <#classify,float>`_.
     fcNormal,        ## value is an ordinary nonzero floating point value
     fcSubnormal,     ## value is a subnormal (a very small) floating point value
     fcZero,          ## value is zero
     fcNegZero,       ## value is the negative zero
-    fcNan,           ## value is Not-A-Number (NAN)
+    fcNan,           ## value is Not a Number (NaN)
     fcInf,           ## value is positive infinity
     fcNegInf         ## value is negative infinity
 
-proc classify*(x: float): FloatClass =
+func isNaN*(x: SomeFloat): bool {.inline, since: (1,5,1).} =
+  ## Returns whether `x` is a `NaN`, more efficiently than via `classify(x) == fcNan`.
+  ## Works even with `--passc:-ffast-math`.
+  runnableExamples:
+    doAssert NaN.isNaN
+    doAssert not Inf.isNaN
+    doAssert not isNaN(3.1415926)
+
+  template fn: untyped = result = x != x
+  when nimvm: fn()
+  else:
+    when defined(js) or defined(nimscript): fn()
+    else: result = c_isnan(x)
+
+when defined(js):
+  import std/private/jsutils
+
+  proc toBitsImpl(x: float): array[2, uint32] =
+    let buffer = newArrayBuffer(8)
+    let a = newFloat64Array(buffer)
+    let b = newUint32Array(buffer)
+    a[0] = x
+    {.emit: "`result` = `b`;".}
+    # result = cast[array[2, uint32]](b)
+
+  proc jsSetSign(x: float, sgn: bool): float =
+    let buffer = newArrayBuffer(8)
+    let a = newFloat64Array(buffer)
+    let b = newUint32Array(buffer)
+    a[0] = x
+    {.emit: """
+    function updateBit(num, bitPos, bitVal) {
+      return (num & ~(1 << bitPos)) | (bitVal << bitPos);
+    }
+    `b`[1] = updateBit(`b`[1], 31, `sgn`);
+    `result` = `a`[0];
+    """.}
+
+proc signbit*(x: SomeFloat): bool {.inline, since: (1, 5, 1).} =
+  ## Returns true if `x` is negative, false otherwise.
+  runnableExamples:
+    doAssert not signbit(0.0)
+    doAssert signbit(-0.0)
+    doAssert signbit(-0.1)
+    doAssert not signbit(0.1)
+
+  when defined(js):
+    let uintBuffer = toBitsImpl(x)
+    result = (uintBuffer[1] shr 31) != 0
+  else:
+    result = c_signbit(x) != 0
+
+func copySign*[T: SomeFloat](x, y: T): T {.inline, since: (1, 5, 1).} =
+  ## Returns a value with the magnitude of `x` and the sign of `y`;
+  ## this works even if x or y are NaN, infinity or zero, all of which can carry a sign.
+  runnableExamples:
+    doAssert copySign(10.0, 1.0) == 10.0
+    doAssert copySign(10.0, -1.0) == -10.0
+    doAssert copySign(-Inf, -0.0) == -Inf
+    doAssert copySign(NaN, 1.0).isNaN
+    doAssert copySign(1.0, copySign(NaN, -1.0)) == -1.0
+
+  # TODO: use signbit for examples
+  when defined(js):
+    let uintBuffer = toBitsImpl(y)
+    let sgn = (uintBuffer[1] shr 31) != 0
+    result = jsSetSign(x, sgn)
+  else:
+    when nimvm: # not exact but we have a vmops for recent enough nim
+      if y > 0.0 or (y == 0.0 and 1.0 / y > 0.0):
+        result = abs(x)
+      elif y <= 0.0:
+        result = -abs(x)
+      else: # must be NaN
+        result = abs(x)
+    else: result = c_copysign(x, y)
+
+func classify*(x: float): FloatClass =
   ## Classifies a floating point value.
   ##
-  ## Returns ``x``'s class as specified by `FloatClass enum<#FloatClass>`_.
+  ## Returns `x`'s class as specified by the `FloatClass enum<#FloatClass>`_.
   runnableExamples:
     doAssert classify(0.3) == fcNormal
     doAssert classify(0.0) == fcZero
-    doAssert classify(0.3/0.0) == fcInf
-    doAssert classify(-0.3/0.0) == fcNegInf
+    doAssert classify(0.3 / 0.0) == fcInf
+    doAssert classify(-0.3 / 0.0) == fcNegInf
     doAssert classify(5.0e-324) == fcSubnormal
 
   # JavaScript and most C compilers have no classify:
+  if isNan(x): return fcNan
   if x == 0.0:
-    if 1.0/x == Inf:
+    if 1.0 / x == Inf:
       return fcZero
     else:
       return fcNegZero
-  if x*0.5 == x:
+  if x * 0.5 == x:
     if x > 0.0: return fcInf
     else: return fcNegInf
-  if x != x: return fcNan
   if abs(x) < MinFloatNormal:
     return fcSubnormal
   return fcNormal
 
-proc isPowerOfTwo*(x: int): bool {.noSideEffect.} =
-  ## Returns ``true``, if ``x`` is a power of two, ``false`` otherwise.
+func almostEqual*[T: SomeFloat](x, y: T; unitsInLastPlace: Natural = 4): bool {.
+    since: (1, 5), inline.} =
+  ## Checks if two float values are almost equal, using the
+  ## [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon).
+  ##
+  ## `unitsInLastPlace` is the max number of
+  ## [units in the last place](https://en.wikipedia.org/wiki/Unit_in_the_last_place)
+  ## difference tolerated when comparing two numbers. The larger the value, the
+  ## more error is allowed. A `0` value means that two numbers must be exactly the
+  ## same to be considered equal.
+  ##
+  ## The machine epsilon has to be scaled to the magnitude of the values used
+  ## and multiplied by the desired precision in ULPs unless the difference is
+  ## subnormal.
+  ##
+  # taken from: https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon
+  runnableExamples:
+    doAssert almostEqual(PI, 3.14159265358979)
+    doAssert almostEqual(Inf, Inf)
+    doAssert not almostEqual(NaN, NaN)
+
+  if x == y:
+    # short circuit exact equality -- needed to catch two infinities of
+    # the same sign. And perhaps speeds things up a bit sometimes.
+    return true
+  let diff = abs(x - y)
+  result = diff <= epsilon(T) * abs(x + y) * T(unitsInLastPlace) or
+      diff < minimumPositiveValue(T)
+
+func isPowerOfTwo*(x: int): bool =
+  ## Returns `true`, if `x` is a power of two, `false` otherwise.
   ##
   ## Zero and negative numbers are not a power of two.
   ##
-  ## See also:
-  ## * `nextPowerOfTwo proc<#nextPowerOfTwo,int>`_
+  ## **See also:**
+  ## * `nextPowerOfTwo func <#nextPowerOfTwo,int>`_
   runnableExamples:
-    doAssert isPowerOfTwo(16) == true
-    doAssert isPowerOfTwo(5) == false
-    doAssert isPowerOfTwo(0) == false
-    doAssert isPowerOfTwo(-16) == false
+    doAssert isPowerOfTwo(16)
+    doAssert not isPowerOfTwo(5)
+    doAssert not isPowerOfTwo(0)
+    doAssert not isPowerOfTwo(-16)
+
   return (x > 0) and ((x and (x - 1)) == 0)
 
-proc nextPowerOfTwo*(x: int): int {.noSideEffect.} =
-  ## Returns ``x`` rounded up to the nearest power of two.
+func nextPowerOfTwo*(x: int): int =
+  ## Returns `x` rounded up to the nearest power of two.
   ##
   ## Zero and negative numbers get rounded up to 1.
   ##
-  ## See also:
-  ## * `isPowerOfTwo proc<#isPowerOfTwo,int>`_
+  ## **See also:**
+  ## * `isPowerOfTwo func <#isPowerOfTwo,int>`_
   runnableExamples:
     doAssert nextPowerOfTwo(16) == 16
     doAssert nextPowerOfTwo(5) == 8
     doAssert nextPowerOfTwo(0) == 1
     doAssert nextPowerOfTwo(-16) == 1
+
   result = x - 1
   when defined(cpu64):
     result = result or (result shr 32)
@@ -196,458 +361,348 @@ proc nextPowerOfTwo*(x: int): int {.noSideEffect.} =
   result = result or (result shr 1)
   result += 1 + ord(x <= 0)
 
-proc sum*[T](x: openArray[T]): T {.noSideEffect.} =
-  ## Computes the sum of the elements in ``x``.
-  ##
-  ## If ``x`` is empty, 0 is returned.
-  ##
-  ## See also:
-  ## * `prod proc <#prod,openArray[T]>`_
-  ## * `cumsum proc <#cumsum,openArray[T]>`_
-  ## * `cumsummed proc <#cumsummed,openArray[T]>`_
-  runnableExamples:
-    doAssert sum([1, 2, 3, 4]) == 10
-    doAssert sum([-1.5, 2.7, -0.1]) == 1.1
-  for i in items(x): result = result + i
-
-proc prod*[T](x: openArray[T]): T {.noSideEffect.} =
-  ## Computes the product of the elements in ``x``.
-  ##
-  ## If ``x`` is empty, 1 is returned.
-  ##
-  ## See also:
-  ## * `sum proc <#sum,openArray[T]>`_
-  ## * `fac proc <#fac,int>`_
-  runnableExamples:
-    doAssert prod([1, 2, 3, 4]) == 24
-    doAssert prod([-4, 3, 5]) == -60
-  result = 1.T
-  for i in items(x): result = result * i
 
-proc cumsummed*[T](x: openArray[T]): seq[T] =
-  ## Return cumulative (aka prefix) summation of ``x``.
-  ##
-  ## See also:
-  ## * `sum proc <#sum,openArray[T]>`_
-  ## * `cumsum proc <#cumsum,openArray[T]>`_ for the in-place version
-  runnableExamples:
-    let a = [1, 2, 3, 4]
-    doAssert cumsummed(a) == @[1, 3, 6, 10]
-  result.setLen(x.len)
-  result[0] = x[0]
-  for i in 1 ..< x.len: result[i] = result[i-1] + x[i]
 
-proc cumsum*[T](x: var openArray[T]) =
-  ## Transforms ``x`` in-place (must be declared as `var`) into its
-  ## cumulative (aka prefix) summation.
-  ##
-  ## See also:
-  ## * `sum proc <#sum,openArray[T]>`_
-  ## * `cumsummed proc <#cumsummed,openArray[T]>`_ for a version which
-  ##   returns cumsummed sequence
-  runnableExamples:
-    var a = [1, 2, 3, 4]
-    cumsum(a)
-    doAssert a == @[1, 3, 6, 10]
-  for i in 1 ..< x.len: x[i] = x[i-1] + x[i]
 
-{.push noSideEffect.}
 when not defined(js): # C
-  proc sqrt*(x: float32): float32 {.importc: "sqrtf", header: "<math.h>".}
-  proc sqrt*(x: float64): float64 {.importc: "sqrt", header: "<math.h>".}
-    ## Computes the square root of ``x``.
-    ##
-    ## See also:
-    ## * `cbrt proc <#cbrt,float64>`_ for cubic root
+  func sqrt*(x: float32): float32 {.importc: "sqrtf", header: "<math.h>".}
+  func sqrt*(x: float64): float64 {.importc: "sqrt", header: "<math.h>".} =
+    ## Computes the square root of `x`.
     ##
-    ## .. code-block:: nim
-    ##  echo sqrt(4.0)  ## 2.0
-    ##  echo sqrt(1.44) ## 1.2
-    ##  echo sqrt(-4.0) ## nan
-  proc cbrt*(x: float32): float32 {.importc: "cbrtf", header: "<math.h>".}
-  proc cbrt*(x: float64): float64 {.importc: "cbrt", header: "<math.h>".}
-    ## Computes the cubic root of ``x``.
+    ## **See also:**
+    ## * `cbrt func <#cbrt,float64>`_ for the cube root
+    runnableExamples:
+      doAssert almostEqual(sqrt(4.0), 2.0)
+      doAssert almostEqual(sqrt(1.44), 1.2)
+  func cbrt*(x: float32): float32 {.importc: "cbrtf", header: "<math.h>".}
+  func cbrt*(x: float64): float64 {.importc: "cbrt", header: "<math.h>".} =
+    ## Computes the cube root of `x`.
     ##
-    ## See also:
-    ## * `sqrt proc <#sqrt,float64>`_ for square root
+    ## **See also:**
+    ## * `sqrt func <#sqrt,float64>`_ for the square root
+    runnableExamples:
+      doAssert almostEqual(cbrt(8.0), 2.0)
+      doAssert almostEqual(cbrt(2.197), 1.3)
+      doAssert almostEqual(cbrt(-27.0), -3.0)
+  func ln*(x: float32): float32 {.importc: "logf", header: "<math.h>".}
+  func ln*(x: float64): float64 {.importc: "log", header: "<math.h>".} =
+    ## Computes the [natural logarithm](https://en.wikipedia.org/wiki/Natural_logarithm)
+    ## of `x`.
     ##
-    ## .. code-block:: nim
-    ##  echo cbrt(8.0)   ## 2.0
-    ##  echo cbrt(2.197) ## 1.3
-    ##  echo cbrt(-27.0) ## -3.0
-  proc ln*(x: float32): float32 {.importc: "logf", header: "<math.h>".}
-  proc ln*(x: float64): float64 {.importc: "log", header: "<math.h>".}
-    ## Computes the `natural logarithm <https://en.wikipedia.org/wiki/Natural_logarithm>`_
-    ## of ``x``.
-    ##
-    ## See also:
-    ## * `log proc <#log,T,T>`_
-    ## * `log10 proc <#log10,float64>`_
-    ## * `log2 proc <#log2,float64>`_
-    ## * `exp proc <#exp,float64>`_
-    ##
-    ## .. code-block:: nim
-    ##  echo ln(exp(4.0)) ## 4.0
-    ##  echo ln(1.0))     ## 0.0
-    ##  echo ln(0.0)      ## -inf
-    ##  echo ln(-7.0)     ## nan
+    ## **See also:**
+    ## * `log func <#log,T,T>`_
+    ## * `log10 func <#log10,float64>`_
+    ## * `log2 func <#log2,float64>`_
+    ## * `exp func <#exp,float64>`_
+    runnableExamples:
+      doAssert almostEqual(ln(exp(4.0)), 4.0)
+      doAssert almostEqual(ln(1.0), 0.0)
+      doAssert almostEqual(ln(0.0), -Inf)
+      doAssert ln(-7.0).isNaN
 else: # JS
-  proc sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.}
-  proc sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.}
+  func sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.}
+  func sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.}
 
-  proc cbrt*(x: float32): float32 {.importc: "Math.cbrt", nodecl.}
-  proc cbrt*(x: float64): float64 {.importc: "Math.cbrt", nodecl.}
+  func cbrt*(x: float32): float32 {.importc: "Math.cbrt", nodecl.}
+  func cbrt*(x: float64): float64 {.importc: "Math.cbrt", nodecl.}
 
-  proc ln*(x: float32): float32 {.importc: "Math.log", nodecl.}
-  proc ln*(x: float64): float64 {.importc: "Math.log", nodecl.}
+  func ln*(x: float32): float32 {.importc: "Math.log", nodecl.}
+  func ln*(x: float64): float64 {.importc: "Math.log", nodecl.}
 
-proc log*[T: SomeFloat](x, base: T): T =
-  ## Computes the logarithm of ``x`` to base ``base``.
-  ##
-  ## See also:
-  ## * `ln proc <#ln,float64>`_
-  ## * `log10 proc <#log10,float64>`_
-  ## * `log2 proc <#log2,float64>`_
-  ## * `exp proc <#exp,float64>`_
+func log*[T: SomeFloat](x, base: T): T =
+  ## Computes the logarithm of `x` to base `base`.
   ##
-  ## .. code-block:: nim
-  ##  echo log(9.0, 3.0)  ## 2.0
-  ##  echo log(32.0, 2.0) ## 5.0
-  ##  echo log(0.0, 2.0)  ## -inf
-  ##  echo log(-7.0, 4.0) ## nan
-  ##  echo log(8.0, -2.0) ## nan
+  ## **See also:**
+  ## * `ln func <#ln,float64>`_
+  ## * `log10 func <#log10,float64>`_
+  ## * `log2 func <#log2,float64>`_
+  runnableExamples:
+    doAssert almostEqual(log(9.0, 3.0), 2.0)
+    doAssert almostEqual(log(0.0, 2.0), -Inf)
+    doAssert log(-7.0, 4.0).isNaN
+    doAssert log(8.0, -2.0).isNaN
+
   ln(x) / ln(base)
 
 when not defined(js): # C
-  proc log10*(x: float32): float32 {.importc: "log10f", header: "<math.h>".}
-  proc log10*(x: float64): float64 {.importc: "log10", header: "<math.h>".}
-    ## Computes the common logarithm (base 10) of ``x``.
-    ##
-    ## See also:
-    ## * `ln proc <#ln,float64>`_
-    ## * `log proc <#log,T,T>`_
-    ## * `log2 proc <#log2,float64>`_
-    ## * `exp proc <#exp,float64>`_
-    ##
-    ## .. code-block:: nim
-    ##  echo log10(100.0)  ## 2.0
-    ##  echo log10(0.0)    ## nan
-    ##  echo log10(-100.0) ## -inf
-  proc exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".}
-  proc exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".}
-    ## Computes the exponential function of ``x`` (e^x).
-    ##
-    ## See also:
-    ## * `ln proc <#ln,float64>`_
-    ## * `log proc <#log,T,T>`_
-    ## * `log10 proc <#log10,float64>`_
-    ## * `log2 proc <#log2,float64>`_
-    ##
-    ## .. code-block:: nim
-    ##  echo exp(1.0)     ## 2.718281828459045
-    ##  echo ln(exp(4.0)) ## 4.0
-    ##  echo exp(0.0)     ## 1.0
-    ##  echo exp(-1.0)    ## 0.3678794411714423
-  proc sin*(x: float32): float32 {.importc: "sinf", header: "<math.h>".}
-  proc sin*(x: float64): float64 {.importc: "sin", header: "<math.h>".}
-    ## Computes the sine of ``x``.
+  func log10*(x: float32): float32 {.importc: "log10f", header: "<math.h>".}
+  func log10*(x: float64): float64 {.importc: "log10", header: "<math.h>".} =
+    ## Computes the common logarithm (base 10) of `x`.
     ##
-    ## See also:
-    ## * `cos proc <#cos,float64>`_
-    ## * `tan proc <#tan,float64>`_
-    ## * `arcsin proc <#arcsin,float64>`_
-    ## * `sinh proc <#sinh,float64>`_
+    ## **See also:**
+    ## * `ln func <#ln,float64>`_
+    ## * `log func <#log,T,T>`_
+    ## * `log2 func <#log2,float64>`_
+    runnableExamples:
+      doAssert almostEqual(log10(100.0) , 2.0)
+      doAssert almostEqual(log10(0.0), -Inf)
+      doAssert log10(-100.0).isNaN
+  func exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".}
+  func exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".} =
+    ## Computes the exponential function of `x` (`e^x`).
     ##
-    ## .. code-block:: nim
-    ##  echo sin(PI / 6)         ## 0.4999999999999999
-    ##  echo sin(degToRad(90.0)) ## 1.0
-  proc cos*(x: float32): float32 {.importc: "cosf", header: "<math.h>".}
-  proc cos*(x: float64): float64 {.importc: "cos", header: "<math.h>".}
-    ## Computes the cosine of ``x``.
+    ## **See also:**
+    ## * `ln func <#ln,float64>`_
+    runnableExamples:
+      doAssert almostEqual(exp(1.0), E)
+      doAssert almostEqual(ln(exp(4.0)), 4.0)
+      doAssert almostEqual(exp(0.0), 1.0)
+  func sin*(x: float32): float32 {.importc: "sinf", header: "<math.h>".}
+  func sin*(x: float64): float64 {.importc: "sin", header: "<math.h>".} =
+    ## Computes the sine of `x`.
     ##
-    ## See also:
-    ## * `sin proc <#sin,float64>`_
-    ## * `tan proc <#tan,float64>`_
-    ## * `arccos proc <#arccos,float64>`_
-    ## * `cosh proc <#cosh,float64>`_
+    ## **See also:**
+    ## * `arcsin func <#arcsin,float64>`_
+    runnableExamples:
+      doAssert almostEqual(sin(PI / 6), 0.5)
+      doAssert almostEqual(sin(degToRad(90.0)), 1.0)
+  func cos*(x: float32): float32 {.importc: "cosf", header: "<math.h>".}
+  func cos*(x: float64): float64 {.importc: "cos", header: "<math.h>".} =
+    ## Computes the cosine of `x`.
     ##
-    ## .. code-block:: nim
-    ##  echo cos(2 * PI)         ## 1.0
-    ##  echo cos(degToRad(60.0)) ## 0.5000000000000001
-  proc tan*(x: float32): float32 {.importc: "tanf", header: "<math.h>".}
-  proc tan*(x: float64): float64 {.importc: "tan", header: "<math.h>".}
-    ## Computes the tangent of ``x``.
+    ## **See also:**
+    ## * `arccos func <#arccos,float64>`_
+    runnableExamples:
+      doAssert almostEqual(cos(2 * PI), 1.0)
+      doAssert almostEqual(cos(degToRad(60.0)), 0.5)
+  func tan*(x: float32): float32 {.importc: "tanf", header: "<math.h>".}
+  func tan*(x: float64): float64 {.importc: "tan", header: "<math.h>".} =
+    ## Computes the tangent of `x`.
     ##
-    ## See also:
-    ## * `sin proc <#sin,float64>`_
-    ## * `cos proc <#cos,float64>`_
-    ## * `arctan proc <#arctan,float64>`_
-    ## * `tanh proc <#tanh,float64>`_
+    ## **See also:**
+    ## * `arctan func <#arctan,float64>`_
+    runnableExamples:
+      doAssert almostEqual(tan(degToRad(45.0)), 1.0)
+      doAssert almostEqual(tan(PI / 4), 1.0)
+  func sinh*(x: float32): float32 {.importc: "sinhf", header: "<math.h>".}
+  func sinh*(x: float64): float64 {.importc: "sinh", header: "<math.h>".} =
+    ## Computes the [hyperbolic sine](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`.
     ##
-    ## .. code-block:: nim
-    ##  echo tan(degToRad(45.0)) ## 0.9999999999999999
-    ##  echo tan(PI / 4)         ## 0.9999999999999999
-  proc sinh*(x: float32): float32 {.importc: "sinhf", header: "<math.h>".}
-  proc sinh*(x: float64): float64 {.importc: "sinh", header: "<math.h>".}
-    ## Computes the `hyperbolic sine <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
+    ## **See also:**
+    ## * `arcsinh func <#arcsinh,float64>`_
+    runnableExamples:
+      doAssert almostEqual(sinh(0.0), 0.0)
+      doAssert almostEqual(sinh(1.0), 1.175201193643801)
+  func cosh*(x: float32): float32 {.importc: "coshf", header: "<math.h>".}
+  func cosh*(x: float64): float64 {.importc: "cosh", header: "<math.h>".} =
+    ## Computes the [hyperbolic cosine](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`.
     ##
-    ## See also:
-    ## * `cosh proc <#cosh,float64>`_
-    ## * `tanh proc <#tanh,float64>`_
-    ## * `arcsinh proc <#arcsinh,float64>`_
-    ## * `sin proc <#sin,float64>`_
+    ## **See also:**
+    ## * `arccosh func <#arccosh,float64>`_
+    runnableExamples:
+      doAssert almostEqual(cosh(0.0), 1.0)
+      doAssert almostEqual(cosh(1.0), 1.543080634815244)
+  func tanh*(x: float32): float32 {.importc: "tanhf", header: "<math.h>".}
+  func tanh*(x: float64): float64 {.importc: "tanh", header: "<math.h>".} =
+    ## Computes the [hyperbolic tangent](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`.
     ##
-    ## .. code-block:: nim
-    ##  echo sinh(0.0)            ## 0.0
-    ##  echo sinh(1.0)            ## 1.175201193643801
-    ##  echo sinh(degToRad(90.0)) ## 2.301298902307295
-  proc cosh*(x: float32): float32 {.importc: "coshf", header: "<math.h>".}
-  proc cosh*(x: float64): float64 {.importc: "cosh", header: "<math.h>".}
-    ## Computes the `hyperbolic cosine <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
+    ## **See also:**
+    ## * `arctanh func <#arctanh,float64>`_
+    runnableExamples:
+      doAssert almostEqual(tanh(0.0), 0.0)
+      doAssert almostEqual(tanh(1.0), 0.7615941559557649)
+  func arcsin*(x: float32): float32 {.importc: "asinf", header: "<math.h>".}
+  func arcsin*(x: float64): float64 {.importc: "asin", header: "<math.h>".} =
+    ## Computes the arc sine of `x`.
     ##
-    ## See also:
-    ## * `sinh proc <#sinh,float64>`_
-    ## * `tanh proc <#tanh,float64>`_
-    ## * `arccosh proc <#arccosh,float64>`_
-    ## * `cos proc <#cos,float64>`_
+    ## **See also:**
+    ## * `sin func <#sin,float64>`_
+    runnableExamples:
+      doAssert almostEqual(radToDeg(arcsin(0.0)), 0.0)
+      doAssert almostEqual(radToDeg(arcsin(1.0)), 90.0)
+  func arccos*(x: float32): float32 {.importc: "acosf", header: "<math.h>".}
+  func arccos*(x: float64): float64 {.importc: "acos", header: "<math.h>".} =
+    ## Computes the arc cosine of `x`.
     ##
-    ## .. code-block:: nim
-    ##  echo cosh(0.0)            ## 1.0
-    ##  echo cosh(1.0)            ## 1.543080634815244
-    ##  echo cosh(degToRad(90.0)) ## 2.509178478658057
-  proc tanh*(x: float32): float32 {.importc: "tanhf", header: "<math.h>".}
-  proc tanh*(x: float64): float64 {.importc: "tanh", header: "<math.h>".}
-    ## Computes the `hyperbolic tangent <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
+    ## **See also:**
+    ## * `cos func <#cos,float64>`_
+    runnableExamples:
+      doAssert almostEqual(radToDeg(arccos(0.0)), 90.0)
+      doAssert almostEqual(radToDeg(arccos(1.0)), 0.0)
+  func arctan*(x: float32): float32 {.importc: "atanf", header: "<math.h>".}
+  func arctan*(x: float64): float64 {.importc: "atan", header: "<math.h>".} =
+    ## Calculate the arc tangent of `x`.
     ##
-    ## See also:
-    ## * `sinh proc <#sinh,float64>`_
-    ## * `cosh proc <#cosh,float64>`_
-    ## * `arctanh proc <#arctanh,float64>`_
-    ## * `tan proc <#tan,float64>`_
+    ## **See also:**
+    ## * `arctan2 func <#arctan2,float64,float64>`_
+    ## * `tan func <#tan,float64>`_
+    runnableExamples:
+      doAssert almostEqual(arctan(1.0), 0.7853981633974483)
+      doAssert almostEqual(radToDeg(arctan(1.0)), 45.0)
+  func arctan2*(y, x: float32): float32 {.importc: "atan2f", header: "<math.h>".}
+  func arctan2*(y, x: float64): float64 {.importc: "atan2", header: "<math.h>".} =
+    ## Calculate the arc tangent of `y/x`.
     ##
-    ## .. code-block:: nim
-    ##  echo tanh(0.0)            ## 0.0
-    ##  echo tanh(1.0)            ## 0.7615941559557649
-    ##  echo tanh(degToRad(90.0)) ## 0.9171523356672744
-
-  proc arccos*(x: float32): float32 {.importc: "acosf", header: "<math.h>".}
-  proc arccos*(x: float64): float64 {.importc: "acos", header: "<math.h>".}
-    ## Computes the arc cosine of ``x``.
-    ##
-    ## See also:
-    ## * `arcsin proc <#arcsin,float64>`_
-    ## * `arctan proc <#arctan,float64>`_
-    ## * `arctan2 proc <#arctan2,float64,float64>`_
-    ## * `cos proc <#cos,float64>`_
-    ##
-    ## .. code-block:: nim
-    ##  echo radToDeg(arccos(0.0)) ## 90.0
-    ##  echo radToDeg(arccos(1.0)) ## 0.0
-  proc arcsin*(x: float32): float32 {.importc: "asinf", header: "<math.h>".}
-  proc arcsin*(x: float64): float64 {.importc: "asin", header: "<math.h>".}
-    ## Computes the arc sine of ``x``.
-    ##
-    ## See also:
-    ## * `arccos proc <#arccos,float64>`_
-    ## * `arctan proc <#arctan,float64>`_
-    ## * `arctan2 proc <#arctan2,float64,float64>`_
-    ## * `sin proc <#sin,float64>`_
-    ##
-    ## .. code-block:: nim
-    ##  echo radToDeg(arcsin(0.0)) ## 0.0
-    ##  echo radToDeg(arcsin(1.0)) ## 90.0
-  proc arctan*(x: float32): float32 {.importc: "atanf", header: "<math.h>".}
-  proc arctan*(x: float64): float64 {.importc: "atan", header: "<math.h>".}
-    ## Calculate the arc tangent of ``x``.
-    ##
-    ## See also:
-    ## * `arcsin proc <#arcsin,float64>`_
-    ## * `arccos proc <#arccos,float64>`_
-    ## * `arctan2 proc <#arctan2,float64,float64>`_
-    ## * `tan proc <#tan,float64>`_
+    ## It produces correct results even when the resulting angle is near
+    ## `PI/2` or `-PI/2` (`x` near 0).
     ##
-    ## .. code-block:: nim
-    ##  echo arctan(1.0) ## 0.7853981633974483
-    ##  echo radToDeg(arctan(1.0)) ## 45.0
-  proc arctan2*(y, x: float32): float32 {.importc: "atan2f",
-      header: "<math.h>".}
-  proc arctan2*(y, x: float64): float64 {.importc: "atan2", header: "<math.h>".}
-    ## Calculate the arc tangent of ``y`` / ``x``.
+    ## **See also:**
+    ## * `arctan func <#arctan,float64>`_
+    runnableExamples:
+      doAssert almostEqual(arctan2(1.0, 0.0), PI / 2.0)
+      doAssert almostEqual(radToDeg(arctan2(1.0, 0.0)), 90.0)
+  func arcsinh*(x: float32): float32 {.importc: "asinhf", header: "<math.h>".}
+  func arcsinh*(x: float64): float64 {.importc: "asinh", header: "<math.h>".}
+    ## Computes the inverse hyperbolic sine of `x`.
     ##
-    ## It produces correct results even when the resulting angle is near
-    ## pi/2 or -pi/2 (``x`` near 0).
+    ## **See also:**
+    ## * `sinh func <#sinh,float64>`_
+  func arccosh*(x: float32): float32 {.importc: "acoshf", header: "<math.h>".}
+  func arccosh*(x: float64): float64 {.importc: "acosh", header: "<math.h>".}
+    ## Computes the inverse hyperbolic cosine of `x`.
     ##
-    ## See also:
-    ## * `arcsin proc <#arcsin,float64>`_
-    ## * `arccos proc <#arccos,float64>`_
-    ## * `arctan proc <#arctan,float64>`_
-    ## * `tan proc <#tan,float64>`_
+    ## **See also:**
+    ## * `cosh func <#cosh,float64>`_
+  func arctanh*(x: float32): float32 {.importc: "atanhf", header: "<math.h>".}
+  func arctanh*(x: float64): float64 {.importc: "atanh", header: "<math.h>".}
+    ## Computes the inverse hyperbolic tangent of `x`.
     ##
-    ## .. code-block:: nim
-    ##  echo arctan2(1.0, 0.0) ## 1.570796326794897
-    ##  echo radToDeg(arctan2(1.0, 0.0)) ## 90.0
-  proc arcsinh*(x: float32): float32 {.importc: "asinhf", header: "<math.h>".}
-  proc arcsinh*(x: float64): float64 {.importc: "asinh", header: "<math.h>".}
-    ## Computes the inverse hyperbolic sine of ``x``.
-  proc arccosh*(x: float32): float32 {.importc: "acoshf", header: "<math.h>".}
-  proc arccosh*(x: float64): float64 {.importc: "acosh", header: "<math.h>".}
-    ## Computes the inverse hyperbolic cosine of ``x``.
-  proc arctanh*(x: float32): float32 {.importc: "atanhf", header: "<math.h>".}
-  proc arctanh*(x: float64): float64 {.importc: "atanh", header: "<math.h>".}
-    ## Computes the inverse hyperbolic tangent of ``x``.
+    ## **See also:**
+    ## * `tanh func <#tanh,float64>`_
 
 else: # JS
-  proc log10*(x: float32): float32 {.importc: "Math.log10", nodecl.}
-  proc log10*(x: float64): float64 {.importc: "Math.log10", nodecl.}
-  proc log2*(x: float32): float32 {.importc: "Math.log2", nodecl.}
-  proc log2*(x: float64): float64 {.importc: "Math.log2", nodecl.}
-  proc exp*(x: float32): float32 {.importc: "Math.exp", nodecl.}
-  proc exp*(x: float64): float64 {.importc: "Math.exp", nodecl.}
-
-  proc sin*[T: float32|float64](x: T): T {.importc: "Math.sin", nodecl.}
-  proc cos*[T: float32|float64](x: T): T {.importc: "Math.cos", nodecl.}
-  proc tan*[T: float32|float64](x: T): T {.importc: "Math.tan", nodecl.}
-
-  proc sinh*[T: float32|float64](x: T): T {.importc: "Math.sinh", nodecl.}
-  proc cosh*[T: float32|float64](x: T): T {.importc: "Math.cosh", nodecl.}
-  proc tanh*[T: float32|float64](x: T): T {.importc: "Math.tanh", nodecl.}
-
-  proc arcsin*[T: float32|float64](x: T): T {.importc: "Math.asin", nodecl.}
-  proc arccos*[T: float32|float64](x: T): T {.importc: "Math.acos", nodecl.}
-  proc arctan*[T: float32|float64](x: T): T {.importc: "Math.atan", nodecl.}
-  proc arctan2*[T: float32|float64](y, x: T): T {.importc: "Math.atan2", nodecl.}
-
-  proc arcsinh*[T: float32|float64](x: T): T {.importc: "Math.asinh", nodecl.}
-  proc arccosh*[T: float32|float64](x: T): T {.importc: "Math.acosh", nodecl.}
-  proc arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.}
-
-proc cot*[T: float32|float64](x: T): T = 1.0 / tan(x)
-  ## Computes the cotangent of ``x`` (1 / tan(x)).
-proc sec*[T: float32|float64](x: T): T = 1.0 / cos(x)
-  ## Computes the secant of ``x`` (1 / cos(x)).
-proc csc*[T: float32|float64](x: T): T = 1.0 / sin(x)
-  ## Computes the cosecant of ``x`` (1 / sin(x)).
-
-proc coth*[T: float32|float64](x: T): T = 1.0 / tanh(x)
-  ## Computes the hyperbolic cotangent of ``x`` (1 / tanh(x)).
-proc sech*[T: float32|float64](x: T): T = 1.0 / cosh(x)
-  ## Computes the hyperbolic secant of ``x`` (1 / cosh(x)).
-proc csch*[T: float32|float64](x: T): T = 1.0 / sinh(x)
-  ## Computes the hyperbolic cosecant of ``x`` (1 / sinh(x)).
-
-proc arccot*[T: float32|float64](x: T): T = arctan(1.0 / x)
-  ## Computes the inverse cotangent of ``x``.
-proc arcsec*[T: float32|float64](x: T): T = arccos(1.0 / x)
-  ## Computes the inverse secant of ``x``.
-proc arccsc*[T: float32|float64](x: T): T = arcsin(1.0 / x)
-  ## Computes the inverse cosecant of ``x``.
-
-proc arccoth*[T: float32|float64](x: T): T = arctanh(1.0 / x)
-  ## Computes the inverse hyperbolic cotangent of ``x``.
-proc arcsech*[T: float32|float64](x: T): T = arccosh(1.0 / x)
-  ## Computes the inverse hyperbolic secant of ``x``.
-proc arccsch*[T: float32|float64](x: T): T = arcsinh(1.0 / x)
-  ## Computes the inverse hyperbolic cosecant of ``x``.
+  func log10*(x: float32): float32 {.importc: "Math.log10", nodecl.}
+  func log10*(x: float64): float64 {.importc: "Math.log10", nodecl.}
+  func log2*(x: float32): float32 {.importc: "Math.log2", nodecl.}
+  func log2*(x: float64): float64 {.importc: "Math.log2", nodecl.}
+  func exp*(x: float32): float32 {.importc: "Math.exp", nodecl.}
+  func exp*(x: float64): float64 {.importc: "Math.exp", nodecl.}
+
+  func sin*[T: float32|float64](x: T): T {.importc: "Math.sin", nodecl.}
+  func cos*[T: float32|float64](x: T): T {.importc: "Math.cos", nodecl.}
+  func tan*[T: float32|float64](x: T): T {.importc: "Math.tan", nodecl.}
+
+  func sinh*[T: float32|float64](x: T): T {.importc: "Math.sinh", nodecl.}
+  func cosh*[T: float32|float64](x: T): T {.importc: "Math.cosh", nodecl.}
+  func tanh*[T: float32|float64](x: T): T {.importc: "Math.tanh", nodecl.}
+
+  func arcsin*[T: float32|float64](x: T): T {.importc: "Math.asin", nodecl.}
+    # keep this as generic or update test in `tvmops.nim` to make sure we
+    # keep testing that generic importc procs work
+  func arccos*[T: float32|float64](x: T): T {.importc: "Math.acos", nodecl.}
+  func arctan*[T: float32|float64](x: T): T {.importc: "Math.atan", nodecl.}
+  func arctan2*[T: float32|float64](y, x: T): T {.importc: "Math.atan2", nodecl.}
+
+  func arcsinh*[T: float32|float64](x: T): T {.importc: "Math.asinh", nodecl.}
+  func arccosh*[T: float32|float64](x: T): T {.importc: "Math.acosh", nodecl.}
+  func arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.}
+
+func cot*[T: float32|float64](x: T): T = 1.0 / tan(x)
+  ## Computes the cotangent of `x` (`1/tan(x)`).
+func sec*[T: float32|float64](x: T): T = 1.0 / cos(x)
+  ## Computes the secant of `x` (`1/cos(x)`).
+func csc*[T: float32|float64](x: T): T = 1.0 / sin(x)
+  ## Computes the cosecant of `x` (`1/sin(x)`).
+
+func coth*[T: float32|float64](x: T): T = 1.0 / tanh(x)
+  ## Computes the hyperbolic cotangent of `x` (`1/tanh(x)`).
+func sech*[T: float32|float64](x: T): T = 1.0 / cosh(x)
+  ## Computes the hyperbolic secant of `x` (`1/cosh(x)`).
+func csch*[T: float32|float64](x: T): T = 1.0 / sinh(x)
+  ## Computes the hyperbolic cosecant of `x` (`1/sinh(x)`).
+
+func arccot*[T: float32|float64](x: T): T = arctan(1.0 / x)
+  ## Computes the inverse cotangent of `x` (`arctan(1/x)`).
+func arcsec*[T: float32|float64](x: T): T = arccos(1.0 / x)
+  ## Computes the inverse secant of `x` (`arccos(1/x)`).
+func arccsc*[T: float32|float64](x: T): T = arcsin(1.0 / x)
+  ## Computes the inverse cosecant of `x` (`arcsin(1/x)`).
+
+func arccoth*[T: float32|float64](x: T): T = arctanh(1.0 / x)
+  ## Computes the inverse hyperbolic cotangent of `x` (`arctanh(1/x)`).
+func arcsech*[T: float32|float64](x: T): T = arccosh(1.0 / x)
+  ## Computes the inverse hyperbolic secant of `x` (`arccosh(1/x)`).
+func arccsch*[T: float32|float64](x: T): T = arcsinh(1.0 / x)
+  ## Computes the inverse hyperbolic cosecant of `x` (`arcsinh(1/x)`).
 
 const windowsCC89 = defined(windows) and defined(bcc)
 
 when not defined(js): # C
-  proc hypot*(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>".}
-  proc hypot*(x, y: float64): float64 {.importc: "hypot", header: "<math.h>".}
-    ## Computes the hypotenuse of a right-angle triangle with ``x`` and
-    ## ``y`` as its base and height. Equivalent to ``sqrt(x*x + y*y)``.
-    ##
-    ## .. code-block:: nim
-    ##  echo hypot(4.0, 3.0) ## 5.0
-  proc pow*(x, y: float32): float32 {.importc: "powf", header: "<math.h>".}
-  proc pow*(x, y: float64): float64 {.importc: "pow", header: "<math.h>".}
-    ## Computes x to power raised of y.
-    ##
-    ## To compute power between integers (e.g. 2^6), use `^ proc<#^,T,Natural>`_.
+  func hypot*(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>".}
+  func hypot*(x, y: float64): float64 {.importc: "hypot", header: "<math.h>".} =
+    ## Computes the length of the hypotenuse of a right-angle triangle with
+    ## `x` as its base and `y` as its height. Equivalent to `sqrt(x*x + y*y)`.
+    runnableExamples:
+      doAssert almostEqual(hypot(3.0, 4.0), 5.0)
+  func pow*(x, y: float32): float32 {.importc: "powf", header: "<math.h>".}
+  func pow*(x, y: float64): float64 {.importc: "pow", header: "<math.h>".} =
+    ## Computes `x` raised to the power of `y`.
     ##
-    ## See also:
-    ## * `^ proc<#^,T,Natural>`_
-    ## * `sqrt proc <#sqrt,float64>`_
-    ## * `cbrt proc <#cbrt,float64>`_
+    ## To compute the power between integers (e.g. 2^6),
+    ## use the `^ func <#^,T,Natural>`_.
     ##
-    ## .. code-block:: nim
-    ##  echo pow(100, 1.5)  ## 1000.0
-    ##  echo pow(16.0, 0.5) ## 4.0
+    ## **See also:**
+    ## * `^ func <#^,T,Natural>`_
+    ## * `sqrt func <#sqrt,float64>`_
+    ## * `cbrt func <#cbrt,float64>`_
+    runnableExamples:
+      doAssert almostEqual(pow(100, 1.5), 1000.0)
+      doAssert almostEqual(pow(16.0, 0.5), 4.0)
 
   # TODO: add C89 version on windows
   when not windowsCC89:
-    proc erf*(x: float32): float32 {.importc: "erff", header: "<math.h>".}
-    proc erf*(x: float64): float64 {.importc: "erf", header: "<math.h>".}
-      ## Computes the `error function <https://en.wikipedia.org/wiki/Error_function>`_ for ``x``.
+    func erf*(x: float32): float32 {.importc: "erff", header: "<math.h>".}
+    func erf*(x: float64): float64 {.importc: "erf", header: "<math.h>".}
+      ## Computes the [error function](https://en.wikipedia.org/wiki/Error_function) for `x`.
       ##
-      ## Note: Not available for JS backend.
-    proc erfc*(x: float32): float32 {.importc: "erfcf", header: "<math.h>".}
-    proc erfc*(x: float64): float64 {.importc: "erfc", header: "<math.h>".}
-      ## Computes the `complementary error function <https://en.wikipedia.org/wiki/Error_function#Complementary_error_function>`_ for ``x``.
+      ## **Note:** Not available for the JS backend.
+    func erfc*(x: float32): float32 {.importc: "erfcf", header: "<math.h>".}
+    func erfc*(x: float64): float64 {.importc: "erfc", header: "<math.h>".}
+      ## Computes the [complementary error function](https://en.wikipedia.org/wiki/Error_function#Complementary_error_function) for `x`.
       ##
-      ## Note: Not available for JS backend.
-    proc gamma*(x: float32): float32 {.importc: "tgammaf", header: "<math.h>".}
-    proc gamma*(x: float64): float64 {.importc: "tgamma", header: "<math.h>".}
-      ## Computes the the `gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ for ``x``.
+      ## **Note:** Not available for the JS backend.
+    func gamma*(x: float32): float32 {.importc: "tgammaf", header: "<math.h>".}
+    func gamma*(x: float64): float64 {.importc: "tgamma", header: "<math.h>".} =
+      ## Computes the [gamma function](https://en.wikipedia.org/wiki/Gamma_function) for `x`.
       ##
-      ## Note: Not available for JS backend.
+      ## **Note:** Not available for the JS backend.
       ##
-      ## See also:
-      ## * `lgamma proc <#lgamma,float64>`_ for a natural log of gamma function
+      ## **See also:**
+      ## * `lgamma func <#lgamma,float64>`_ for the natural logarithm of the gamma function
+      runnableExamples:
+        doAssert almostEqual(gamma(1.0), 1.0)
+        doAssert almostEqual(gamma(4.0), 6.0)
+        doAssert almostEqual(gamma(11.0), 3628800.0)
+    func lgamma*(x: float32): float32 {.importc: "lgammaf", header: "<math.h>".}
+    func lgamma*(x: float64): float64 {.importc: "lgamma", header: "<math.h>".} =
+      ## Computes the natural logarithm of the gamma function for `x`.
       ##
-      ## .. code-block:: Nim
-      ##  echo gamma(1.0)  # 1.0
-      ##  echo gamma(4.0)  # 6.0
-      ##  echo gamma(11.0) # 3628800.0
-      ##  echo gamma(-1.0) # nan
-    proc lgamma*(x: float32): float32 {.importc: "lgammaf", header: "<math.h>".}
-    proc lgamma*(x: float64): float64 {.importc: "lgamma", header: "<math.h>".}
-      ## Computes the natural log of the gamma function for ``x``.
+      ## **Note:** Not available for the JS backend.
       ##
-      ## Note: Not available for JS backend.
-      ##
-      ## See also:
-      ## * `gamma proc <#gamma,float64>`_ for gamma function
-      ##
-      ## .. code-block:: Nim
-      ##  echo lgamma(1.0)  # 1.0
-      ##  echo lgamma(4.0)  # 1.791759469228055
-      ##  echo lgamma(11.0) # 15.10441257307552
-      ##  echo lgamma(-1.0) # inf
-
-  proc floor*(x: float32): float32 {.importc: "floorf", header: "<math.h>".}
-  proc floor*(x: float64): float64 {.importc: "floor", header: "<math.h>".}
-    ## Computes the floor function (i.e., the largest integer not greater than ``x``).
-    ##
-    ## See also:
-    ## * `ceil proc <#ceil,float64>`_
-    ## * `round proc <#round,float64>`_
-    ## * `trunc proc <#trunc,float64>`_
-    ##
-    ## .. code-block:: nim
-    ##  echo floor(2.1)  ## 2.0
-    ##  echo floor(2.9)  ## 2.0
-    ##  echo floor(-3.5) ## -4.0
-
-  proc ceil*(x: float32): float32 {.importc: "ceilf", header: "<math.h>".}
-  proc ceil*(x: float64): float64 {.importc: "ceil", header: "<math.h>".}
-    ## Computes the ceiling function (i.e., the smallest integer not smaller
-    ## than ``x``).
+      ## **See also:**
+      ## * `gamma func <#gamma,float64>`_ for gamma function
+
+  func floor*(x: float32): float32 {.importc: "floorf", header: "<math.h>".}
+  func floor*(x: float64): float64 {.importc: "floor", header: "<math.h>".} =
+    ## Computes the floor function (i.e. the largest integer not greater than `x`).
     ##
-    ## See also:
-    ## * `floor proc <#floor,float64>`_
-    ## * `round proc <#round,float64>`_
-    ## * `trunc proc <#trunc,float64>`_
+    ## **See also:**
+    ## * `ceil func <#ceil,float64>`_
+    ## * `round func <#round,float64>`_
+    ## * `trunc func <#trunc,float64>`_
+    runnableExamples:
+      doAssert floor(2.1)  == 2.0
+      doAssert floor(2.9)  == 2.0
+      doAssert floor(-3.5) == -4.0
+
+  func ceil*(x: float32): float32 {.importc: "ceilf", header: "<math.h>".}
+  func ceil*(x: float64): float64 {.importc: "ceil", header: "<math.h>".} =
+    ## Computes the ceiling function (i.e. the smallest integer not smaller
+    ## than `x`).
     ##
-    ## .. code-block:: nim
-    ##  echo ceil(2.1)  ## 3.0
-    ##  echo ceil(2.9)  ## 3.0
-    ##  echo ceil(-2.1) ## -2.0
+    ## **See also:**
+    ## * `floor func <#floor,float64>`_
+    ## * `round func <#round,float64>`_
+    ## * `trunc func <#trunc,float64>`_
+    runnableExamples:
+      doAssert ceil(2.1)  == 3.0
+      doAssert ceil(2.9)  == 3.0
+      doAssert ceil(-2.1) == -2.0
 
   when windowsCC89:
     # MSVC 2010 don't have trunc/truncf
     # this implementation was inspired by Go-lang Math.Trunc
-    proc truncImpl(f: float64): float64 =
+    func truncImpl(f: float64): float64 =
       const
         mask: uint64 = 0x7FF
         shift: uint64 = 64 - 12
@@ -662,12 +717,12 @@ when not defined(js): # C
       let e = (x shr shift) and mask - bias
 
       # Keep the top 12+e bits, the integer part; clear the rest.
-      if e < 64-12:
-        x = x and (not (1'u64 shl (64'u64-12'u64-e) - 1'u64))
+      if e < 64 - 12:
+        x = x and (not (1'u64 shl (64'u64 - 12'u64 - e) - 1'u64))
 
       result = cast[float64](x)
 
-    proc truncImpl(f: float32): float32 =
+    func truncImpl(f: float32): float32 =
       const
         mask: uint32 = 0xFF
         shift: uint32 = 32 - 9
@@ -682,234 +737,338 @@ when not defined(js): # C
       let e = (x shr shift) and mask - bias
 
       # Keep the top 9+e bits, the integer part; clear the rest.
-      if e < 32-9:
-        x = x and (not (1'u32 shl (32'u32-9'u32-e) - 1'u32))
+      if e < 32 - 9:
+        x = x and (not (1'u32 shl (32'u32 - 9'u32 - e) - 1'u32))
 
       result = cast[float32](x)
 
-    proc trunc*(x: float64): float64 =
+    func trunc*(x: float64): float64 =
       if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
       result = truncImpl(x)
 
-    proc trunc*(x: float32): float32 =
+    func trunc*(x: float32): float32 =
       if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
       result = truncImpl(x)
 
-    proc round*[T: float32|float64](x: T): T =
+    func round*[T: float32|float64](x: T): T =
       ## Windows compilers prior to MSVC 2012 do not implement 'round',
       ## 'roundl' or 'roundf'.
       result = if x < 0.0: ceil(x - T(0.5)) else: floor(x + T(0.5))
   else:
-    proc round*(x: float32): float32 {.importc: "roundf", header: "<math.h>".}
-    proc round*(x: float64): float64 {.importc: "round", header: "<math.h>".}
+    func round*(x: float32): float32 {.importc: "roundf", header: "<math.h>".}
+    func round*(x: float64): float64 {.importc: "round", header: "<math.h>".} =
       ## Rounds a float to zero decimal places.
       ##
-      ## Used internally by the `round proc <#round,T,int>`_
+      ## Used internally by the `round func <#round,T,int>`_
       ## when the specified number of places is 0.
       ##
-      ## See also:
-      ## * `round proc <#round,T,int>`_ for rounding to the specific
+      ## **See also:**
+      ## * `round func <#round,T,int>`_ for rounding to the specific
       ##   number of decimal places
-      ## * `floor proc <#floor,float64>`_
-      ## * `ceil proc <#ceil,float64>`_
-      ## * `trunc proc <#trunc,float64>`_
-      ##
-      ## .. code-block:: nim
-      ##   echo round(3.4) ## 3.0
-      ##   echo round(3.5) ## 4.0
-      ##   echo round(4.5) ## 5.0
-
-    proc trunc*(x: float32): float32 {.importc: "truncf", header: "<math.h>".}
-    proc trunc*(x: float64): float64 {.importc: "trunc", header: "<math.h>".}
-      ## Truncates ``x`` to the decimal point.
+      ## * `floor func <#floor,float64>`_
+      ## * `ceil func <#ceil,float64>`_
+      ## * `trunc func <#trunc,float64>`_
+      runnableExamples:
+        doAssert round(3.4) == 3.0
+        doAssert round(3.5) == 4.0
+        doAssert round(4.5) == 5.0
+
+    func trunc*(x: float32): float32 {.importc: "truncf", header: "<math.h>".}
+    func trunc*(x: float64): float64 {.importc: "trunc", header: "<math.h>".} =
+      ## Truncates `x` to the decimal point.
       ##
-      ## See also:
-      ## * `floor proc <#floor,float64>`_
-      ## * `ceil proc <#ceil,float64>`_
-      ## * `round proc <#round,float64>`_
-      ##
-      ## .. code-block:: nim
-      ##  echo trunc(PI) # 3.0
-      ##  echo trunc(-1.85) # -1.0
-
-  proc `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>".}
-  proc `mod`*(x, y: float64): float64 {.importc: "fmod", header: "<math.h>".}
-    ## Computes the modulo operation for float values (the remainder of ``x`` divided by ``y``).
-    ##
-    ## See also:
-    ## * `floorMod proc <#floorMod,T,T>`_ for Python-like (% operator) behavior
+      ## **See also:**
+      ## * `floor func <#floor,float64>`_
+      ## * `ceil func <#ceil,float64>`_
+      ## * `round func <#round,float64>`_
+      runnableExamples:
+        doAssert trunc(PI) == 3.0
+        doAssert trunc(-1.85) == -1.0
+
+  func `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>".}
+  func `mod`*(x, y: float64): float64 {.importc: "fmod", header: "<math.h>".} =
+    ## Computes the modulo operation for float values (the remainder of `x` divided by `y`).
     ##
-    ## .. code-block:: nim
-    ##  ( 6.5 mod  2.5) ==  1.5
-    ##  (-6.5 mod  2.5) == -1.5
-    ##  ( 6.5 mod -2.5) ==  1.5
-    ##  (-6.5 mod -2.5) == -1.5
+    ## **See also:**
+    ## * `floorMod func <#floorMod,T,T>`_ for Python-like (`%` operator) behavior
+    runnableExamples:
+      doAssert  6.5 mod  2.5 ==  1.5
+      doAssert -6.5 mod  2.5 == -1.5
+      doAssert  6.5 mod -2.5 ==  1.5
+      doAssert -6.5 mod -2.5 == -1.5
 
 else: # JS
-  proc hypot*(x, y: float32): float32 {.importc: "Math.hypot", varargs, nodecl.}
-  proc hypot*(x, y: float64): float64 {.importc: "Math.hypot", varargs, nodecl.}
-  proc pow*(x, y: float32): float32 {.importc: "Math.pow", nodecl.}
-  proc pow*(x, y: float64): float64 {.importc: "Math.pow", nodecl.}
-  proc floor*(x: float32): float32 {.importc: "Math.floor", nodecl.}
-  proc floor*(x: float64): float64 {.importc: "Math.floor", nodecl.}
-  proc ceil*(x: float32): float32 {.importc: "Math.ceil", nodecl.}
-  proc ceil*(x: float64): float64 {.importc: "Math.ceil", nodecl.}
-  proc round*(x: float): float {.importc: "Math.round", nodecl.}
-  proc trunc*(x: float32): float32 {.importc: "Math.trunc", nodecl.}
-  proc trunc*(x: float64): float64 {.importc: "Math.trunc", nodecl.}
-
-  proc `mod`*(x, y: float32): float32 {.importcpp: "# % #".}
-  proc `mod`*(x, y: float64): float64 {.importcpp: "# % #".}
-    ## Computes the modulo operation for float values (the remainder of ``x`` divided by ``y``).
-    ##
-    ## .. code-block:: nim
-    ##  ( 6.5 mod  2.5) ==  1.5
-    ##  (-6.5 mod  2.5) == -1.5
-    ##  ( 6.5 mod -2.5) ==  1.5
-    ##  (-6.5 mod -2.5) == -1.5
-
-proc round*[T: float32|float64](x: T, places: int): T {.
-    deprecated: "use strformat module instead".} =
+  func hypot*(x, y: float32): float32 {.importc: "Math.hypot", varargs, nodecl.}
+  func hypot*(x, y: float64): float64 {.importc: "Math.hypot", varargs, nodecl.}
+  func pow*(x, y: float32): float32 {.importc: "Math.pow", nodecl.}
+  func pow*(x, y: float64): float64 {.importc: "Math.pow", nodecl.}
+  func floor*(x: float32): float32 {.importc: "Math.floor", nodecl.}
+  func floor*(x: float64): float64 {.importc: "Math.floor", nodecl.}
+  func ceil*(x: float32): float32 {.importc: "Math.ceil", nodecl.}
+  func ceil*(x: float64): float64 {.importc: "Math.ceil", nodecl.}
+
+  when (NimMajor, NimMinor) < (1, 5) or defined(nimLegacyJsRound):
+    func round*(x: float): float {.importc: "Math.round", nodecl.}
+  else:
+    func jsRound(x: float): float {.importc: "Math.round", nodecl.}
+    func round*[T: float64 | float32](x: T): T =
+      if x >= 0: result = jsRound(x)
+      else:
+        result = ceil(x)
+        if result - x >= T(0.5):
+          result -= T(1.0)
+  func trunc*(x: float32): float32 {.importc: "Math.trunc", nodecl.}
+  func trunc*(x: float64): float64 {.importc: "Math.trunc", nodecl.}
+
+  func `mod`*(x, y: float32): float32 {.importjs: "(# % #)".}
+  func `mod`*(x, y: float64): float64 {.importjs: "(# % #)".} =
+    ## Computes the modulo operation for float values (the remainder of `x` divided by `y`).
+    runnableExamples:
+      doAssert  6.5 mod  2.5 ==  1.5
+      doAssert -6.5 mod  2.5 == -1.5
+      doAssert  6.5 mod -2.5 ==  1.5
+      doAssert -6.5 mod -2.5 == -1.5
+  
+  func divmod*[T:SomeInteger](num, denom: T): (T, T) = 
+    runnableExamples:
+      doAssert  divmod(5, 2) ==  (2, 1)
+      doAssert divmod(5, -3) == (-1, 2)
+    result[0] = num div denom
+    result[1] = num mod denom
+  
+
+func round*[T: float32|float64](x: T, places: int): T =
   ## Decimal rounding on a binary floating point number.
   ##
   ## This function is NOT reliable. Floating point numbers cannot hold
-  ## non integer decimals precisely. If ``places`` is 0 (or omitted),
+  ## non integer decimals precisely. If `places` is 0 (or omitted),
   ## round to the nearest integral value following normal mathematical
-  ## rounding rules (e.g.  ``round(54.5) -> 55.0``). If ``places`` is
+  ## rounding rules (e.g.  `round(54.5) -> 55.0`). If `places` is
   ## greater than 0, round to the given number of decimal places,
-  ## e.g. ``round(54.346, 2) -> 54.350000000000001421…``. If ``places`` is negative, round
-  ## to the left of the decimal place, e.g. ``round(537.345, -1) ->
-  ## 540.0``
-  ##
-  ## .. code-block:: Nim
-  ##  echo round(PI, 2) ## 3.14
-  ##  echo round(PI, 4) ## 3.1416
+  ## e.g. `round(54.346, 2) -> 54.350000000000001421…`. If `places` is negative, round
+  ## to the left of the decimal place, e.g. `round(537.345, -1) -> 540.0`.
+  runnableExamples:
+    doAssert round(PI, 2) == 3.14
+    doAssert round(PI, 4) == 3.1416
+
   if places == 0:
     result = round(x)
   else:
-    var mult = pow(10.0, places.T)
-    result = round(x*mult)/mult
+    var mult = pow(10.0, T(places))
+    result = round(x * mult) / mult
 
-proc floorDiv*[T: SomeInteger](x, y: T): T =
-  ## Floor division is conceptually defined as ``floor(x / y)``.
+func floorDiv*[T: SomeInteger](x, y: T): T =
+  ## Floor division is conceptually defined as `floor(x / y)`.
   ##
   ## This is different from the `system.div <system.html#div,int,int>`_
-  ## operator, which is defined as ``trunc(x / y)``.
-  ## That is, ``div`` rounds towards ``0`` and ``floorDiv`` rounds down.
+  ## operator, which is defined as `trunc(x / y)`.
+  ## That is, `div` rounds towards `0` and `floorDiv` rounds down.
   ##
-  ## See also:
+  ## **See also:**
   ## * `system.div proc <system.html#div,int,int>`_ for integer division
-  ## * `floorMod proc <#floorMod,T,T>`_ for Python-like (% operator) behavior
-  ##
-  ## .. code-block:: nim
-  ##  echo floorDiv( 13,  3) #  4
-  ##  echo floorDiv(-13,  3) # -5
-  ##  echo floorDiv( 13, -3) # -5
-  ##  echo floorDiv(-13, -3) #  4
+  ## * `floorMod func <#floorMod,T,T>`_ for Python-like (`%` operator) behavior
+  runnableExamples:
+    doAssert floorDiv( 13,  3) ==  4
+    doAssert floorDiv(-13,  3) == -5
+    doAssert floorDiv( 13, -3) == -5
+    doAssert floorDiv(-13, -3) ==  4
+
   result = x div y
   let r = x mod y
   if (r > 0 and y < 0) or (r < 0 and y > 0): result.dec 1
 
-proc floorMod*[T: SomeNumber](x, y: T): T =
-  ## Floor modulus is conceptually defined as ``x - (floorDiv(x, y) * y)``.
-  ##
-  ## This proc behaves the same as the ``%`` operator in Python.
+func floorMod*[T: SomeNumber](x, y: T): T =
+  ## Floor modulo is conceptually defined as `x - (floorDiv(x, y) * y)`.
   ##
-  ## See also:
-  ## * `mod proc <#mod,float64,float64>`_
-  ## * `floorDiv proc <#floorDiv,T,T>`_
+  ## This func behaves the same as the `%` operator in Python.
   ##
-  ## .. code-block:: nim
-  ##  echo floorMod( 13,  3) #  1
-  ##  echo floorMod(-13,  3) #  2
-  ##  echo floorMod( 13, -3) # -2
-  ##  echo floorMod(-13, -3) # -1
+  ## **See also:**
+  ## * `mod func <#mod,float64,float64>`_
+  ## * `floorDiv func <#floorDiv,T,T>`_
+  runnableExamples:
+    doAssert floorMod( 13,  3) ==  1
+    doAssert floorMod(-13,  3) ==  2
+    doAssert floorMod( 13, -3) == -2
+    doAssert floorMod(-13, -3) == -1
+
   result = x mod y
   if (result > 0 and y < 0) or (result < 0 and y > 0): result += y
 
-when not defined(js):
-  proc c_frexp*(x: float32, exponent: var int32): float32 {.
-    importc: "frexp", header: "<math.h>".}
-  proc c_frexp*(x: float64, exponent: var int32): float64 {.
-    importc: "frexp", header: "<math.h>".}
-  proc frexp*[T, U](x: T, exponent: var U): T =
-    ## Split a number into mantissa and exponent.
-    ##
-    ## ``frexp`` calculates the mantissa m (a float greater than or equal to 0.5
-    ## and less than 1) and the integer value n such that ``x`` (the original
-    ## float value) equals ``m * 2**n``. frexp stores n in `exponent` and returns
-    ## m.
-    ##
-    ## .. code-block:: nim
-    ##  var x: int
-    ##  echo frexp(5.0, x) # 0.625
-    ##  echo x # 3
-    var exp: int32
-    result = c_frexp(x, exp)
-    exponent = exp
+func euclDiv*[T: SomeInteger](x, y: T): T {.since: (1, 5, 1).} =
+  ## Returns euclidean division of `x` by `y`.
+  runnableExamples:
+    doAssert euclDiv(13, 3) == 4
+    doAssert euclDiv(-13, 3) == -5
+    doAssert euclDiv(13, -3) == -4
+    doAssert euclDiv(-13, -3) == 5
+
+  result = x div y
+  if x mod y < 0:
+    if y > 0:
+      dec result
+    else:
+      inc result
 
+func euclMod*[T: SomeNumber](x, y: T): T {.since: (1, 5, 1).} =
+  ## Returns euclidean modulo of `x` by `y`.
+  ## `euclMod(x, y)` is non-negative.
+  runnableExamples:
+    doAssert euclMod(13, 3) == 1
+    doAssert euclMod(-13, 3) == 2
+    doAssert euclMod(13, -3) == 1
+    doAssert euclMod(-13, -3) == 2
+
+  result = x mod y
+  if result < 0:
+    result += abs(y)
+
+func ceilDiv*[T: SomeInteger](x, y: T): T {.inline, since: (1, 5, 1).} =
+  ## Ceil division is conceptually defined as `ceil(x / y)`.
+  ##
+  ## Assumes `x >= 0` and `y > 0` (and `x + y - 1 <= high(T)` if T is SomeUnsignedInt).
+  ##
+  ## This is different from the `system.div <system.html#div,int,int>`_
+  ## operator, which works like `trunc(x / y)`.
+  ## That is, `div` rounds towards `0` and `ceilDiv` rounds up.
+  ##
+  ## This function has the above input limitation, because that allows the
+  ## compiler to generate faster code and it is rarely used with
+  ## negative values or unsigned integers close to `high(T)/2`.
+  ## If you need a `ceilDiv` that works with any input, see:
+  ## https://github.com/demotomohiro/divmath.
+  ##
+  ## **See also:**
+  ## * `system.div proc <system.html#div,int,int>`_ for integer division
+  ## * `floorDiv func <#floorDiv,T,T>`_ for integer division which rounds down.
+  runnableExamples:
+    assert ceilDiv(12, 3) ==  4
+    assert ceilDiv(13, 3) ==  5
+
+  when sizeof(T) == 8:
+    type UT = uint64
+  elif sizeof(T) == 4:
+    type UT = uint32
+  elif sizeof(T) == 2:
+    type UT = uint16
+  elif sizeof(T) == 1:
+    type UT = uint8
+  else:
+    {.fatal: "Unsupported int type".}
+
+  assert x >= 0 and y > 0
+  when T is SomeUnsignedInt:
+    assert x + y - 1 >= x
+
+  # If the divisor is const, the backend C/C++ compiler generates code without a `div`
+  # instruction, as it is slow on most CPUs.
+  # If the divisor is a power of 2 and a const unsigned integer type, the
+  # compiler generates faster code.
+  # If the divisor is const and a signed integer, generated code becomes slower
+  # than the code with unsigned integers, because division with signed integers
+  # need to works for both positive and negative value without `idiv`/`sdiv`.
+  # That is why this code convert parameters to unsigned.
+  # This post contains a comparison of the performance of signed/unsigned integers:
+  # https://github.com/nim-lang/Nim/pull/18596#issuecomment-894420984.
+  # If signed integer arguments were not converted to unsigned integers,
+  # `ceilDiv` wouldn't work for any positive signed integer value, because
+  # `x + (y - 1)` can overflow.
+  ((x.UT + (y.UT - 1.UT)) div y.UT).T
+
+func frexp*[T: float32|float64](x: T): tuple[frac: T, exp: int] {.inline.} =
+  ## Splits `x` into a normalized fraction `frac` and an integral power of 2 `exp`,
+  ## such that `abs(frac) in 0.5..<1` and `x == frac * 2 ^ exp`, except for special
+  ## cases shown below.
+  runnableExamples:
+    doAssert frexp(8.0) == (0.5, 4)
+    doAssert frexp(-8.0) == (-0.5, 4)
+    doAssert frexp(0.0) == (0.0, 0)
+
+    # special cases:
+    when sizeof(int) == 8:
+      doAssert frexp(-0.0).frac.signbit # signbit preserved for +-0
+      doAssert frexp(Inf).frac == Inf # +- Inf preserved
+      doAssert frexp(NaN).frac.isNaN
+
+  when not defined(js):
+    var exp: cint
+    result.frac = c_frexp2(x, exp)
+    result.exp = exp
+  else:
+    if x == 0.0:
+      # reuse signbit implementation
+      let uintBuffer = toBitsImpl(x)
+      if (uintBuffer[1] shr 31) != 0:
+        # x is -0.0
+        result = (-0.0, 0)
+      else:
+        result = (0.0, 0)
+    elif x < 0.0:
+      result = frexp(-x)
+      result.frac = -result.frac
+    else:
+      var ex = trunc(log2(x))
+      result.exp = int(ex)
+      result.frac = x / pow(2.0, ex)
+      if abs(result.frac) >= 1:
+        inc(result.exp)
+        result.frac = result.frac / 2
+      if result.exp == 1024 and result.frac == 0.0:
+        result.frac = 0.99999999999999988898
+
+func frexp*[T: float32|float64](x: T, exponent: var int): T {.inline.} =
+  ## Overload of `frexp` that calls `(result, exponent) = frexp(x)`.
+  runnableExamples:
+    var x: int
+    doAssert frexp(5.0, x) == 0.625
+    doAssert x == 3
+
+  (result, exponent) = frexp(x)
+
+
+when not defined(js):
   when windowsCC89:
     # taken from Go-lang Math.Log2
     const ln2 = 0.693147180559945309417232121458176568075500134360255254120680009
     template log2Impl[T](x: T): T =
-      var exp: int32
+      var exp: int
       var frac = frexp(x, exp)
       # Make sure exact powers of two give an exact answer.
       # Don't depend on Log(0.5)*(1/Ln2)+exp being exactly exp-1.
       if frac == 0.5: return T(exp - 1)
-      log10(frac)*(1/ln2) + T(exp)
+      log10(frac) * (1 / ln2) + T(exp)
 
-    proc log2*(x: float32): float32 = log2Impl(x)
-    proc log2*(x: float64): float64 = log2Impl(x)
+    func log2*(x: float32): float32 = log2Impl(x)
+    func log2*(x: float64): float64 = log2Impl(x)
       ## Log2 returns the binary logarithm of x.
       ## The special cases are the same as for Log.
 
   else:
-    proc log2*(x: float32): float32 {.importc: "log2f", header: "<math.h>".}
-    proc log2*(x: float64): float64 {.importc: "log2", header: "<math.h>".}
-      ## Computes the binary logarithm (base 2) of ``x``.
-      ##
-      ## See also:
-      ## * `log proc <#log,T,T>`_
-      ## * `log10 proc <#log10,float64>`_
-      ## * `ln proc <#ln,float64>`_
-      ## * `exp proc <#exp,float64>`_
+    func log2*(x: float32): float32 {.importc: "log2f", header: "<math.h>".}
+    func log2*(x: float64): float64 {.importc: "log2", header: "<math.h>".} =
+      ## Computes the binary logarithm (base 2) of `x`.
       ##
-      ## .. code-block:: Nim
-      ##  echo log2(8.0)  # 3.0
-      ##  echo log2(1.0)  # 0.0
-      ##  echo log2(0.0)  # -inf
-      ##  echo log2(-2.0) # nan
-
-else:
-  proc frexp*[T: float32|float64](x: T, exponent: var int): T =
-    if x == 0.0:
-      exponent = 0
-      result = 0.0
-    elif x < 0.0:
-      result = -frexp(-x, exponent)
-    else:
-      var ex = trunc(log2(x))
-      exponent = int(ex)
-      result = x / pow(2.0, ex)
-      if abs(result) >= 1:
-        inc(exponent)
-        result = result / 2
-      if exponent == 1024 and result == 0.0:
-        result = 0.99999999999999988898
-
-proc splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] =
-  ## Breaks ``x`` into an integer and a fractional part.
+      ## **See also:**
+      ## * `log func <#log,T,T>`_
+      ## * `log10 func <#log10,float64>`_
+      ## * `ln func <#ln,float64>`_
+      runnableExamples:
+        doAssert almostEqual(log2(8.0), 3.0)
+        doAssert almostEqual(log2(1.0), 0.0)
+        doAssert almostEqual(log2(0.0), -Inf)
+        doAssert log2(-2.0).isNaN
+
+func splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] =
+  ## Breaks `x` into an integer and a fractional part.
   ##
-  ## Returns a tuple containing ``intpart`` and ``floatpart`` representing
-  ## the integer part and the fractional part respectively.
+  ## Returns a tuple containing `intpart` and `floatpart`, representing
+  ## the integer part and the fractional part, respectively.
   ##
-  ## Both parts have the same sign as ``x``.  Analogous to the ``modf``
+  ## Both parts have the same sign as `x`.  Analogous to the `modf`
   ## function in C.
-  ##
-  ## .. code-block:: nim
-  ##  echo splitDecimal(5.25)  # (intpart: 5.0, floatpart: 0.25)
-  ##  echo splitDecimal(-2.73) # (intpart: -2.0, floatpart: -0.73)
+  runnableExamples:
+    doAssert splitDecimal(5.25) == (intpart: 5.0, floatpart: 0.25)
+    doAssert splitDecimal(-2.73) == (intpart: -2.0, floatpart: -0.73)
+
   var
     absolute: T
   absolute = abs(x)
@@ -919,63 +1078,122 @@ proc splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] =
     result.intpart = -result.intpart
     result.floatpart = -result.floatpart
 
-{.pop.}
 
-proc degToRad*[T: float32|float64](d: T): T {.inline.} =
-  ## Convert from degrees to radians.
-  ##
-  ## See also:
-  ## * `radToDeg proc <#radToDeg,T>`_
+func degToRad*[T: float32|float64](d: T): T {.inline.} =
+  ## Converts from degrees to radians.
   ##
-  ## .. code-block:: nim
-  ##  echo degToRad(180.0) # 3.141592653589793
-  result = T(d) * RadPerDeg
+  ## **See also:**
+  ## * `radToDeg func <#radToDeg,T>`_
+  runnableExamples:
+    doAssert almostEqual(degToRad(180.0), PI)
 
-proc radToDeg*[T: float32|float64](d: T): T {.inline.} =
-  ## Convert from radians to degrees.
-  ##
-  ## See also:
-  ## * `degToRad proc <#degToRad,T>`_
+  result = d * T(RadPerDeg)
+
+func radToDeg*[T: float32|float64](d: T): T {.inline.} =
+  ## Converts from radians to degrees.
   ##
-  ## .. code-block:: nim
-  ##  echo degToRad(2 * PI) # 360.0
-  result = T(d) / RadPerDeg
+  ## **See also:**
+  ## * `degToRad func <#degToRad,T>`_
+  runnableExamples:
+    doAssert almostEqual(radToDeg(2 * PI), 360.0)
 
-proc sgn*[T: SomeNumber](x: T): int {.inline.} =
+  result = d / T(RadPerDeg)
+
+func sgn*[T: SomeNumber](x: T): int {.inline.} =
   ## Sign function.
   ##
   ## Returns:
-  ## * `-1` for negative numbers and ``NegInf``,
-  ## * `1` for positive numbers and ``Inf``,
-  ## * `0` for positive zero, negative zero and ``NaN``
-  ##
-  ## .. code-block:: nim
-  ##  echo sgn(5)    # 1
-  ##  echo sgn(0)    # 0
-  ##  echo sgn(-4.1) # -1
+  ## * `-1` for negative numbers and `NegInf`,
+  ## * `1` for positive numbers and `Inf`,
+  ## * `0` for positive zero, negative zero and `NaN`
+  runnableExamples:
+    doAssert sgn(5) == 1
+    doAssert sgn(0) == 0
+    doAssert sgn(-4.1) == -1
+
   ord(T(0) < x) - ord(x < T(0))
 
 {.pop.}
 {.pop.}
 
-proc `^`*[T](x: T, y: Natural): T =
-  ## Computes ``x`` to the power ``y``.
+func sum*[T](x: openArray[T]): T =
+  ## Computes the sum of the elements in `x`.
   ##
-  ## Exponent ``y`` must be non-negative, use
-  ## `pow proc <#pow,float64,float64>`_ for negative exponents.
+  ## If `x` is empty, 0 is returned.
   ##
-  ## See also:
-  ## * `pow proc <#pow,float64,float64>`_ for negative exponent or
-  ##   floats
-  ## * `sqrt proc <#sqrt,float64>`_
-  ## * `cbrt proc <#cbrt,float64>`_
+  ## **See also:**
+  ## * `prod func <#prod,openArray[T]>`_
+  ## * `cumsum func <#cumsum,openArray[T]>`_
+  ## * `cumsummed func <#cumsummed,openArray[T]>`_
+  runnableExamples:
+    doAssert sum([1, 2, 3, 4]) == 10
+    doAssert sum([-4, 3, 5]) == 4
+
+  for i in items(x): result = result + i
+
+func prod*[T](x: openArray[T]): T =
+  ## Computes the product of the elements in `x`.
+  ##
+  ## If `x` is empty, 1 is returned.
+  ##
+  ## **See also:**
+  ## * `sum func <#sum,openArray[T]>`_
+  ## * `fac func <#fac,int>`_
+  runnableExamples:
+    doAssert prod([1, 2, 3, 4]) == 24
+    doAssert prod([-4, 3, 5]) == -60
+
+  result = T(1)
+  for i in items(x): result = result * i
+
+func cumsummed*[T](x: openArray[T]): seq[T] =
+  ## Returns the cumulative (aka prefix) summation of `x`.
+  ##
+  ## If `x` is empty, `@[]` is returned.
   ##
+  ## **See also:**
+  ## * `sum func <#sum,openArray[T]>`_
+  ## * `cumsum func <#cumsum,openArray[T]>`_ for the in-place version
   runnableExamples:
-    assert -3.0^0 == 1.0
-    assert -3^1 == -3
-    assert -3^2 == 9
-    assert -3.0^3 == -27.0
-    assert -3.0^4 == 81.0
+    doAssert cumsummed([1, 2, 3, 4]) == @[1, 3, 6, 10]
+
+  let xLen = x.len
+  if xLen == 0:
+    return @[]
+  result.setLen(xLen)
+  result[0] = x[0]
+  for i in 1 ..< xLen: result[i] = result[i - 1] + x[i]
+
+func cumsum*[T](x: var openArray[T]) =
+  ## Transforms `x` in-place (must be declared as `var`) into its
+  ## cumulative (aka prefix) summation.
+  ##
+  ## **See also:**
+  ## * `sum func <#sum,openArray[T]>`_
+  ## * `cumsummed func <#cumsummed,openArray[T]>`_ for a version which
+  ##   returns a cumsummed sequence
+  runnableExamples:
+    var a = [1, 2, 3, 4]
+    cumsum(a)
+    doAssert a == @[1, 3, 6, 10]
+
+  for i in 1 ..< x.len: x[i] = x[i - 1] + x[i]
+
+func `^`*[T: SomeNumber](x: T, y: Natural): T =
+  ## Computes `x` to the power of `y`.
+  ##
+  ## The exponent `y` must be non-negative, use
+  ## `pow <#pow,float64,float64>`_ for negative exponents.
+  ##
+  ## **See also:**
+  ## * `pow func <#pow,float64,float64>`_ for negative exponent or
+  ##   floats
+  ## * `sqrt func <#sqrt,float64>`_
+  ## * `cbrt func <#cbrt,float64>`_
+  runnableExamples:
+    doAssert -3 ^ 0 == 1
+    doAssert -3 ^ 1 == -3
+    doAssert -3 ^ 2 == 9
 
   case y
   of 0: result = 1
@@ -993,214 +1211,104 @@ proc `^`*[T](x: T, y: Natural): T =
         break
       x *= x
 
-proc gcd*[T](x, y: T): T =
-  ## Computes the greatest common (positive) divisor of ``x`` and ``y``.
+func gcd*[T](x, y: T): T =
+  ## Computes the greatest common (positive) divisor of `x` and `y`.
   ##
   ## Note that for floats, the result cannot always be interpreted as
-  ## "greatest decimal `z` such that ``z*N == x and z*M == y``
-  ## where N and M are positive integers."
+  ## "greatest decimal `z` such that `z*N == x and z*M == y`
+  ## where N and M are positive integers".
   ##
-  ## See also:
-  ## * `gcd proc <#gcd,SomeInteger,SomeInteger>`_ for integer version
-  ## * `lcm proc <#lcm,T,T>`_
+  ## **See also:**
+  ## * `gcd func <#gcd,SomeInteger,SomeInteger>`_ for an integer version
+  ## * `lcm func <#lcm,T,T>`_
   runnableExamples:
     doAssert gcd(13.5, 9.0) == 4.5
+
   var (x, y) = (x, y)
   while y != 0:
     x = x mod y
     swap x, y
   abs x
 
-proc gcd*(x, y: SomeInteger): SomeInteger =
-  ## Computes the greatest common (positive) divisor of ``x`` and ``y``,
-  ## using binary GCD (aka Stein's) algorithm.
-  ##
-  ## See also:
-  ## * `gcd proc <#gcd,T,T>`_ for floats version
-  ## * `lcm proc <#lcm,T,T>`_
-  runnableExamples:
-    doAssert gcd(12, 8) == 4
-    doAssert gcd(17, 63) == 1
-  when x is SomeSignedInt:
-    var x = abs(x)
-  else:
-    var x = x
-  when y is SomeSignedInt:
-    var y = abs(y)
-  else:
-    var y = y
-
-  if x == 0:
-    return y
-  if y == 0:
-    return x
-
-  let shift = countTrailingZeroBits(x or y)
-  y = y shr countTrailingZeroBits(y)
-  while x != 0:
-    x = x shr countTrailingZeroBits(x)
-    if y > x:
-      swap y, x
-    x -= y
-  y shl shift
-
-proc gcd*[T](x: openArray[T]): T {.since: (1, 1).} =
-  ## Computes the greatest common (positive) divisor of the elements of ``x``.
+when useBuiltins:
+  ## this func uses bitwise comparisons from C compilers, which are not always available.
+  func gcd*(x, y: SomeInteger): SomeInteger =
+    ## Computes the greatest common (positive) divisor of `x` and `y`,
+    ## using the binary GCD (aka Stein's) algorithm.
+    ##
+    ## **See also:**
+    ## * `gcd func <#gcd,T,T>`_ for a float version
+    ## * `lcm func <#lcm,T,T>`_
+    runnableExamples:
+      doAssert gcd(12, 8) == 4
+      doAssert gcd(17, 63) == 1
+  
+    when x is SomeSignedInt:
+      var x = abs(x)
+    else:
+      var x = x
+    when y is SomeSignedInt:
+      var y = abs(y)
+    else:
+      var y = y
+  
+    if x == 0:
+      return y
+    if y == 0:
+      return x
+  
+    let shift = countTrailingZeroBits(x or y)
+    y = y shr countTrailingZeroBits(y)
+    while x != 0:
+      x = x shr countTrailingZeroBits(x)
+      if y > x:
+        swap y, x
+      x -= y
+    y shl shift
+  
+func gcd*[T](x: openArray[T]): T {.since: (1, 1).} =
+  ## Computes the greatest common (positive) divisor of the elements of `x`.
   ##
-  ## See also:
-  ## * `gcd proc <#gcd,T,T>`_ for integer version
+  ## **See also:**
+  ## * `gcd func <#gcd,T,T>`_ for a version with two arguments
   runnableExamples:
     doAssert gcd(@[13.5, 9.0]) == 4.5
+
   result = x[0]
-  var i = 1
-  while i < x.len:
+  for i in 1 ..< x.len:
     result = gcd(result, x[i])
-    inc(i)
 
-proc lcm*[T](x, y: T): T =
-  ## Computes the least common multiple of ``x`` and ``y``.
+func lcm*[T](x, y: T): T =
+  ## Computes the least common multiple of `x` and `y`.
   ##
-  ## See also:
-  ## * `gcd proc <#gcd,T,T>`_
+  ## **See also:**
+  ## * `gcd func <#gcd,T,T>`_
   runnableExamples:
     doAssert lcm(24, 30) == 120
     doAssert lcm(13, 39) == 39
+
   x div gcd(x, y) * y
 
-proc lcm*[T](x: openArray[T]): T {.since: (1, 1).} =
-  ## Computes the least common multiple of the elements of ``x``.
+func clamp*[T](val: T, bounds: Slice[T]): T {.since: (1, 5), inline.} =
+  ## Like `system.clamp`, but takes a slice, so you can easily clamp within a range.
+  runnableExamples:
+    assert clamp(10, 1 .. 5) == 5
+    assert clamp(1, 1 .. 3) == 1
+    type A = enum a0, a1, a2, a3, a4, a5
+    assert a1.clamp(a2..a4) == a2
+    assert clamp((3, 0), (1, 0) .. (2, 9)) == (2, 9)
+    doAssertRaises(AssertionDefect): discard clamp(1, 3..2) # invalid bounds
+  assert bounds.a <= bounds.b, $(bounds.a, bounds.b)
+  clamp(val, bounds.a, bounds.b)
+
+func lcm*[T](x: openArray[T]): T {.since: (1, 1).} =
+  ## Computes the least common multiple of the elements of `x`.
   ##
-  ## See also:
-  ## * `gcd proc <#gcd,T,T>`_ for integer version
+  ## **See also:**
+  ## * `lcm func <#lcm,T,T>`_ for a version with two arguments
   runnableExamples:
     doAssert lcm(@[24, 30]) == 120
+
   result = x[0]
-  var i = 1
-  while i < x.len:
+  for i in 1 ..< x.len:
     result = lcm(result, x[i])
-    inc(i)
-
-when isMainModule and not defined(js) and not windowsCC89:
-  # Check for no side effect annotation
-  proc mySqrt(num: float): float {.noSideEffect.} =
-    return sqrt(num)
-
-  # check gamma function
-  assert(gamma(5.0) == 24.0) # 4!
-  assert(lgamma(1.0) == 0.0) # ln(1.0) == 0.0
-  assert(erf(6.0) > erf(5.0))
-  assert(erfc(6.0) < erfc(5.0))
-
-when isMainModule:
-  # Function for approximate comparison of floats
-  proc `==~`(x, y: float): bool = (abs(x-y) < 1e-9)
-
-  block: # prod
-    doAssert prod([1, 2, 3, 4]) == 24
-    doAssert prod([1.5, 3.4]) == 5.1
-    let x: seq[float] = @[]
-    doAssert prod(x) == 1.0
-
-  block: # round() tests
-    # Round to 0 decimal places
-    doAssert round(54.652) ==~ 55.0
-    doAssert round(54.352) ==~ 54.0
-    doAssert round(-54.652) ==~ -55.0
-    doAssert round(-54.352) ==~ -54.0
-    doAssert round(0.0) ==~ 0.0
-
-  block: # splitDecimal() tests
-    doAssert splitDecimal(54.674).intpart ==~ 54.0
-    doAssert splitDecimal(54.674).floatpart ==~ 0.674
-    doAssert splitDecimal(-693.4356).intpart ==~ -693.0
-    doAssert splitDecimal(-693.4356).floatpart ==~ -0.4356
-    doAssert splitDecimal(0.0).intpart ==~ 0.0
-    doAssert splitDecimal(0.0).floatpart ==~ 0.0
-
-  block: # trunc tests for vcc
-    doAssert(trunc(-1.1) == -1)
-    doAssert(trunc(1.1) == 1)
-    doAssert(trunc(-0.1) == -0)
-    doAssert(trunc(0.1) == 0)
-
-    #special case
-    doAssert(classify(trunc(1e1000000)) == fcInf)
-    doAssert(classify(trunc(-1e1000000)) == fcNegInf)
-    doAssert(classify(trunc(0.0/0.0)) == fcNan)
-    doAssert(classify(trunc(0.0)) == fcZero)
-
-    #trick the compiler to produce signed zero
-    let
-      f_neg_one = -1.0
-      f_zero = 0.0
-      f_nan = f_zero / f_zero
-
-    doAssert(classify(trunc(f_neg_one*f_zero)) == fcNegZero)
-
-    doAssert(trunc(-1.1'f32) == -1)
-    doAssert(trunc(1.1'f32) == 1)
-    doAssert(trunc(-0.1'f32) == -0)
-    doAssert(trunc(0.1'f32) == 0)
-    doAssert(classify(trunc(1e1000000'f32)) == fcInf)
-    doAssert(classify(trunc(-1e1000000'f32)) == fcNegInf)
-    doAssert(classify(trunc(f_nan.float32)) == fcNan)
-    doAssert(classify(trunc(0.0'f32)) == fcZero)
-
-  block: # sgn() tests
-    assert sgn(1'i8) == 1
-    assert sgn(1'i16) == 1
-    assert sgn(1'i32) == 1
-    assert sgn(1'i64) == 1
-    assert sgn(1'u8) == 1
-    assert sgn(1'u16) == 1
-    assert sgn(1'u32) == 1
-    assert sgn(1'u64) == 1
-    assert sgn(-12342.8844'f32) == -1
-    assert sgn(123.9834'f64) == 1
-    assert sgn(0'i32) == 0
-    assert sgn(0'f32) == 0
-    assert sgn(NegInf) == -1
-    assert sgn(Inf) == 1
-    assert sgn(NaN) == 0
-
-  block: # fac() tests
-    try:
-      discard fac(-1)
-    except AssertionDefect:
-      discard
-
-    doAssert fac(0) == 1
-    doAssert fac(1) == 1
-    doAssert fac(2) == 2
-    doAssert fac(3) == 6
-    doAssert fac(4) == 24
-
-  block: # floorMod/floorDiv
-    doAssert floorDiv(8, 3) == 2
-    doAssert floorMod(8, 3) == 2
-
-    doAssert floorDiv(8, -3) == -3
-    doAssert floorMod(8, -3) == -1
-
-    doAssert floorDiv(-8, 3) == -3
-    doAssert floorMod(-8, 3) == 1
-
-    doAssert floorDiv(-8, -3) == 2
-    doAssert floorMod(-8, -3) == -2
-
-    doAssert floorMod(8.0, -3.0) ==~ -1.0
-    doAssert floorMod(-8.5, 3.0) ==~ 0.5
-
-  block: # log
-    doAssert log(4.0, 3.0) ==~ ln(4.0) / ln(3.0)
-    doAssert log2(8.0'f64) == 3.0'f64
-    doAssert log2(4.0'f64) == 2.0'f64
-    doAssert log2(2.0'f64) == 1.0'f64
-    doAssert log2(1.0'f64) == 0.0'f64
-    doAssert classify(log2(0.0'f64)) == fcNegInf
-
-    doAssert log2(8.0'f32) == 3.0'f32
-    doAssert log2(4.0'f32) == 2.0'f32
-    doAssert log2(2.0'f32) == 1.0'f32
-    doAssert log2(1.0'f32) == 0.0'f32
-    doAssert classify(log2(0.0'f32)) == fcNegInf