diff options
Diffstat (limited to 'lib/pure/random.nim')
-rw-r--r-- | lib/pure/random.nim | 727 |
1 files changed, 396 insertions, 331 deletions
diff --git a/lib/pure/random.nim b/lib/pure/random.nim index 7c5d51ceb..3ec77d37e 100644 --- a/lib/pure/random.nim +++ b/lib/pure/random.nim @@ -7,11 +7,11 @@ # distribution, for details about the copyright. # -## Nim's standard random number generator. +## Nim's standard random number generator (RNG). ## -## Its implementation is based on the ``xoroshiro128+`` +## Its implementation is based on the `xoroshiro128+` ## (xor/rotate/shift/rotate) library. -## * More information: http://xoroshiro.di.unimi.it/ +## * More information: http://xoroshiro.di.unimi.it ## * C implementation: http://xoroshiro.di.unimi.it/xoroshiro128plus.c ## ## **Do not use this module for cryptographic purposes!** @@ -19,89 +19,98 @@ ## Basic usage ## =========== ## -## To get started, here are some examples: -## -## .. code-block:: -## -## import random -## -## # Call randomize() once to initialize the default random number generator -## # If this is not called, the same results will occur every time these -## # examples are run -## randomize() -## -## # Pick a number between 0 and 100 -## let num = rand(100) -## echo num -## -## # Roll a six-sided die -## let roll = rand(1..6) -## echo roll -## -## # Pick a marble from a bag -## let marbles = ["red", "blue", "green", "yellow", "purple"] -## let pick = sample(marbles) -## echo pick -## -## # Shuffle some cards -## var cards = ["Ace", "King", "Queen", "Jack", "Ten"] -## shuffle(cards) -## echo cards -## -## These examples all use the default random number generator. The -## `Rand type<#Rand>`_ represents the state of a random number generator. +runnableExamples: + # Call randomize() once to initialize the default random number generator. + # If this is not called, the same results will occur every time these + # examples are run. + randomize() + + # Pick a number in 0..100. + let num = rand(100) + doAssert num in 0..100 + + # Roll a six-sided die. + let roll = rand(1..6) + doAssert roll in 1..6 + + # Pick a marble from a bag. + let marbles = ["red", "blue", "green", "yellow", "purple"] + let pick = sample(marbles) + doAssert pick in marbles + + # Shuffle some cards. + var cards = ["Ace", "King", "Queen", "Jack", "Ten"] + shuffle(cards) + doAssert cards.len == 5 + +## These examples all use the default RNG. The +## `Rand type <#Rand>`_ represents the state of an RNG. ## For convenience, this module contains a default Rand state that corresponds -## to the default random number generator. Most procs in this module which do +## to the default RNG. Most procs in this module which do ## not take in a Rand parameter, including those called in the above examples, ## use the default generator. Those procs are **not** thread-safe. ## ## Note that the default generator always starts in the same state. -## The `randomize proc<#randomize>`_ can be called to initialize the default +## The `randomize proc <#randomize>`_ can be called to initialize the default ## generator with a seed based on the current time, and it only needs to be ## called once before the first usage of procs from this module. If -## ``randomize`` is not called, then the default generator will always produce +## `randomize` is not called, the default generator will always produce ## the same results. ## -## Generators that are independent of the default one can be created with the -## `initRand proc<#initRand,int64>`_. +## RNGs that are independent of the default one can be created with the +## `initRand proc <#initRand,int64>`_. ## ## Again, it is important to remember that this module must **not** be used for ## cryptographic applications. ## ## See also ## ======== -## * `math module<math.html>`_ for basic math routines -## * `mersenne module<mersenne.html>`_ for the Mersenne Twister random number -## generator -## * `stats module<stats.html>`_ for statistical analysis -## * `list of cryptographic and hashing modules -## <lib.html#pure-libraries-hashing>`_ +## * `std/sysrand module <sysrand.html>`_ for a cryptographically secure pseudorandom number generator +## * `math module <math.html>`_ for basic math routines +## * `stats module <stats.html>`_ for statistical analysis +## * `list of cryptographic and hashing modules <lib.html#pure-libraries-hashing>`_ ## in the standard library -import algorithm, math -import std/private/since +import std/[algorithm, math] +import std/private/[since, jsutils] + +when defined(nimPreviewSlimSystem): + import std/[assertions] -include "system/inclrtl" +include system/inclrtl {.push debugger: off.} +template whenHasBigInt64(yes64, no64): untyped = + when defined(js): + when compiles(compileOption("jsbigint64")): + when compileOption("jsbigint64"): + yes64 + else: + no64 + else: + no64 + else: + yes64 -when defined(js): - type Ui = uint32 - const randMax = 4_294_967_295u32 -else: +whenHasBigInt64: type Ui = uint64 const randMax = 18_446_744_073_709_551_615u64 +do: + type Ui = uint32 + + const randMax = 4_294_967_295u32 + type Rand* = object ## State of a random number generator. ## - ## Create a new Rand state using the `initRand proc<#initRand,int64>`_. + ## Create a new Rand state using the `initRand proc <#initRand,int64>`_. ## ## The module contains a default Rand state for convenience. - ## It corresponds to the default random number generator's state. + ## It corresponds to the default RNG's state. ## The default Rand state always starts with the same values, but the - ## `randomize proc<#randomize>`_ can be used to seed the default generator + ## `randomize proc <#randomize>`_ can be used to seed the default generator ## with a value based on the current time. ## ## Many procs have two variations: one that takes in a Rand parameter and @@ -109,34 +118,50 @@ type ## generator are **not** thread-safe! a0, a1: Ui -when defined(js): +whenHasBigInt64: + const DefaultRandSeed = Rand( + a0: 0x69B4C98CB8530805u64, + a1: 0xFED1DD3004688D67CAu64) + + # racy for multi-threading but good enough for now: + var state = DefaultRandSeed # global for backwards compatibility +do: var state = Rand( a0: 0x69B4C98Cu32, a1: 0xFED1DD30u32) # global for backwards compatibility -else: - # racy for multi-threading but good enough for now: - var state = Rand( - a0: 0x69B4C98CB8530805u64, - a1: 0xFED1DD3004688D67CAu64) # global for backwards compatibility + +func isValid(r: Rand): bool {.inline.} = + ## Check whether state of `r` is valid. + ## + ## In `xoroshiro128+`, if all bits of `a0` and `a1` are zero, + ## they are always zero after calling `next(r: var Rand)`. + not (r.a0 == 0 and r.a1 == 0) + +since (1, 5): + template randState*(): untyped = + ## Makes the default Rand state accessible from other modules. + ## Useful for module authors. + state proc rotl(x, k: Ui): Ui = result = (x shl k) or (x shr (Ui(64) - k)) proc next*(r: var Rand): uint64 = - ## Computes a random ``uint64`` number using the given state. + ## Computes a random `uint64` number using the given state. ## - ## See also: + ## **See also:** ## * `rand proc<#rand,Rand,Natural>`_ that returns an integer between zero and ## a given upper bound ## * `rand proc<#rand,Rand,range[]>`_ that returns a float - ## * `rand proc<#rand,Rand,HSlice[T,T]>`_ that accepts a slice + ## * `rand proc<#rand,Rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_ + ## that accepts a slice ## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type ## * `skipRandomNumbers proc<#skipRandomNumbers,Rand>`_ - runnableExamples: + runnableExamples("-r:off"): var r = initRand(2019) - doAssert r.next() == 138_744_656_611_299'u64 - doAssert r.next() == 979_810_537_855_049_344'u64 - doAssert r.next() == 3_628_232_584_225_300_704'u64 + assert r.next() == 13223559681708962501'u64 # implementation defined + assert r.next() == 7229677234260823147'u64 # ditto + let s0 = r.a0 var s1 = r.a1 result = s0 + s1 @@ -147,12 +172,12 @@ proc next*(r: var Rand): uint64 = proc skipRandomNumbers*(s: var Rand) = ## The jump function for the generator. ## - ## This proc is equivalent to 2^64 calls to `next<#next,Rand>`_, and it can - ## be used to generate 2^64 non-overlapping subsequences for parallel + ## This proc is equivalent to `2^64` calls to `next <#next,Rand>`_, and it can + ## be used to generate `2^64` non-overlapping subsequences for parallel ## computations. ## ## When multiple threads are generating random numbers, each thread must - ## own the `Rand<#Rand>`_ state it is using so that the thread can safely + ## own the `Rand <#Rand>`_ state it is using so that the thread can safely ## obtain random numbers. However, if each thread creates its own Rand state, ## the subsequences of random numbers that each thread generates may overlap, ## even if the provided seeds are unique. This is more likely to happen as the @@ -163,38 +188,43 @@ proc skipRandomNumbers*(s: var Rand) = ## Rand state to a thread, call this proc before passing it to the next one. ## By using the Rand state this way, the subsequences of random numbers ## generated in each thread will never overlap as long as no thread generates - ## more than 2^64 random numbers. - ## - ## The following example below demonstrates this pattern: + ## more than `2^64` random numbers. ## - ## .. code-block:: - ## # Compile this example with --threads:on - ## import random - ## import threadpool - ## - ## const spawns = 4 - ## const numbers = 100000 - ## - ## proc randomSum(rand: Rand): int = - ## var r = rand - ## for i in 1..numbers: - ## result += rand(1..10) - ## - ## var r = initRand(2019) - ## var vals: array[spawns, FlowVar[int]] - ## for val in vals.mitems: - ## val = spawn(randomSum(r)) - ## r.skipRandomNumbers() - ## - ## for val in vals: - ## echo ^val - ## - ## See also: + ## **See also:** ## * `next proc<#next,Rand>`_ - when defined(js): - const helper = [0xbeac0467u32, 0xd86b048bu32] - else: + runnableExamples("--threads:on"): + import std/random + + const numbers = 100000 + + var + thr: array[0..3, Thread[(Rand, int)]] + vals: array[0..3, int] + + proc randomSum(params: tuple[r: Rand, index: int]) {.thread.} = + var r = params.r + var s = 0 # avoid cache thrashing + for i in 1..numbers: + s += r.rand(0..10) + vals[params.index] = s + + var r = initRand(2019) + for i in 0..<thr.len: + createThread(thr[i], randomSum, (r, i)) + r.skipRandomNumbers() + + joinThreads(thr) + + for val in vals: + doAssert abs(val - numbers * 5) / numbers < 0.1 + + doAssert vals == [501737, 497901, 500683, 500157] + + + whenHasBigInt64: const helper = [0xbeac0467eba5facbu64, 0xd86b048b86aa9922u64] + do: + const helper = [0xbeac0467u32, 0xd86b048bu32] var s0 = Ui 0 s1 = Ui 0 @@ -207,65 +237,83 @@ proc skipRandomNumbers*(s: var Rand) = s.a0 = s0 s.a1 = s1 +proc rand[T: uint | uint64](r: var Rand; max: T): T = + # xxx export in future work + if max == 0: return + else: + let max = uint64(max) + when T.high.uint64 == uint64.high: + if max == uint64.high: return T(next(r)) + var iters = 0 + while true: + let x = next(r) + # avoid `mod` bias + if x <= randMax - (randMax mod max) or iters > 20: + return T(x mod (max + 1)) + else: + inc iters + proc rand*(r: var Rand; max: Natural): int {.benign.} = ## Returns a random integer in the range `0..max` using the given state. ## - ## See also: - ## * `rand proc<#rand,int>`_ that returns an integer using the default - ## random number generator + ## **See also:** + ## * `rand proc<#rand,int>`_ that returns an integer using the default RNG ## * `rand proc<#rand,Rand,range[]>`_ that returns a float - ## * `rand proc<#rand,Rand,HSlice[T,T]>`_ that accepts a slice + ## * `rand proc<#rand,Rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_ + ## that accepts a slice ## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type runnableExamples: var r = initRand(123) - doAssert r.rand(100) == 0 - doAssert r.rand(100) == 96 - doAssert r.rand(100) == 66 - if max == 0: return - while true: - let x = next(r) - if x <= randMax - (randMax mod Ui(max)): - return int(x mod (uint64(max)+1u64)) + if false: + assert r.rand(100) == 96 # implementation defined + # bootstrap: can't use `runnableExamples("-r:off")` + cast[int](rand(r, uint64(max))) + # xxx toUnsigned pending https://github.com/nim-lang/Nim/pull/18445 proc rand*(max: int): int {.benign.} = ## Returns a random integer in the range `0..max`. ## - ## If `randomize<#randomize>`_ has not been called, the sequence of random + ## If `randomize <#randomize>`_ has not been called, the sequence of random ## numbers returned from this proc will always be the same. ## - ## This proc uses the default random number generator. Thus, it is **not** - ## thread-safe. + ## This proc uses the default RNG. Thus, it is **not** thread-safe. ## - ## See also: + ## **See also:** ## * `rand proc<#rand,Rand,Natural>`_ that returns an integer using a ## provided state ## * `rand proc<#rand,float>`_ that returns a float - ## * `rand proc<#rand,HSlice[T,T]>`_ that accepts a slice + ## * `rand proc<#rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_ + ## that accepts a slice ## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type - runnableExamples: + runnableExamples("-r:off"): randomize(123) - doAssert rand(100) == 0 - doAssert rand(100) == 96 - doAssert rand(100) == 66 + assert [rand(100), rand(100)] == [96, 63] # implementation defined + rand(state, max) proc rand*(r: var Rand; max: range[0.0 .. high(float)]): float {.benign.} = ## Returns a random floating point number in the range `0.0..max` ## using the given state. ## - ## See also: - ## * `rand proc<#rand,float>`_ that returns a float using the default - ## random number generator + ## **See also:** + ## * `rand proc<#rand,float>`_ that returns a float using the default RNG ## * `rand proc<#rand,Rand,Natural>`_ that returns an integer - ## * `rand proc<#rand,Rand,HSlice[T,T]>`_ that accepts a slice + ## * `rand proc<#rand,Rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_ + ## that accepts a slice ## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type runnableExamples: var r = initRand(234) - let f = r.rand(1.0) - ## f = 8.717181376738381e-07 + let f = r.rand(1.0) # 8.717181376738381e-07 + let x = next(r) when defined(js): - result = (float(x) / float(high(uint32))) * max + when compiles(compileOption("jsbigint64")): + when compileOption("jsbigint64"): + result = (float(x) / float(high(uint64))) * max + else: + result = (float(x) / float(high(uint32))) * max + else: + result = (float(x) / float(high(uint32))) * max else: let u = (0x3FFu64 shl 52u64) or (x shr 12u64) result = (cast[float](u) - 1.0) * max @@ -273,22 +321,22 @@ proc rand*(r: var Rand; max: range[0.0 .. high(float)]): float {.benign.} = proc rand*(max: float): float {.benign.} = ## Returns a random floating point number in the range `0.0..max`. ## - ## If `randomize<#randomize>`_ has not been called, the sequence of random + ## If `randomize <#randomize>`_ has not been called, the sequence of random ## numbers returned from this proc will always be the same. ## - ## This proc uses the default random number generator. Thus, it is **not** - ## thread-safe. + ## This proc uses the default RNG. Thus, it is **not** thread-safe. ## - ## See also: + ## **See also:** ## * `rand proc<#rand,Rand,range[]>`_ that returns a float using a ## provided state ## * `rand proc<#rand,int>`_ that returns an integer - ## * `rand proc<#rand,HSlice[T,T]>`_ that accepts a slice + ## * `rand proc<#rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_ + ## that accepts a slice ## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type runnableExamples: randomize(234) - let f = rand(1.0) - ## f = 8.717181376738381e-07 + let f = rand(1.0) # 8.717181376738381e-07 + rand(state, max) proc rand*[T: Ordinal or SomeFloat](r: var Rand; x: HSlice[T, T]): T = @@ -297,92 +345,106 @@ proc rand*[T: Ordinal or SomeFloat](r: var Rand; x: HSlice[T, T]): T = ## ## Allowed types for `T` are integers, floats, and enums without holes. ## - ## See also: - ## * `rand proc<#rand,HSlice[T,T]>`_ that accepts a slice and uses the - ## default random number generator + ## **See also:** + ## * `rand proc<#rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_ + ## that accepts a slice and uses the default RNG ## * `rand proc<#rand,Rand,Natural>`_ that returns an integer ## * `rand proc<#rand,Rand,range[]>`_ that returns a float ## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type runnableExamples: var r = initRand(345) - doAssert r.rand(1..6) == 4 - doAssert r.rand(1..6) == 4 - doAssert r.rand(1..6) == 6 - let f = r.rand(-1.0 .. 1.0) - ## f = 0.8741183448756229 + assert r.rand(1..5) <= 5 + assert r.rand(-1.1 .. 1.2) >= -1.1 + assert x.a <= x.b when T is SomeFloat: result = rand(r, x.b - x.a) + x.a else: # Integers and Enum types - result = T(rand(r, int(x.b) - int(x.a)) + int(x.a)) + whenJsNoBigInt64: + result = cast[T](rand(r, cast[uint](x.b) - cast[uint](x.a)) + cast[uint](x.a)) + do: + result = cast[T](rand(r, cast[uint64](x.b) - cast[uint64](x.a)) + cast[uint64](x.a)) proc rand*[T: Ordinal or SomeFloat](x: HSlice[T, T]): T = ## For a slice `a..b`, returns a value in the range `a..b`. ## ## Allowed types for `T` are integers, floats, and enums without holes. ## - ## If `randomize<#randomize>`_ has not been called, the sequence of random + ## If `randomize <#randomize>`_ has not been called, the sequence of random ## numbers returned from this proc will always be the same. ## - ## This proc uses the default random number generator. Thus, it is **not** - ## thread-safe. + ## This proc uses the default RNG. Thus, it is **not** thread-safe. ## - ## See also: - ## * `rand proc<#rand,Rand,HSlice[T,T]>`_ that accepts a slice and uses - ## a provided state + ## **See also:** + ## * `rand proc<#rand,Rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_ + ## that accepts a slice and uses a provided state ## * `rand proc<#rand,int>`_ that returns an integer ## * `rand proc<#rand,float>`_ that returns a floating point number ## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type runnableExamples: randomize(345) - doAssert rand(1..6) == 4 - doAssert rand(1..6) == 4 - doAssert rand(1..6) == 6 + assert rand(1..6) <= 6 + result = rand(state, x) -proc rand*[T: SomeInteger](t: typedesc[T]): T = - ## Returns a random integer in the range `low(T)..high(T)`. +proc rand*[T: Ordinal](r: var Rand; t: typedesc[T]): T {.since: (1, 7, 1).} = + ## Returns a random Ordinal in the range `low(T)..high(T)`. ## - ## If `randomize<#randomize>`_ has not been called, the sequence of random + ## If `randomize <#randomize>`_ has not been called, the sequence of random ## numbers returned from this proc will always be the same. ## - ## This proc uses the default random number generator. Thus, it is **not** - ## thread-safe. + ## **See also:** + ## * `rand proc<#rand,int>`_ that returns an integer + ## * `rand proc<#rand,float>`_ that returns a floating point number + ## * `rand proc<#rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_ + ## that accepts a slice + when T is range or T is enum: + result = rand(r, low(T)..high(T)) + elif T is bool: + result = r.next < randMax div 2 + else: + whenJsNoBigInt64: + result = cast[T](r.next shr (sizeof(uint)*8 - sizeof(T)*8)) + do: + result = cast[T](r.next shr (sizeof(uint64)*8 - sizeof(T)*8)) + +proc rand*[T: Ordinal](t: typedesc[T]): T = + ## Returns a random Ordinal in the range `low(T)..high(T)`. + ## + ## If `randomize <#randomize>`_ has not been called, the sequence of random + ## numbers returned from this proc will always be the same. ## - ## See also: + ## This proc uses the default RNG. Thus, it is **not** thread-safe. + ## + ## **See also:** ## * `rand proc<#rand,int>`_ that returns an integer ## * `rand proc<#rand,float>`_ that returns a floating point number - ## * `rand proc<#rand,HSlice[T,T]>`_ that accepts a slice + ## * `rand proc<#rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_ + ## that accepts a slice runnableExamples: randomize(567) - doAssert rand(int8) == 55 - doAssert rand(int8) == -42 - doAssert rand(int8) == 43 - doAssert rand(uint32) == 578980729'u32 - doAssert rand(uint32) == 4052940463'u32 - doAssert rand(uint32) == 2163872389'u32 - doAssert rand(range[1..16]) == 11 - doAssert rand(range[1..16]) == 4 - doAssert rand(range[1..16]) == 16 - when T is range: - result = rand(state, low(T)..high(T)) - else: - result = cast[T](state.next) + type E = enum a, b, c, d + + assert rand(E) in a..d + assert rand(char) in low(char)..high(char) + assert rand(int8) in low(int8)..high(int8) + assert rand(uint32) in low(uint32)..high(uint32) + assert rand(range[1..16]) in 1..16 + + result = rand(state, t) proc sample*[T](r: var Rand; s: set[T]): T = - ## Returns a random element from the set ``s`` using the given state. + ## Returns a random element from the set `s` using the given state. ## - ## See also: - ## * `sample proc<#sample,set[T]>`_ that uses the default random number - ## generator - ## * `sample proc<#sample,Rand,openArray[T]>`_ for openarrays + ## **See also:** + ## * `sample proc<#sample,set[T]>`_ that uses the default RNG + ## * `sample proc<#sample,Rand,openArray[T]>`_ for `openArray`s ## * `sample proc<#sample,Rand,openArray[T],openArray[U]>`_ that uses a ## cumulative distribution function runnableExamples: var r = initRand(987) let s = {1, 3, 5, 7, 9} - doAssert r.sample(s) == 5 - doAssert r.sample(s) == 7 - doAssert r.sample(s) == 1 + assert r.sample(s) in s + assert card(s) != 0 var i = rand(r, card(s) - 1) for e in s: @@ -390,54 +452,49 @@ proc sample*[T](r: var Rand; s: set[T]): T = dec(i) proc sample*[T](s: set[T]): T = - ## Returns a random element from the set ``s``. + ## Returns a random element from the set `s`. ## - ## If `randomize<#randomize>`_ has not been called, the order of outcomes + ## If `randomize <#randomize>`_ has not been called, the order of outcomes ## from this proc will always be the same. ## - ## This proc uses the default random number generator. Thus, it is **not** - ## thread-safe. + ## This proc uses the default RNG. Thus, it is **not** thread-safe. ## - ## See also: + ## **See also:** ## * `sample proc<#sample,Rand,set[T]>`_ that uses a provided state - ## * `sample proc<#sample,openArray[T]>`_ for openarrays + ## * `sample proc<#sample,openArray[T]>`_ for `openArray`s ## * `sample proc<#sample,openArray[T],openArray[U]>`_ that uses a ## cumulative distribution function runnableExamples: randomize(987) let s = {1, 3, 5, 7, 9} - doAssert sample(s) == 5 - doAssert sample(s) == 7 - doAssert sample(s) == 1 + assert sample(s) in s + sample(state, s) proc sample*[T](r: var Rand; a: openArray[T]): T = - ## Returns a random element from ``a`` using the given state. + ## Returns a random element from `a` using the given state. ## - ## See also: - ## * `sample proc<#sample,openArray[T]>`_ that uses the default - ## random number generator + ## **See also:** + ## * `sample proc<#sample,openArray[T]>`_ that uses the default RNG ## * `sample proc<#sample,Rand,openArray[T],openArray[U]>`_ that uses a ## cumulative distribution function ## * `sample proc<#sample,Rand,set[T]>`_ for sets runnableExamples: let marbles = ["red", "blue", "green", "yellow", "purple"] var r = initRand(456) - doAssert r.sample(marbles) == "blue" - doAssert r.sample(marbles) == "yellow" - doAssert r.sample(marbles) == "red" + assert r.sample(marbles) in marbles + result = a[r.rand(a.low..a.high)] -proc sample*[T](a: openArray[T]): T = - ## Returns a random element from ``a``. +proc sample*[T](a: openArray[T]): lent T = + ## Returns a random element from `a`. ## - ## If `randomize<#randomize>`_ has not been called, the order of outcomes + ## If `randomize <#randomize>`_ has not been called, the order of outcomes ## from this proc will always be the same. ## - ## This proc uses the default random number generator. Thus, it is **not** - ## thread-safe. + ## This proc uses the default RNG. Thus, it is **not** thread-safe. ## - ## See also: + ## **See also:** ## * `sample proc<#sample,Rand,openArray[T]>`_ that uses a provided state ## * `sample proc<#sample,openArray[T],openArray[U]>`_ that uses a ## cumulative distribution function @@ -445,84 +502,79 @@ proc sample*[T](a: openArray[T]): T = runnableExamples: let marbles = ["red", "blue", "green", "yellow", "purple"] randomize(456) - doAssert sample(marbles) == "blue" - doAssert sample(marbles) == "yellow" - doAssert sample(marbles) == "red" + assert sample(marbles) in marbles + result = a[rand(a.low..a.high)] proc sample*[T, U](r: var Rand; a: openArray[T]; cdf: openArray[U]): T = - ## Returns an element from ``a`` using a cumulative distribution function + ## Returns an element from `a` using a cumulative distribution function ## (CDF) and the given state. ## - ## The ``cdf`` argument does not have to be normalized, and it could contain - ## any type of elements that can be converted to a ``float``. It must be - ## the same length as ``a``. Each element in ``cdf`` should be greater than + ## The `cdf` argument does not have to be normalized, and it could contain + ## any type of elements that can be converted to a `float`. It must be + ## the same length as `a`. Each element in `cdf` should be greater than ## or equal to the previous element. ## ## The outcome of the `cumsum<math.html#cumsum,openArray[T]>`_ proc and the ## return value of the `cumsummed<math.html#cumsummed,openArray[T]>`_ proc, - ## which are both in the math module, can be used as the ``cdf`` argument. + ## which are both in the math module, can be used as the `cdf` argument. ## - ## See also: + ## **See also:** ## * `sample proc<#sample,openArray[T],openArray[U]>`_ that also utilizes - ## a CDF but uses the default random number generator + ## a CDF but uses the default RNG ## * `sample proc<#sample,Rand,openArray[T]>`_ that does not use a CDF ## * `sample proc<#sample,Rand,set[T]>`_ for sets runnableExamples: - from math import cumsummed + from std/math import cumsummed let marbles = ["red", "blue", "green", "yellow", "purple"] let count = [1, 6, 8, 3, 4] let cdf = count.cumsummed var r = initRand(789) - doAssert r.sample(marbles, cdf) == "red" - doAssert r.sample(marbles, cdf) == "green" - doAssert r.sample(marbles, cdf) == "blue" + assert r.sample(marbles, cdf) in marbles + assert(cdf.len == a.len) # Two basic sanity checks. assert(float(cdf[^1]) > 0.0) - #While we could check cdf[i-1] <= cdf[i] for i in 1..cdf.len, that could get - #awfully expensive even in debugging modes. + # While we could check cdf[i-1] <= cdf[i] for i in 1..cdf.len, that could get + # awfully expensive even in debugging modes. let u = r.rand(float(cdf[^1])) a[cdf.upperBound(U(u))] proc sample*[T, U](a: openArray[T]; cdf: openArray[U]): T = - ## Returns an element from ``a`` using a cumulative distribution function + ## Returns an element from `a` using a cumulative distribution function ## (CDF). ## ## This proc works similarly to - ## `sample[T, U](Rand, openArray[T], openArray[U]) - ## <#sample,Rand,openArray[T],openArray[U]>`_. + ## `sample <#sample,Rand,openArray[T],openArray[U]>`_. ## See that proc's documentation for more details. ## - ## If `randomize<#randomize>`_ has not been called, the order of outcomes + ## If `randomize <#randomize>`_ has not been called, the order of outcomes ## from this proc will always be the same. ## - ## This proc uses the default random number generator. Thus, it is **not** - ## thread-safe. + ## This proc uses the default RNG. Thus, it is **not** thread-safe. ## - ## See also: + ## **See also:** ## * `sample proc<#sample,Rand,openArray[T],openArray[U]>`_ that also utilizes ## a CDF but uses a provided state ## * `sample proc<#sample,openArray[T]>`_ that does not use a CDF ## * `sample proc<#sample,set[T]>`_ for sets runnableExamples: - from math import cumsummed + from std/math import cumsummed let marbles = ["red", "blue", "green", "yellow", "purple"] let count = [1, 6, 8, 3, 4] let cdf = count.cumsummed randomize(789) - doAssert sample(marbles, cdf) == "red" - doAssert sample(marbles, cdf) == "green" - doAssert sample(marbles, cdf) == "blue" + assert sample(marbles, cdf) in marbles + state.sample(a, cdf) proc gauss*(r: var Rand; mu = 0.0; sigma = 1.0): float {.since: (1, 3).} = ## Returns a Gaussian random variate, - ## with mean ``mu`` and standard deviation ``sigma`` + ## with mean `mu` and standard deviation `sigma` ## using the given state. # Ratio of uniforms method for normal - # http://www2.econ.osaka-u.ac.jp/~tanizaki/class/2013/econome3/13.pdf + # https://www2.econ.osaka-u.ac.jp/~tanizaki/class/2013/econome3/13.pdf const K = sqrt(2 / E) var a = 0.0 @@ -535,70 +587,75 @@ proc gauss*(r: var Rand; mu = 0.0; sigma = 1.0): float {.since: (1, 3).} = proc gauss*(mu = 0.0, sigma = 1.0): float {.since: (1, 3).} = ## Returns a Gaussian random variate, - ## with mean ``mu`` and standard deviation ``sigma``. + ## with mean `mu` and standard deviation `sigma`. ## - ## If `randomize<#randomize>`_ has not been called, the order of outcomes + ## If `randomize <#randomize>`_ has not been called, the order of outcomes ## from this proc will always be the same. ## - ## This proc uses the default random number generator. Thus, it is **not** - ## thread-safe. + ## This proc uses the default RNG. Thus, it is **not** thread-safe. result = gauss(state, mu, sigma) proc initRand*(seed: int64): Rand = - ## Initializes a new `Rand<#Rand>`_ state using the given seed. + ## Initializes a new `Rand <#Rand>`_ state using the given seed. ## - ## `seed` must not be zero. Providing a specific seed will produce - ## the same results for that seed each time. + ## Providing a specific seed will produce the same results for that seed each time. ## - ## The resulting state is independent of the default random number - ## generator's state. + ## The resulting state is independent of the default RNG's state. When `seed == 0`, + ## we internally set the seed to an implementation defined non-zero value. ## - ## See also: - ## * `randomize proc<#randomize,int64>`_ that accepts a seed for the default - ## random number generator - ## * `randomize proc<#randomize>`_ that initializes the default random - ## number generator using the current time + ## **See also:** + ## * `initRand proc<#initRand>`_ that uses the current time + ## * `randomize proc<#randomize,int64>`_ that accepts a seed for the default RNG + ## * `randomize proc<#randomize>`_ that initializes the default RNG using the current time runnableExamples: - from times import getTime, toUnix, nanosecond + from std/times import getTime, toUnix, nanosecond var r1 = initRand(123) - let now = getTime() var r2 = initRand(now.toUnix * 1_000_000_000 + now.nanosecond) - doAssert seed != 0 # 0 causes `rand(int)` to always return 0 for example. + const seedFallback0 = int32.high # arbitrary + let seed = if seed != 0: seed else: seedFallback0 # because 0 is a fixed point result.a0 = Ui(seed shr 16) result.a1 = Ui(seed and 0xffff) + when not defined(nimLegacyRandomInitRand): + # calling `discard next(result)` (even a few times) would still produce + # skewed numbers for the 1st call to `rand()`. + skipRandomNumbers(result) discard next(result) proc randomize*(seed: int64) {.benign.} = ## Initializes the default random number generator with the given seed. ## - ## `seed` must not be zero. Providing a specific seed will produce - ## the same results for that seed each time. + ## Providing a specific seed will produce the same results for that seed each time. ## - ## See also: - ## * `initRand proc<#initRand,int64>`_ + ## **See also:** + ## * `initRand proc<#initRand,int64>`_ that initializes a Rand state + ## with a given seed ## * `randomize proc<#randomize>`_ that uses the current time instead + ## * `initRand proc<#initRand>`_ that initializes a Rand state using + ## the current time runnableExamples: - from times import getTime, toUnix, nanosecond + from std/times import getTime, toUnix, nanosecond randomize(123) let now = getTime() randomize(now.toUnix * 1_000_000_000 + now.nanosecond) + state = initRand(seed) proc shuffle*[T](r: var Rand; x: var openArray[T]) = ## Shuffles a sequence of elements in-place using the given state. ## - ## See also: - ## * `shuffle proc<#shuffle,openArray[T]>`_ that uses the default - ## random number generator + ## **See also:** + ## * `shuffle proc<#shuffle,openArray[T]>`_ that uses the default RNG runnableExamples: var cards = ["Ace", "King", "Queen", "Jack", "Ten"] var r = initRand(678) r.shuffle(cards) - doAssert cards == ["King", "Ace", "Queen", "Ten", "Jack"] + import std/algorithm + assert cards.sorted == @["Ace", "Jack", "King", "Queen", "Ten"] + for i in countdown(x.high, 1): let j = r.rand(i) swap(x[i], x[j]) @@ -606,96 +663,104 @@ proc shuffle*[T](r: var Rand; x: var openArray[T]) = proc shuffle*[T](x: var openArray[T]) = ## Shuffles a sequence of elements in-place. ## - ## If `randomize<#randomize>`_ has not been called, the order of outcomes + ## If `randomize <#randomize>`_ has not been called, the order of outcomes ## from this proc will always be the same. ## - ## This proc uses the default random number generator. Thus, it is **not** - ## thread-safe. + ## This proc uses the default RNG. Thus, it is **not** thread-safe. ## - ## See also: + ## **See also:** ## * `shuffle proc<#shuffle,Rand,openArray[T]>`_ that uses a provided state runnableExamples: var cards = ["Ace", "King", "Queen", "Jack", "Ten"] randomize(678) shuffle(cards) - doAssert cards == ["King", "Ace", "Queen", "Ten", "Jack"] + import std/algorithm + assert cards.sorted == @["Ace", "Jack", "King", "Queen", "Ten"] + shuffle(state, x) -when not defined(nimscript) and not defined(standalone): - import times +when not defined(standalone): + when defined(js): + import std/times + else: + when defined(nimscript): + import std/hashes + else: + import std/[hashes, os, sysrand, monotimes] - proc randomize*() {.benign.} = - ## Initializes the default random number generator with a value based on - ## the current time. + when compileOption("threads"): + import std/locks + var baseSeedLock: Lock + baseSeedLock.initLock + + var baseState: Rand + + proc initRand(): Rand = + ## Initializes a new Rand state. ## - ## This proc only needs to be called once, and it should be called before - ## the first usage of procs from this module that use the default random - ## number generator. + ## The resulting state is independent of the default RNG's state. ## - ## **Note:** Does not work for NimScript. + ## **Note:** Does not work for the compile-time VM. ## ## See also: - ## * `randomize proc<#randomize,int64>`_ that accepts a seed - ## * `initRand proc<#initRand,int64>`_ + ## * `initRand proc<#initRand,int64>`_ that accepts a seed for a new Rand state + ## * `randomize proc<#randomize>`_ that initializes the default RNG using the current time + ## * `randomize proc<#randomize,int64>`_ that accepts a seed for the default RNG when defined(js): let time = int64(times.epochTime() * 1000) and 0x7fff_ffff - randomize(time) + result = initRand(time) else: - let now = times.getTime() - randomize(convert(Seconds, Nanoseconds, now.toUnix) + now.nanosecond) + proc getRandomState(): Rand = + when defined(nimscript): + result = Rand( + a0: CompileTime.hash.Ui, + a1: CompileDate.hash.Ui) + if not result.isValid: + result = DefaultRandSeed + else: + var urand: array[sizeof(Rand), byte] + + for i in 0 .. 7: + if sysrand.urandom(urand): + copyMem(result.addr, urand[0].addr, sizeof(Rand)) + if result.isValid: + break + + if not result.isValid: + # Don't try to get alternative random values from other source like time or process/thread id, + # because such code would be never tested and is a liability for security. + quit("Failed to initializes baseState in random module as sysrand.urandom doesn't work.") + + when compileOption("threads"): + baseSeedLock.withLock: + if not baseState.isValid: + baseState = getRandomState() + result = baseState + baseState.skipRandomNumbers + else: + if not baseState.isValid: + baseState = getRandomState() + result = baseState + baseState.skipRandomNumbers + + since (1, 5, 1): + export initRand -{.pop.} + proc randomize*() {.benign.} = + ## Initializes the default random number generator with a seed based on + ## random number source. + ## + ## This proc only needs to be called once, and it should be called before + ## the first usage of procs from this module that use the default RNG. + ## + ## **Note:** Does not work for the compile-time VM. + ## + ## **See also:** + ## * `randomize proc<#randomize,int64>`_ that accepts a seed + ## * `initRand proc<#initRand>`_ that initializes a Rand state using + ## the current time + ## * `initRand proc<#initRand,int64>`_ that initializes a Rand state + ## with a given seed + state = initRand() -when isMainModule: - import stats - - proc main = - var occur: array[1000, int] - - var x = 8234 - for i in 0..100_000: - x = rand(high(occur)) - inc occur[x] - for i, oc in occur: - if oc < 69: - doAssert false, "too few occurrences of " & $i - elif oc > 150: - doAssert false, "too many occurrences of " & $i - - when false: - var rs: RunningStat - for j in 1..5: - for i in 1 .. 1_000: - rs.push(gauss()) - echo("mean: ", rs.mean, - " stdDev: ", rs.standardDeviation(), - " min: ", rs.min, - " max: ", rs.max) - rs.clear() - - var a = [0, 1] - shuffle(a) - doAssert a[0] == 1 - doAssert a[1] == 0 - - doAssert rand(0) == 0 - doAssert sample("a") == 'a' - - when compileOption("rangeChecks"): - try: - discard rand(-1) - doAssert false - except RangeDefect: - discard - - try: - discard rand(-1.0) - doAssert false - except RangeDefect: - discard - - - # don't use causes integer overflow - doAssert compiles(rand[int](low(int) .. high(int))) - - main() +{.pop.} |